

www.ti.com SBES022 – JULY 2011

16-Bit, 4-Channel, CCD/CMOS Sensor Analog Front-End with LED Driver

Check for Samples: VSP5620, VSP5621, VSP5622

FEATURES

Four-Channel CCD/CMOS Signal: 2-Channel,
 3-Channel, and 4-Channel Selectable

 Power Supply: 3.3 V Only, Typ (Built-in LDO, 3.3 V to 1.8 V)

Maximum Conversion Rate:

VSP5620: 35 MSPSVSP5621: 50 MSPSVSP5622: 70 MSPS

16-Bit Resolution

CDS/SH Selectable

Maximum Input Signal Range: 2.0 V

Analog and Digital Hybrid Gain:

 Analog Gain: 0.5 V/V to 3.5 V/V in 3/64-V/V Steps

 Digital Gain: 1 V/V to 2 V/V in 1/256-V/V Steps

Offset Correction DAC: ±250 mV, 8-Bit

Standard LVDS/CMOS Selectable Output:

– LVDS:

Data Channel: 2-Channel
Clock Channel: 1-Channel
8-Bit/7-Bit Serializer Selectable

CMOS: 4 Bits × 4
 Timing Generator

Fast Transfer Clock: One SignalSlow Transfer Clock: One Signal

LED Driver: Three Channels

 Current: 60-mA/Channel Max, 16-Steps/Channel

Timing Adjustment Resolution: t_{MCI K}/48

 Input Clamp/Input Reference Level Internal/External Selectable

Reference DAC: 0.5 V, 1.1 V, 1.5 V, 2 V

SPI™: Three-Wire Serial

GPIO: Four-Port

 Power (at 4-channel, LVDS, 3.3 V, without LED Driver):

VSP5620: 320 mW at 35 MSPS
 VSP5621: 406 mW at 50 MSPS
 VSP5622: 523 mW at 70 MSPS

APPLICATIONS

Copiers

Facsimile Machines

Scanners

DESCRIPTION

VSP5620/21/22 high-speed. are high-performance, 16-bit analog-to-digital-converters (ADCs) that have four independent sampling circuit channels for multi-output charge-coupled device (CCD) and complementary metal semiconductor (CMOS) line sensors. Pixel data from the sensor are sampled by the sample/hold (SH) or correlated double sampler (CDS) circuit, and are then converted to digital data by an ADC. Data output is selectable in low-voltage differential signaling (LVDS) or CMOS modes.

The VSP5620/21/22 include a programmable gain to support the pixel level inflection caused by luminance and a built-in light-emitting diode (LED) driver to adjust the brightness. The integrated digital-to-analog-converter (DAC) can be used to adjust the offset level for the analog input signal. Furthermore, the timing generator (TG) is integrated in these devices for the control of sensor operation.

The VSP5620/21/22 use 1.65 V to 1.95 V for the core voltage and 3.0 V to 3.6 V for I/Os. The core voltage is supplied by a built-in low-dropout regulator (LDO).

M

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SPI is a trademark of Motorola.

All other trademarks are the property of their respective owners.

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PACKAGE/ORDERING INFORMATION(1)

PRODUCT	PACKAGE- LEAD	PACKAGE DESIGNATOR	SPECIFIED TEMPERATURE RANGE	PACKAGE MARKING	ORDERING NUMBER	TRANSPORT MEDIA, QUANTITY
VSP5620	QFN-48	RSL	0°C to +85°C	VSP5620	VSP5620RSLR	Tape and Reel, 2500
VSP5621	QFN-48	RSL	0°C to +85°C	VSP5621	VSP5621RSLR	Tape and Reel, 2500
VSP5622	QFN-48	RSL	0°C to +85°C	VSP5622	VSP5622RSLR	Tape and Reel, 2500

⁽¹⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or visit the device product folder at www.ti.com.

ABSOLUTE MAXIMUM RATINGS(1)

Over free-air temperature range, unless otherwise noted.

	VSP5620, VSP5621, VSP5622	UNIT
Supply voltage: VDD, DVDD_IO, LVDD	4.0	V
Supply voltage difference: VDD, DVDD_IO, LVDD	±0.6	V
Ground voltage difference: VSS, DVSS, LVSS, LEDVSS	±0.1	V
Digital voltage input	-0.3 to DVDD_IO + 0.3	V
Analog voltage input	-0.3 to VDD + 0.3	V
Digital input current	±10	mA
LED driver voltage: LED1, LED2, LED3	7.0	V
Analog input current	±10	mA
Ambient temperature under bias	-40 to +125	°C
Storage temperature	-55 to +150	°C
Junction temperature	+150	°C
Package temperature (IR reflow, peak)	+260	°C

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
LDO and analog I/O power-supply voltage	VDD	3.0	3.3	3.6	V
Digital power-supply voltage	DVDD_IO	3.0	3.3	3.6	V
LVDS/CMOS power-supply voltage	LVDD	3.0	3.3	3.6	V
Supply voltage difference	VDD, DVDD_IO, LVDD	-0.3		0.3	V
Digital input logic family		Low-v	oltage CMOS		
	VSP5620	1		11.66	MHz
Master clock frequency (MCLK)	VSP5621	1		16.66	MHz
	VSP5622	1		23.33	MHz
Serial I/O clock frequency (SCLK)	•			10	MHz
Operating free-air temperature		0		+85	°C

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

ELECTRICAL CHARACTERISTICS: VSP5620

All specifications at $T_A = +25$ °C, supply voltage = +3.3 V, conversion rate = 8.75 MHz, and four-channel mode, unless otherwise noted.

			V	SP5620		
PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
ANALOG INPUT	<u> </u>					
Allowable input voltage			0		VDD	V
Full-scale range		Gain = 1 V/V		1		V_{PP}
Input capacitor				5		pF
DIGITAL INPUT			·			
Positive-going threshold	V _{T+}			DVDD	_IO × 0.7	V
Negative-going threshold	V_{T-}		DVDD_IO × 0.3	3		V
Hysteresis ($V_{T+} - V_{T-}$)	ΔV_{T}		DVDD_I	O × 0.13		V
Input current	I _{IN}				±1	μΑ
Input capacitor				5		pF
DIGITAL OUTPUT						
		$I_{OH} = -2 \text{ mA}$	DVDD_IO - 0.4	15		V
High-level output voltage	V_{OH}	$I_{OH} = -4 \text{ mA}$	DVDD_IO - 0.5	50		V
		$I_{OH} = -8 \text{ mA}$	DVDD_IO - 0.5	50		V
		$I_{OL} = 2 \text{ mA}$			0.35	V
Low-level output voltage	V _{OL}	$I_{OL} = 4 \text{ mA}$			0.50	V
		$I_{OL} = 8 \text{ mA}$			0.65	V
CMOS data output bit rate					80	MHz
LVDS DRIVER (TA, TB, TCLK)						
Differential steady-state output voltage adjustment range	V _{OD}	$R_L = 100 \Omega$	300	350	400	mV
Differential steady-state output adjustment step	V _{OD}			3		Steps
Differential steady-state output voltage tolerance	V _{OD}		-30		30	%
Change in the steady-state differential output voltage magnitude between opposite binary states	Δ V _{OD}				35	mV
Steady-state common-mode output voltage	V _{OC(SS)}	$R_L = 100 \Omega$	1.125		1.375	V
Peak-to-peak common-mode output voltage	V _{OC(PP)}			80	150	mV
Short-circuit output current	I _{OS}	$V_O = 0 V (V_O = TA, TB, TCLK)$		-6	±24	mA
Hi-Z output current	l _{oz}	$V_O = 0 \text{ V to LVDD}$ ($V_O = \text{TA, TB, TCLK}$)			±10	μΑ
Transition time, differential output voltage	t _{LR} /t _{LF}			0.75	1.5	ns
TCLK clock rate			8		35	MHz

TEXAS INSTRUMENTS

ELECTRICAL CHARACTERISTICS: VSP5620 (continued)

All specifications at $T_A = +25$ °C, supply voltage = +3.3 V, conversion rate = 8.75 MHz, and four-channel mode, unless otherwise noted.

			٧	SP5620		
PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
LED DRIVER						
Output current	I _{LD}				60	mA/ch
Off-state leak current				50		μΑ
Output current tolerance			-10		10	%
Total output current ⁽¹⁾		All channels			132	mA
Channel mismatch			- 5		5	%
Current step				16		steps/ch
Drive veltege	V		0.7		4.5	V
Drive voltage	V_{LD}	LED turns off, I _{LD} = 0 mA			6	V
Temperature drift		T _A = 0°C to +85°C, design ensured	-2		2	%
POWER SUPPLY						
LDO and analog I/O supply voltage	VDD		3.0	3.3	3.6	V
Digital I/O supply voltage	DVDD_IO		3.0	3.3	3.6	V
LVDS/CMOS supply voltage	LVDD		3.0	3.3	3.6	V
LDO and analog I/O current	VDD			74.9		mA
Digital I/O current	DVDD_IO	Load = 10 pF		3.8		mA
CMOS current	LVDD			10		mA
LVDS current	LVDD	Two-pair data, one-pair clock		18		mA
		LVDS, two-pair		320		mW
Power consumption		CMOS output		293		mW
		Standby mode (MCLK = 0 MHz)		15		mW
TEMPERATURE RANGE						
Operation temperature	T_A		0		+85	°C
DLL, PLL						
MCLK input frequency	f_{MCLK}		1		11.66	MHz
MCLK modulated frequency		MCLK > 5 MHz			35	kHz
MCLK modulated amplitude			-3.5		0	%
DLL tap number				48		Taps
Maximum DLL and PLL lock-up time		MCLK = 1 MHz		10		ms

⁽¹⁾ The total current limitation circuitry is not included.

ELECTRICAL CHARACTERISTICS: VSP5620 (continued)

NSTRUMENTS

All specifications at $T_A = +25$ °C, supply voltage = +3.3 V, conversion rate = 8.75 MHz, and four-channel mode, unless otherwise noted.

				VSP5620		
PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
TRANSFER CHARACTERISTICS					,	
Channels			2		4	Channels
Resolution				16		Bits
		LVDS, two- and three-channel mode	1		11.66	MHz/Ch
		LVDS, four-channel mode	1		8.75	MHz/Ch
Conversion rate		CMOS 4-bit × 4, two-channel mode	1		10	MHz/Ch
Soliversion rate		CMOS 4-bit × 4, three-channel mode	1		6.7	MHz/Ch
		CMOS 4-bit × 4, four-channel mode	1		5	MHz/Ch
Maximum differential nonlinearity		Gain = 1 V/V, 12-bit		±0.5		LSB
Maximum integral nonlinearity		Gain = 1 V/V, 12-bit		±2		LSB
No missing codes				Specified		
Signal-to-noise ratio	SNR	Gain = 1 V/V	72 ⁽²⁾	76		dB
Analog channel crosstalk		Gain = 1 V/V, 12-bit, full-scale step		±3		LSB
Total absolute gain error			-10		10	%
ANALOG PROGRAMMABLE GAIN	(APG)					
Gain range	APG_x		0.5		3.5	V/V
Gain step				63		Steps
Gain relative error		Basis gain = 1 V/V	-10		10	%
Gain monotonicity		Only APG_x		Specified		
DIGITAL PROGRAMMABLE GAIN (I	DPG)					
Gain range	DPG_x		1.0		2.0	V/V
Gain step				255		Steps
Gain monotonicity		Only DPG_x		Specified		
AIN REFERENCE LEVEL (REF_AIN)					
		Setting code = 0		0.5		V
Internal DAC output	V_{RINT}	Setting code = 1		1.1		V
internal DAC output	V RINT	Setting code = 2 (default)		1.5		V
		Setting code = 3		2.0		V
Internal DAC output tolerance	V_{RINT}		-10		10	%
Internal DAC output temperature drift	V_{RINT}	$T_A = 0^{\circ}C \text{ to } +85^{\circ}C^{(2)}$	-2		2	%
External reference range	V_{REXT}		0.5		VDD - 0.9	V
INPUT CLAMP						
		Internal reference level clamp		V_{RINT}		V
Clamp level	V_{CLP}	External reference level clamp		V_{REXT}		V
		Fixed level clamp		2.2		V
Clamp-on resistance	R_{CLP}			500		Ω
OFFSET DAC					,	
Resolution				8		Bits
Output range				±250		mV
Setting tolerance			-10		10	%
Temperature drift		$T_A = 0^{\circ}C \text{ to } +85^{\circ}C^{(2)}$	-2		2	%

⁽²⁾ Specified by design.

ELECTRICAL CHARACTERISTICS: VSP5621

All specifications at $T_A = +25$ °C, supply voltage = +3.3 V, conversion rate = 12.5 MHz, and four-channel mode, unless otherwise noted.

			V	SP5621		
PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
ANALOG INPUT						
Allowable input voltage			0		VDD	V
Full-scale range		Gain = 1 V/V		1		V_{PP}
Input capacitor				5		pF
DIGITAL INPUT						
Positive-going threshold	V _{T+}			DVDD	_IO × 0.7	V
Negative-going threshold	V _T		DVDD_IO × 0.3	3		V
Hysteresis ($V_{T+} - V_{T-}$)	ΔV_{T}		DVDD_I	O × 0.13		V
Input current	I _{IN}				±1	μΑ
Input capacitor				5		рF
DIGITAL OUTPUT						
		$I_{OH} = -2 \text{ mA}$	DVDD_IO - 0.4	5		V
High-level output voltage	V _{OH}	$I_{OH} = -4 \text{ mA}$	DVDD_IO - 0.5	50		V
		$I_{OH} = -8 \text{ mA}$	DVDD_IO - 0.5	50		V
		$I_{OL} = 2 \text{ mA}$			0.35	V
Low-level output voltage	V_{OL}	$I_{OL} = 4 \text{ mA}$			0.50	V
		$I_{OL} = 8 \text{ mA}$			0.65	V
CMOS data output bit rate					80	MHz
LVDS DRIVER (TA, TB, TCLK)						
Differential steady-state output voltage adjustment range	V _{OD}	$R_L = 100 \Omega$	300	350	400	mV
Differential steady-state output adjustment step	V _{OD}			3		Steps
Differential steady-state output voltage tolerance	V _{OD}		-30		30	%
Change in the steady-state differential output voltage magnitude between opposite binary states	Δ V _{OD}				35	mV
Steady-state common-mode output voltage	V _{OC(SS)}	$R_L = 100 \Omega$	1.125		1.375	V
Peak-to-peak common-mode output voltage	V _{OC(PP)}			80	150	mV
Short-circuit output current	I _{OS}	$V_O = 0 V (V_O = TA, TB, TCLK)$		-6	±24	mA
Hi-Z output current	I _{OZ}	$V_O = 0 \text{ V to LVDD}$ ($V_O = \text{TA, TB, TCLK}$)			±10	μΑ
Transition time, differential output voltage	t _{LR} /t _{LF}			0.75	1.5	ns
TCLK clock rate			8		50	MHz

ELECTRICAL CHARACTERISTICS: VSP5621 (continued)

STRUMENTS

All specifications at $T_A = +25$ °C, supply voltage = +3.3 V, conversion rate = 12.5 MHz, and four-channel mode, unless otherwise noted.

			V	SP5621		
PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
LED DRIVER						
Output current	I _{LD}				60	mA/ch
Off-state leak current				50		μΑ
Output current tolerance			-10		10	%
Total output current ⁽¹⁾		All channels			132	mA
Channel mismatch			- 5		5	%
Current step				16		steps/ch
Drive veltere	W		0.7		4.5	V
Drive voltage	V_{LD}	LED turns off, I _{LD} = 0 mA			6	V
Temperature drift		T _A = 0°C to +85°C, design ensured	-2		2	%
POWER SUPPLY						
LDO and analog I/O supply voltage	VDD		3.0	3.3	3.6	V
Digital I/O supply voltage	DVDD_IO		3.0	3.3	3.6	V
LVDS/CMOS supply voltage	LVDD		3.0	3.3	3.6	V
LDO and analog I/O current	VDD			99.6		mA
Digital I/O current	DVDD_IO	Load = 10 pF		5.4		mA
CMOS current	LVDD			10		mA
LVDS current	LVDD	Two-pair data, one-pair clock		18		mA
		LVDS, two-pair		406		mW
Power consumption		CMOS output		380		mW
		Standby mode (MCLK = 0 MHz)		15		mW
TEMPERATURE RANGE						
Operation temperature	T _A		0		+85	°C
DLL, PLL					·	
MCLK input frequency	f _{MCLK}		1		16.66	MHz
MCLK modulated frequency		MCLK > 5 MHz			35	kHz
MCLK modulated amplitude			-3.5		0	%
DLL tap number				48		Taps
Maximum DLL and PLL lock-up time		MCLK = 1 MHz		10		ms

⁽¹⁾ The total current limitation circuitry is not included.

ELECTRICAL CHARACTERISTICS: VSP5621 (continued)

All specifications at $T_A = +25$ °C, supply voltage = +3.3 V, conversion rate = 12.5 MHz, and four-channel mode, unless otherwise noted.

				VSP5621		
PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
TRANSFER CHARACTERISTICS						
Channel			2		4	Channels
Resolution				16		Bits
		LVDS, two- and three-channel mode	1		16.66	MHz/Ch
		LVDS, four-channel mode	1		12.5	MHz/Ch
Conversion rate		CMOS 4-bit × 4, two-channel mode	1		10	MHz/Ch
Soliversion rate		CMOS 4-bit × 4, three-channel mode	1		6.7	MHz/Ch
		CMOS 4-bit × 4, four-channel mode	1		5	MHz/Ch
Maximum differential nonlinearity		Gain = 1 V/V, 12-bit		±0.5		LSB
Maximum integral nonlinearity		Gain = 1 V/V, 12-bit		±2		LSB
No missing codes				Specified		
Signal-to-noise ratio	SNR	Gain = 1 V/V	72 ⁽²⁾	76		dB
Analog channel crosstalk		Gain = 1 V/V, 12-bit, full-scale step		±6.5		LSB
Total absolute gain error			-10		10	%
ANALOG PROGRAMMABLE GAIN	(APG)					
Gain range	APG_x		0.5		3.5	V/V
Gain step				63		Steps
Gain relative error		Basis gain = 1 V/V	-10		10	%
Gain monotonicity		Only APG_x		Specified		
DIGITAL PROGRAMMABLE GAIN (DPG)					
Gain range	DPG_x		1.0		2.0	V/V
Gain step				255		Steps
Gain monotonicity		Only DPG_x		Specified		
AIN REFERENCE LEVEL (REF_AIN)					
		Setting code = 0		0.5		V
Internal DAC output	V	Setting code = 1		1.1		V
Internal DAC output	V_{RINT}	Setting code = 2 (default)		1.5		V
		Setting code = 3		2.0		V
Internal DAC output tolerance	V_{RINT}		-10		10	%
Internal DAC output temperature drift	V_{RINT}	$T_A = 0^{\circ}C \text{ to } +85^{\circ}C^{(2)}$	-2		2	%
External reference range	V_{REXT}		0.5		VDD - 0.9	V
INPUT CLAMP						
		Internal reference level clamp		V_{RINT}		V
Clamp level	V_{CLP}	External reference level clamp		V_{REXT}		V
		Fixed level clamp		2.2		V
Clamp-on resistance	R_{CLP}			500		Ω
OFFSET DAC						
Resolution				8		Bits
Output range				±250		mV
Setting tolerance			-10		10	%
Temperature drift		$T_A = 0^{\circ}C \text{ to } +85^{\circ}C^{(2)}$	-2		2	%

⁽²⁾ Specified by design.

ISTRUMENTS

All specifications at $T_A = +25$ °C, supply voltage = +3.3 V, conversion rate = 17.5 MHz, and four-channel mode, unless otherwise noted.

			v	SP5622		
PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
ANALOG INPUT						
Allowable input voltage			0		VDD	V
Full-scale range		Gain = 1 V/V		1		V_{PP}
Input capacitor				5		pF
DIGITAL INPUT						
Positive-going threshold	V _{T+}			DVDD	_IO × 0.7	V
Negative-going threshold	V _{T-}		DVDD_IO × 0.3	3		V
Hysteresis (V _{T+} – V _{T-})	ΔV_{T}		DVDD_I	O × 0.13		V
Input current	I _{IN}				±1	μΑ
Input capacitor				5		pF
DIGITAL OUTPUT						
		$I_{OH} = -2 \text{ mA}$	DVDD_IO - 0.4	1 5		V
High-level output voltage	V _{OH}	$I_{OH} = -4 \text{ mA}$	DVDD_IO - 0.5	50		V
		$I_{OH} = -8 \text{ mA}$	DVDD_IO - 0.5	50		V
		$I_{OL} = 2 \text{ mA}$			0.35	V
Low-level output voltage	V _{OL}	$I_{OL} = 4 \text{ mA}$			0.50	V
		$I_{OL} = 8 \text{ mA}$			0.65	V
CMOS data output bit rate					80	MHz
LVDS DRIVER (TA, TB, TCLK)						
Differential steady-state output voltage adjustment range	V _{OD}	$R_L = 100 \Omega$	300	350	400	mV
Differential steady-state output adjustment step	V _{OD}			3		Steps
Differential steady-state output voltage tolerance	V _{OD}		-30		30	%
Change in the steady-state differential output voltage magnitude between opposite binary states	Δ V _{OD}				35	mV
Steady-state common-mode output voltage	V _{OC(SS)}	$R_L = 100 \Omega$	1.125		1.375	V
Peak-to-peak common-mode output voltage	V _{OC(PP)}			80	150	mV
Short-circuit output current	I _{OS}	$V_O = 0 V (V_O = TA, TB, TCLK)$		-6	±24	mA
Hi-Z output current	I _{OZ}	$V_O = 0 \text{ V to LVDD}$ ($V_O = \text{TA, TB, TCLK}$)			±10	μΑ
Transition time, differential output voltage	t _{LR} /t _{LF}			0.75	1.5	ns
TCLK clock rate			8		70	MHz

ELECTRICAL CHARACTERISTICS: VSP5622 (continued)

All specifications at $T_A = +25$ °C, supply voltage = +3.3 V, conversion rate = 17.5 MHz, and four-channel mode, unless otherwise noted.

			٧	SP5622		
PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
LED DRIVER						
Output current	I _{LD}				60	mA/ch
Off-state leak current				50		μΑ
Output current tolerance			-10		10	%
Total output current ⁽¹⁾		All channels			132	mA
Channel mismatch			-5		5	%
Current step				16		steps/ch
Drive voltage	\/		0.7		4.5	V
Drive voltage	V_{LD}	LED turns off, $I_{LD} = 0 \text{ mA}$			6	V
Temperature drift		$T_A = 0$ °C to +85°C, design ensured	-2		2	%
POWER SUPPLY						
LDO and analog I/O supply voltage	VDD		3.0	3.3	3.6	V
Digital I/O supply voltage	DVDD_IO		3.0	3.3	3.6	V
LVDS/CMOS supply voltage	LVDD		3.0	3.3	3.6	V
LDO and analog I/O current	VDD			133		mA
Digital I/O current	DVDD_IO	Load = 10 pF		7.5		mA
CMOS current	LVDD			10		mA
LVDS current	LVDD	Two-pair data, one-pair clock		18		mA
		LVDS, two-pair		523		mW
Power consumption		CMOS output		497		mW
		Standby mode (MCLK = 0 MHz)		15		mW
TEMPERATURE RANGE						
Operation temperature	T_A		0		+85	°C
DLL, PLL						
MCLK input frequency	f_{MCLK}		1		23.33	MHz
MCLK modulated frequency		MCLK > 5 MHz			35	kHz
MCLK modulated amplitude			-3.5		0	%
DLL tap number				32		Taps
Maximum DLL and PLL lock-up time		MCLK = 1 MHz		22		ms

 $[\]hbox{ (1)} \quad \hbox{The total current limitation circuitry is not included.} \\$

STRUMENTS

Product Folder Link(s): VSP5620 VSP5621 VSP5622

ELECTRICAL CHARACTERISTICS: VSP5622 (continued)

STRUMENTS

All specifications at $T_A = +25$ °C, supply voltage = +3.3 V, conversion rate = 17.5 MHz, and four-channel mode, unless otherwise noted.

				VSP5622		
PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
TRANSFER CHARACTERISTICS						
Channel			2		4	Channels
Resolution				16		Bits
		LVDS, two- and three-channel mode	1		23.33	MHz/Ch
		LVDS, four-channel mode	1		17.5	MHz/Ch
Conversion rate		CMOS 4-bit × 4, two-channel mode	1		10	MHz/Ch
		CMOS 4-bit × 4, three-channel mode	1		6.7	MHz/Ch
		CMOS 4-bit × 4, four-channel mode	1		5	MHz/Ch
Maximum differential nonlinearity		Gain = 1 V/V, 12-bit		±0.5		LSB
Maximum integral nonlinearity		Gain = 1 V/V, 12-bit		±2		LSB
No missing codes				Specified		
Signal-to-noise ratio	SNR	Gain = 1 V/V	72 ⁽²⁾	75		dB
Analog channel crosstalk		Gain = 1 V/V, 12-bit, full-scale step		±15		LSB
Total absolute gain error			-10		10	%
ANALOG PROGRAMMABLE GAIN ((APG)					
Gain range	APG_x		0.5		3.5	V/V
Gain step				63		Steps
Gain relative error		Basis gain = 1 V/V	-10		10	%
Gain monotonicity		Only APG_x		Specified		
DIGITAL PROGRAMMABLE GAIN (I	DPG)					
Gain range	DPG_x		1.0		2.0	V/V
Gain step				255		Steps
Gain monotonicity		Only DPG_x		Specified		
AIN REFERENCE LEVEL (REF_AIN)					
		Setting code = 0		0.5		V
Internal DAC output	V_{RINT}	Setting code = 1		1.1		V
internal DAC output	V RINI	Setting code = 2 (default)		1.5		V
		Setting code = 3		2.0		V
Internal DAC output tolerance	V_{RINT}		-10		10	%
Internal DAC output temperature drift	V_{RINT}	$T_A = 0^{\circ}C \text{ to } +85^{\circ}C^{(2)}$	-2		2	%
External reference range	V_{REXT}		0.5		VDD - 0.9	V
INPUT CLAMP						
		Internal reference level clamp		V_{RINT}		V
Clamp level	V_{CLP}	External reference level clamp		V_{REXT}		V
		Fixed level clamp		2.2		V
Clamp-on resistance	R_{CLP}			500		Ω
OFFSET DAC						
Resolution				8		Bits
Output range				±250		mV
Setting tolerance			-10		10	%
Temperature drift		$T_A = 0^{\circ}C \text{ to } +85^{\circ}C^{(2)}$	-2		2	%

⁽²⁾ Specified by design.

STRUMENTS

THERMAL INFORMATION

		VSP562xRSL	
	THERMAL METRIC ⁽¹⁾	RSL	UNITS
		48 PINS	
θ_{JA}	Junction-to-ambient thermal resistance	25.8	
θ_{JCtop}	Junction-to-case (top) thermal resistance	13.2	
θ_{JB}	Junction-to-board thermal resistance	3.5	°C/W
ΨЈТ	Junction-to-top characterization parameter	0.2	C/VV
ΨЈВ	Junction-to-board characterization parameter	3.5	
θ_{JCbot}	Junction-to-case (bottom) thermal resistance	0.4	

⁽¹⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

PARAMETERIC MEASUREMENT INFORMATION

Analog Input Specification (AIN1, AIN2, AIN3, AIN4)

The analog input specification has two signal inputs: negative and positive. These inputs are shown in Figure 1a and Figure 1b, respectively.

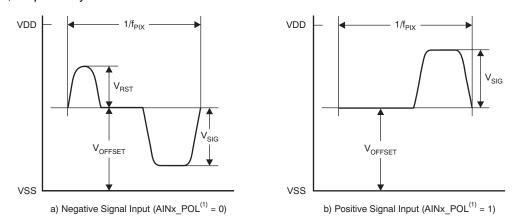
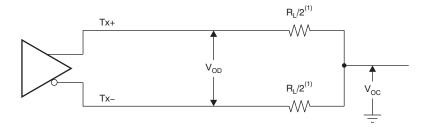
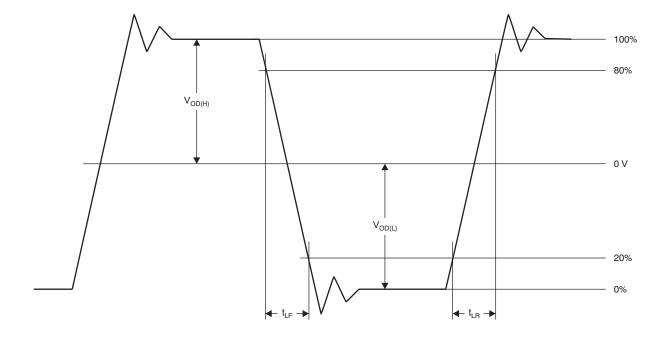


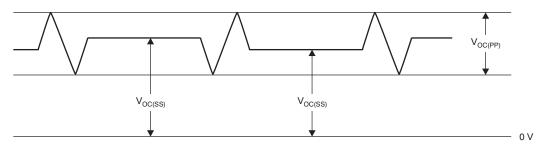
Figure 1. Analog Input Definition

Table 1. Timing Characteristics for Figure 1

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
		VSP5620	1		11.66	MHz/Ch
Input pixel rate	f_{PIX}	VSP5621	1		16.66	MHz/Ch
		VSP5622	1		23.33	MHz/Ch
Cianal range	V	Negative (AINx_POL $^{(1)} = 0$)			V_{OFFSET}	V
Signal range	V_{SIG}	Positive (AINx_POL $^{(1)} = 1$)		VDD -	- V _{OFFSET}	V
Maximum full-scale range	V_{SIG}	Gain = 0.5 V/V	1.8	2	2.2	V
Reset field through noise range	V _{RST}		-V _{OFFSET}	VDD -	- V _{OFFSET}	V
		Fixed level clamp mode (REF_SEL = 0)		2.2		V
Offset level	V _{OFFSET}	Internal reference level clamp mode (REF_SEL = 1)	V _{RINT}		V	
		External reference level clamp mode (REF_SEL = 2)		V _{REXT}		V

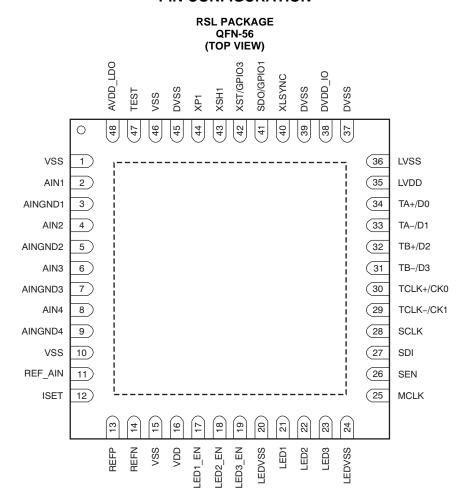

⁽¹⁾ AINx_POL = Analog input polarity setting register (x = 1, 2, 3, and 4).




LVDS Output Voltage Specification

INSTRUMENTS

The test load and voltage definition for the LVDS outputs are shown in Figure 2.



(1) $R_L/2 = 49.9 \Omega \pm 1\%$

Figure 2. Test Load and Voltage Definition for LVDS Outputs

TEXAS INSTRUMENTS

PIN CONFIGURATION

PIN ASSIGNMENTS

	PIN ASSIGNMENTS					
PIN NUMBER	PIN NAME	TYPE ⁽¹⁾	DESCRIPTION			
1	VSS	AGND	LDO and analog I/O ground			
2	AIN1	Al3.3	First channel analog signal input ⁽²⁾			
3	AINGND1	Al3.3	First channel analog signal ground (2)			
4	AIN2	Al3.3	Second channel analog signal input ⁽²⁾			
5	AINGND2	Al3.3	Second channel analog signal ground ⁽²⁾			
6	AIN3	Al3.3	Third channel analog signal input ⁽²⁾			
7	AINGND3	Al3.3	Third channel analog signal ground ⁽²⁾			
8	AIN4	Al3.3	Fourth channel analog signal input ⁽²⁾			
9	AINGND4	Al3.3	Fourth channel analog signal ground (2)			
10	VSS	AGND	LDO and analog I/O ground			
			REF_DAC_IN			
11	REF_AIN	AI3.3/AO3.3	0 = Analog signal reference output (default) 1 = Analog signal reference input			
12	ISET	LVO1.8	Internal reference voltage output; bypass to ground with a 10-k Ω ± 1% resister			
13	REFP	AO1.8	Positive reference; bypass to AGND with a 0.1-µF capacitor			
14	REFN	AO1.8	Negative reference; bypass to AGND with a 0.1-µF capacitor			
15	VSS	AGND	LDO and analog I/O ground			
16	VDD	AP3.3	LDO and analog I/O power supply			
17	LED1_EN	DI3.3	LED driver 1 enable (with an internal pull-down resistor) Polarity is set with the LED_EN_POL register (default = active high)			
18	LED2_EN	DI3.3	LED driver 2 enable (with an internal pull-down resistor) Polarity is set with the LED_EN_POL register (default = active high)			
19	LED3_EN	DI3.3	LED driver 3 enable (with an internal pull-down resistor) Polarity is set with the LED_EN_POL register (default = active high)			
20	LEDVSS	LDGND	LED driver ground			
21	LED1	LDO5.0	LED driver 1			
22	LED2	LDO5.0	LED driver 2			
23	LED3	LDO5.0	LED driver 3			
24	LEDVSS	LDGND	LED driver ground			
25	MCLK	DI3.3	Master clock input			
26	SEN	DI3.3	Serial I/F enable; active low (with an internal pull-up resistor)			
			SDI_BUFF_CTRL			
27	SDI	DIO3.3	0 = Serial I/F data input 1 = Serial I/F data input/output (with an internal pull-down resistor)			
28	SCLK	DI3.3	Serial I/F clock (with an internal pull-down resistor)			
29	TCLK-/CK1	LVO3.3	LVDS clock output-/clock output 1			
30	TCLK+/CK0	LVO3.3	LVDS clock output+/clock output 0			
31	TB-/D3	LVO3.3	TB channel LVDS data output-/data output bit 3			
32	TB+/D2	LVO3.3	TB channel LVDS data output+/data output bit 2			
33	TA-/D1	LVO3.3	TA channel LVDS data output-/data output bit 1			
34	TA+/D0	LVO3.3	TA channel LVDS data output+/data output bit 0			
35	LVDD	LVP3.3	LVDS/CMOS output power supply			
36	LVSS	LVGND	LVDS/CMOS output ground			
37	DVSS	DGND	Digital ground			

⁽¹⁾ AP3.3 = 3.3-V analog power supply; AP1.8 = 1.8-V analog power supply; AGND = analog ground; GND = ground; AO3.3 = 3.3-V analog output; AO1.8 = 1.8-V analog output; Al3.3 = 3.3-V analog input; DP3.3 = 3.3-V digital power supply; DP1.8 = 1.8-V digital power supply; DGND = digital ground; DO3.3 = 3.3-V digital output; DI3.3 = 3.3-V digital input; DIO3.3 = 3.3-V digital I/O; LVP3.3 = 3.3-V LVDS power supply; LVGND = LVDS ground; LVO3.3 = 3.3-V LVDS output; LVI3.3 = 3.3-V LVDS input; LVO = 3.3-V LVDS output; LDO5.0 = 5.0-V LED driver output; and LDGND = LED driver GND.

⁽²⁾ If these pins are unused, they can be opened or decoupled to GND with a decoupling capacitor.

PIN ASSIGNMENTS (continued)

PIN NUMBER	PIN NAME	TYPE ⁽¹⁾	DESCRIPTION
38	DVDD_IO	DP3.3	Digital I/O power supply
39	DVSS	DGND	Digital ground
40	XLSYNC	DIO3.3	XLSYNC_SEL 0 = Internal line synchronous signal output (default) When used as an input, the bit requires an internal pull-down resistor. 1 = External line synchronous signal input Polarity is set by the XLSYNC_POL register (default = active high)
41	SDO/GPIO1	DIO3.3	GPIO1_SDO_SEL 0 = GPI1; general-purpose input port 1 (default) When used as an input, the bit requires an internal pull-down resistor. 1 = GPO1; general-purpose output port 1 2 = Reserved; internal test input 3 = SDO; serial I/F data output
42	XST/GPIO3	DIO3.3	GPIO3_XST_SEL 0 = GPI3; general-purpose input port 3 (default) When used as an input, the bit requires an internal pull-down resistor. 1 = GPO3; general-purpose output port 3 2 = Reserved; internal test input 3 = XST; storage pulse output
43	XSH1	DO3.3	Sensor shift gate output 1
44	XP1	DO3.3	Fast transfer clock output φ1
45	DVSS	DGND	Digital ground
46	VSS	AGND	LDO and analog I/O ground
47	TEST	DI3.3	Internal test pin; connect to DGND
48	AVDD_LDO	AP1.8	Analog core power voltage output; not connected, open

FUNCTIONAL BLOCK DIAGRAM

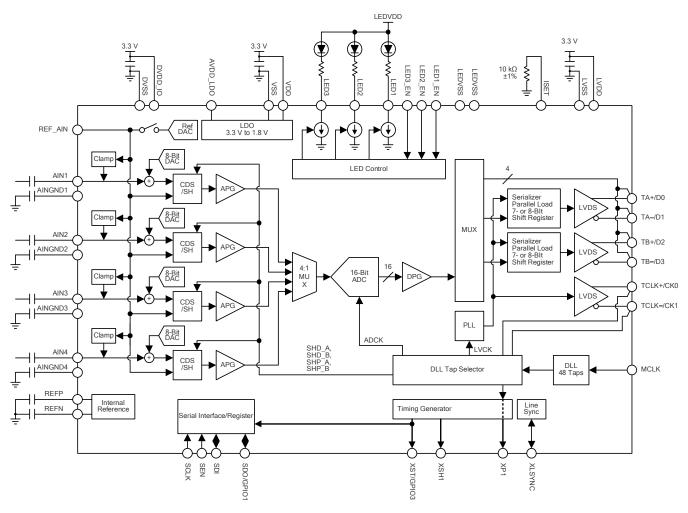


Figure 3. VSP5620/21/22 Block Diagram

Instruments

SYSTEM OVERVIEW

INTRODUCTION

The VSP5620/21/22 are analog front-end (AFE) devices for CCD and CMOS line image sensor applications such as copiers, facsimile machines, etc. The VSP5620/21/22 each provide four independent data processing channels.

The data from each image sensor channel are sampled and held by either the SH or CDS circuit and are then converted into digital data by an ADC. The digital data for each channel are later converted into serial data that can be output in either LVDS mode or CMOS mode.

AFE BLOCK

ANALOG SIGNAL INPUT

These devices have four channels that can be used as analog input ports for an image sensor. In addition to the four-channel input, this AFE device also supports three-channel and two-channel inputs. Each channel mode can be selected with internal register settings. Table 2 shows the register settings required to select the different channel modes.

Table 2. Analog Input Channel Mode Selection

MODE	AIN_CH_SEL	AIN1	AIN2	AIN3	AIN4
Two-channel	2	Active	Standby	Active	Standby
Three-channel	1	Active	Active	Active	Standby
Four-channel	0	Active	Active	Active	Active

Each analog input supports CDS and simple SH circuits to accommodate CCD and CMOS image sensors. The sampling mode can be selected independently for each channel by configuring the internal registers. As shown in Table 3, if AlNx SH CDS is set to '0', then the corresponding channel operates in CDS mode.

Table 3. CDS/SH Mode Selection

AINx_SH_CDS ⁽¹⁾	SH/CDS
0	CDS
1	SH

(1) AINx_POL = Analog input polarity setting register (x = 1, 2, 3, and 4).

In addition, these devices also support independent selection of the input signal polarity for each channel. Input signal polarity can be set using the AlNx_POL register, where x = 1, 2, 3, or 4. The input signal range and polarity are defined in the *Analog Input Specification* section.

Correlated Double Sampler (CDS) Mode (AINx_SH_CDS = 0)

CDS mode is designed to accommodate inputs from the CCD sensor. The output signal of a CCD image sensor is sampled twice during one pixel period. First, the reference interval is sampled by the SHP pulse, then the data interval is sampled by the SHD pulse. Subtracting these two samples provides the video information of the pixel as well as removes any noise common to both intervals. Thus, CDS plays an important role in reducing the reset noise and other low-frequency noises that are present on the CCD output signal. Figure 4 shows a diagram of CDS mode.

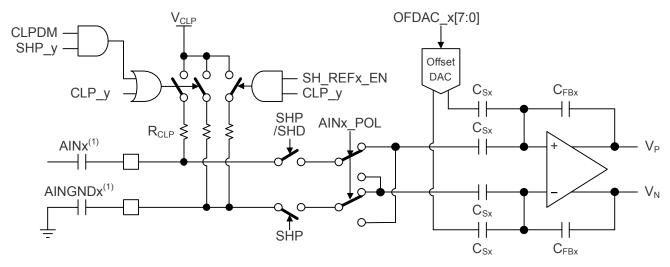
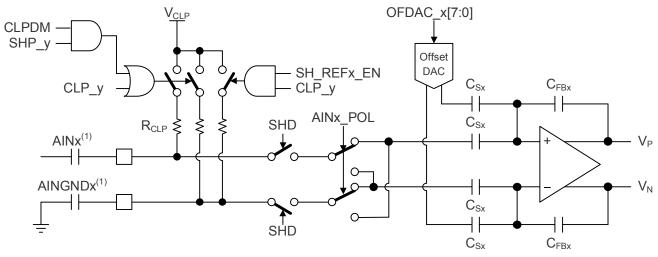


Figure 4. CDS Mode Input Circuit for CCD Signal



Sample Hold (SH) Mode (AINx_SH_CDS = 1)

SH mode supports CCD and CMOS sensors. For the CCD sensor, the sensor signal pedestal level is clamped to the V_{CLP} level using an internal clamp circuit. SH samples only once during a pixel period. The SHD pulse is used to sample the CCD signal data interval. After sampling, the SH circuit takes the difference of the data and V_{CLP} levels to extract the video information.

For the CMOS input, the input clamp function should be set according to the requirements. If the sensor output is within the allowable input range, an ac-coupling capacitor for analog input may not be needed. When the sensor signal is directly input to the AFE, the SH circuit requires a reference voltage to set the black level. To use V_{CLP} as a reference, SH_REFx_EN should be enabled and AINGNDx then opened or coupled to GND with a capacitor. To use an external reference, it can be input to AINGNDx with sensor signals connected to AINx. Figure 5 shows a diagram of the SH mode.

- (1) Under some conditions, the sensor signal can be directly input to the AFE without requiring an external capacitor.
- (2) In SH mode, the SHP clock should be programmed so that it does not overlap the SHD clock.

Figure 5. SH Mode Input Circuit for CCD or CMOS Signal

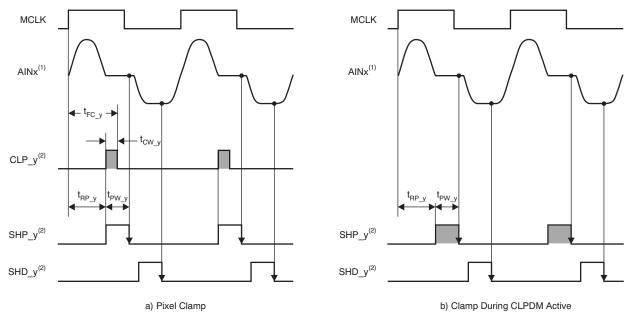
INPUT CLAMP AND SENSOR REFERENCE


The CCD output signal has a large dc offset that may exceed the input range of the AFE input circuit. Therefore, this output signal is ac-coupled to the AFE through a capacitor, and the internal dc level is set to the clamp voltage (V_{CLP}) by an internal clamp circuit. The VSP5620/21/22 provide three modes for clamp operation: pixel clamp, line clamp, and not clamped. These modes are shown in Table 4. The clamp mode can be set independently for each channel by configuring the AINx_CLP_SEL register.

Table 4. Clamp Mode Selection

	MODE SETTING	CLAMP ACTIVE CONDITION AND SETTING				
CLAMP MODE	AINx_CLP_SEL ⁽¹⁾	CDS/SH	CLP_y ⁽²⁾	CLPDM AND SHP_y ⁽²⁾	SH_REF_EN	
Pixel clamp	0 (default)	CDS/SH	Active	Active	Off	
Line clamp	1	CDS/SH	_	Active	Off	
Not alone and	2	Only SH	_	_	On	
Not clamped	3	Only SH	_	_	Off	

⁽¹⁾ AINx_CLP_SEL (x = 1, 2, 3, and 4).

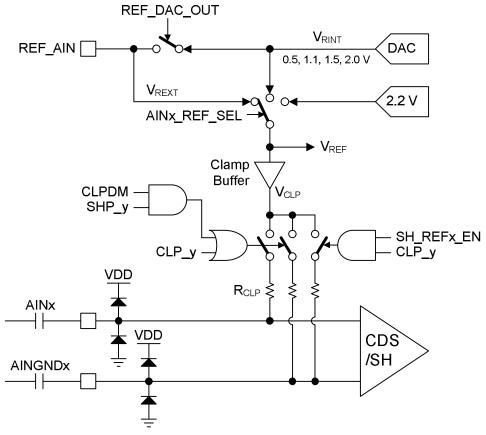

⁽²⁾ y = A and B.

In pixel clamp mode, CLP_A/B is used for clamping. The input signal is clamped to V_{CLP} via the CLP_A/B pulse during each pixel period, as shown in Figure 6a. Because the ac-coupling capacitor is charged on a pixel-to-pixel basis, the clamp level droop can be controlled by the clamp pulse width.

In line clamp mode, SHP_A/B is used for clamping when CLPDM is active, as shown in Figure 6b. The input signal is clamped only in the CLPDM period within one line cycle of the sensor. The signal is clamped in this method because the charge leaks the least from the coupling capacitor during the CLPDM period. Accordingly, because there may be a large droop in the clamp level, this device does not support line clamp in the SH mode.

The *not-clamped* mode is mainly used in for a CMOS sensor input. If the sensor signal is directly connected to the AFE, this mode should be configured without an ac-coupling capacitor at the input port. This mode has two options to select a reference for the sensor black level: internal reference and external input. In the internal reference option, the internal reference (V_{CLP}) is used with AINx_CLP_SEL = 2. In the external input option, the external input is used from AINGNDx with AINx CLP SEL = 3.

(1) x = AIN channel number, x = 1, 2, 3, and 4.


INSTRUMENTS

(2) y = Group code of sample pulse signals. When <math>x = 1 or 2, y = A. When x = 3 or 4, y = B.

Figure 6. Input Clamp Function

TEXAS INSTRUMENTS

As shown in Figure 7, the internal V_{CLP} node provides the clamp reference voltage. As for the clamp level, it is possible to select three reference voltage modes by setting the AlNx_REF_SEL register. The first mode provides a fixed 2.2 V, the second mode provides selectable outputs (0.5 V, 1.1 V, 1.5 V, and 2.0 V) of an internal DAC, and the third mode allows an external input from the REF_AIN pin to be used as the clamp reference. This REF_AIN pin is bidirectional and also acts as an output of the internal DAC. Table 5 shows the relationship between the register and clamp level. Table 6 shows the DAC configuration.

(1) If the sensor signal is directly input to the AFE, the enternal capacitor should not be connected.

Figure 7. V_{CLP} Block Diagram

Table 5. Clamp Level Selection

MODE SETTING AINx_REF_SEL[1:0] ⁽¹⁾		CLAMP LEVEL
0	2.2 V	
1	V _{RINT}	Reference DAC (0.5 V, 1.1 V, 1.5 V, and 2.0 V)
2	V_{REXT}	REF_AIN external input

(1) AINx_CLP_SEL (x = 1, 2, 3, and 4).

Table 6. V_{RINT} Voltage Selection

SETTING CODE VRINT_SEL	REF DAC V _{RINT} (V)
2	0.5
3	1.1
0	1.5 (default)
1	2.0

If line clamp mode is used, the CLPDM period should be configured by the internal registers. The CLPDM period is determined with reference to the line cycle signal for the sensor (LS). Thus, the start and end of CLPDM are each defined as the number of pixels from the LS falling edge. Because CLPDM is used as the clamp period, it should be assigned for the interval of any dummy or optical black pixels. Figure 8 shows the relationship between LS and CLPDM.

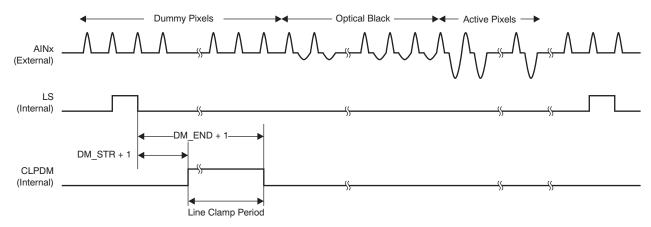


Figure 8. Line Clamp Period Setting

INSTRUMENTS

TEXAS INSTRUMENTS

Pixel Clamp Period Setting

In pixel clamp mode, without CLPDM, the sensor signal is clamped with CLP_A and CLP_B pulses. CLP_A corresponds to AIN1 and AIN2; CLP_B corresponds to AIN3 and AIN4. The start of these pulses is synchronized with the SHP_y rising edge (where y = A or B). There are two options to configure the end position: first, to automatically set the pulse width to 50% that of SHP_y; and second, to manually configure the end position using an internal register. Figure 9 and Figure 10 illustrate the details of the clamp pulse function in automatic and manual mode, respectively.

Automatic Mode (CLP_TF_AT_DIS = 0)

Figure 9 shows the automatic mode when CLP_TF_AT_DIS is '0'.

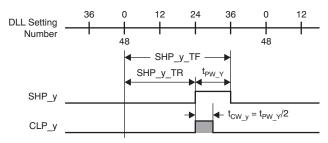


Figure 9. Automatic Mode

Manual Mode (CLP_TF_AT_DIS = 1)

Figure 10 shows the manual mode when CLP_TF_AT_DIS is '1'.

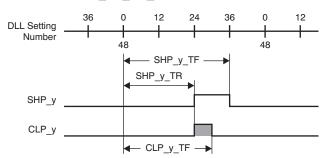
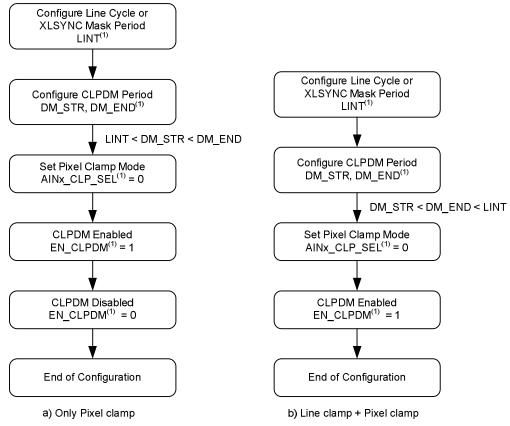
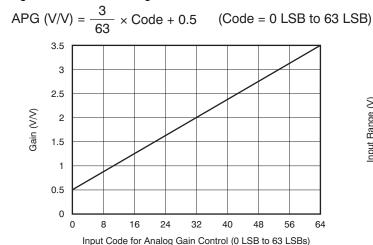



Figure 10. Manual Mode

In pixel clamp mode when CLPDM is active, the sensor signal is clamped with SHP_y. Therefore, the pixel clamp operation is closely related with the status of CLPDM. The condition of CLPDM should be properly defined with the internal registers. Because CLPDM is always high during a default condition after reset or power up, the status of CLPDM should be defined according to this sequence. Furthermore, the CLPDM status should be defined in the second step of the flowchart shown in Figure 11 for either configuration. All other user-dependent settings, except XLSYNC SEL and EN OUT of the software reset sequence, are described in Figure 11.

(1) Internal registers: AINx_CLP_SEL = addresses 16 and 17; LINT = address 7; DM_STR = address 8; DM_END = address 9; and EN_CLPDM = address 399, bit 1.

Figure 11. Configuration Sequence for Pixel Clamp


NSTRUMENTS

TEXAS INSTRUMENTS

ANALOG PROGRAMMABLE GAIN (APG)

The SH output can be amplified using programmable analog gain. This gain can be set from 0.5 V/V to 3.5 V/V with a step size of 3/64 V/V.

The gain setting can be controlled by an internal register (APG_x). Equation 1 shows the relationship between the setting code and gain. The gain of each of the four channels can be set independently using different registers. Note that the black pixel level may possibly change as a result of the change in the gain; therefore, the appropriate timing of the gain change should be used to avoid degradation in image quality. Figure 12 shows analog gain as a function of gain control code in terms of V/V. Figure 13 shows the maximum allowed input signal as a function of gain control code.

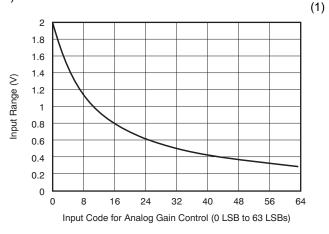


Figure 12. Analog Gain vs Setting Code

Figure 13. Input Range vs Analog Gain Setting Code

DIGITAL PROGRAMMABLE GAIN (DPG)

The VSP5620/21/22 provides a maximum digital gain of 2 V/V. The total gain is fixed by the combination of CDS/SH analog gain (APG) and digital gain (DPG). DPG is controlled by an 8-bit internal register (DPG_x) that can set the gain from 1 V/V to 2 V/V, as defined by Equation 2. This register is included in each of the four channels, so the gain of each channel can be set independently.

Figure 14 shows the relationship between the digital gain and register code. Note that the default value is 1 V/V.

DPG (V/V) =
$$\frac{1}{256} \times \text{Code} + 1$$
 (Code = 0 LSB to 255 LSB)

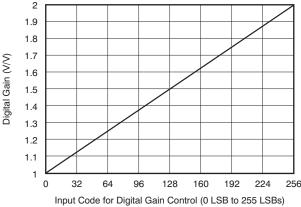


Figure 14. Digital Gain Setting Code

ADC

The ADC output format is selectable as twos complement or offset binary by configuring a register. Table 7 shows the relationship between register setting and condition.

Table 7. ADC Data Format Configuration

ADC_DAT_FRM	MODE	
0 (default)	Twos complement	
1	Offset binary	

OFFSET DAC

STRUMENTS

The VSP5620/21/22 have an independent DAC in each channel for offset level correction of the input signal. The correction range is ±250 mV and resolution is 8 bits. The DAC output voltage can be set by register settings. Table 8 and Figure 15 show the relationship between the output and setting codes. The setting code is defined in twos complement format. The DAC output offset voltage in millivolts as a function of the register setting is given in Equation 3.

Table 8. Offset DAC Setting Code

SETTING CODE OFDAC_x[7:0] ⁽¹⁾	OUTPUT (mV)
7Fh	248.05
7Eh	246.09
01h	1.95
00h	0
FFh	-1.95
81h	-248.05
80h	-250.00

(1) $\times = 1, 2, 3, \text{ and } 4.$

DAC Output (mV) =
$$\frac{250}{128} \times \text{OFDAC}_x[7:0]$$

where:

$$x = 1, 2, 3,$$
 and 4

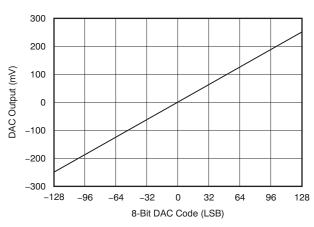


Figure 15. Offset DAC Setting Code vs Output Voltage

(3)

TEXAS INSTRUMENTS

TIMING GENERATOR (TG)

The image sensor timing generator (TG) is incorporated into these devices. The TG provides two signals that function as slow transfer clocks and one signal that function as a fast transfer clock. The TG signals are synchronized with LS (which is the image sensor line cycle) and are completely controlled by the internal registers. Because the TG output is locked under the default setting, EN_OUT (address 2, bit 10) should be set to '1' to enable the outputs.

LINE SYNCHRONOUS FUNCTION

The VSP5620/21/22 have two modes for synchronizing the sensor line cycle: internal line (Figure 16) and external line syncronous mode (Figure 17). In internal line synchronous mode, the line cycle signal (LS) is generated after a certain number of MCLK cycles that are counted by an internal counter (PIX_CNT). The number of MCLK cycles is determined by the LINT[19:0] register; the counter clears after LS is generated. The active LS period is equal to one MCLK cycle period.

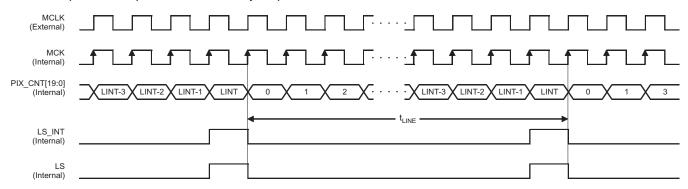


Figure 16. Internal Line Synchronous Mode (XLSYNC_SEL = 1)

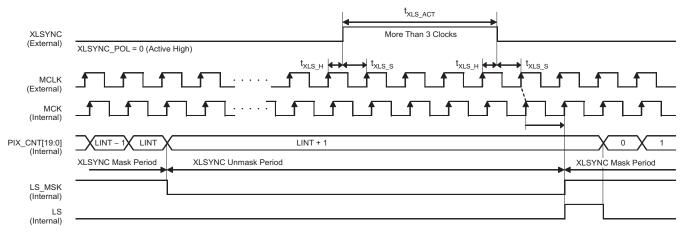


Figure 17. External Line Synchronous Mode (XLSYNC_SEL = 0, default)

Table 9. Timing Requirements for Figure 16 and Figure 17

PARAMETER		TEST CONDITION	MIN	TYP	MAX	UNIT
t _{LINE}	Line cycle period setting	XLSYNC = 1	3	LINT + 1	2 ²⁰ – 1	Clocks
t _{XLS_ACT}	XLSYNC active period	XLSYNC = 0	3			Clocks
t _{XLS_S}	XLSYNC setup to MCLK	XLSYNC = 0	10			ns
t _{XLS_H}	XLSYNC hold to MCLK	XLSYNC = 0	10			ns

Submit Documentation Feedback

The other mode is the external line synchronous mode which requires an external signal (XLSYNC). In this mode, if the logic circuit detects an active XLSYNC period for more than three MCLK cycles, the internal line synchronous signal (LS) is generated. This mode has a function that mask XLSYNC in order to avoid noise interference. The duration of the XLSYNC mask can be set by the LINT[19:0] register, which is also used in the internal line synchronous mode.

The two line synchronous modes and the polarity can be selected by the XLSYNC_SEL and XLSYNC_POL registers, respectively. The default settings are external mode and active high polarity. XLSYNC can be used to output some internal signals. Table 10 shows the register settings required to select the desired output signals.

PIX_CNT can be automatically reset by LS_CNT_RST (which is an internal register). Before performing this function, a software reset must be executed in order set RST_ALL to '1'. If LS_CNT_RST is set to '1' after a software reset, the pixel counter is then held at '0'. To make the counter active, LS_CNT_RST should return to '0'.

Table 10. XLSYNC Output Signal (XLSYNC_SEL = 1)

REGISTER SETTING XLSYNC_OUT	OUTPUT SIGNAL
0	LS
1	CLPDM
2	Reserved
3	Reserved

SLOW TRANSFER CLOCK SETTING (XST, XSH1)

NSTRUMENTS

XST and XSH1 are slow transfer clocks that can be configured by setting the initial polarity and toggle points. As shown in Table 11, the predetermined number of toggle points is different for each signal. Because the two toggles generate one pulse, the number of pulses is half the number of toggles.

Table 11. Toggle Number and Generated Pulse

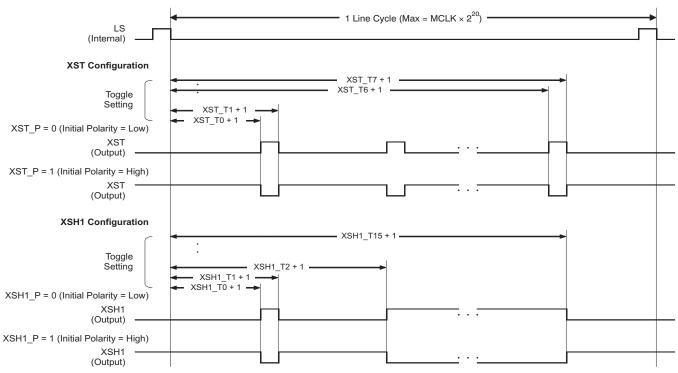
SIGNAL	TOGGLE	PULSE
XST	8	4
XSH1	16	8

Each toggle position is defined by a register that is exclusive for each signal. The toggle position is synchronized with LS and the gap between the toggle position and the LS falling edge. The LS falling edge is defined in terms of t_{MCLK}, the cycle period of MCLK. This gap is set by register settings and is defined by Equation 4:

$$t = (Xn_T(k) + 1) \times t_{MCLK}$$

where:

n = ST. SH1


k = 0 to 7 (XST); k = 0 to 15 (XSH1)

Xn T(k) is less than LINT and is the register value of the toggle setting

(4)

NSTRUMENTS

The toggle for each signal can be disabled with register settings. To make the toggle active, Xn_TGL_EN should be set to '1'. However, because XST shares a pin with GPIO3, pin function should be configured with the GPIO3 XST SEL register. Figure 18 shows the configuration regarding the slow transfer clock.

- (1) If Xn_Tn is set to '0', the toggle position is ignored (except for Xn_T0).
- (2) The period between the toggle position and LS falling edge = $(Xn_T(k) + 1) \times t_{MCLK}$.
- (3) The following requirement must be satisfied: $Xn_T(k) < Xn_T(k + 1)$.
- (4) The signal is set to the desired polarity settings at the falling edge of LS.

Figure 18. Slow Transfer Gate Signal Setting for XST and XSH1

FAST TRANSFER CLOCK PULSE SETTING

Instruments

XP1 is a fast transfer clock signal with rising and falling edges that are configurable via register settings. The *DLL Tap Selector* is used to select both the rising and falling edges of each signal from among 48 tap positions.

In addition, it is possible to change the clock rate with register settings. The clock rate is based on the frequency of MCLK. XP1 can select between the x1 and x2 rate settings.

Note that two independent sets of registers are available to set the clock rate, the clock rising edge, and the clock falling edge for operation in x1-mode and x2-mode.

Figure 19 describes the timing of the fast transfer clock pulse for XP1.

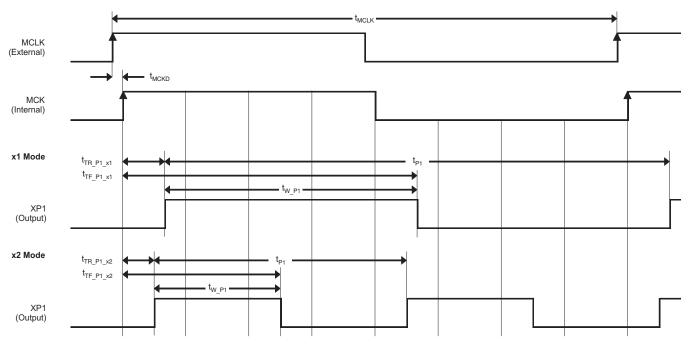


Figure 19. XP1 Fast Transfer Clock Pulse Setting

Table 12. Timing Requirements for Figure 19

	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT	
		VSP5620	1	11.66	MHz	
f _{MCLK}	MCLK frequency	VSP5621	1	16.66	MHz	
		VSP5622	1	23.33	MHz	
t _{MCLK}	MCLK period			1/f _{MCLK}		
t _{MCKD}	MCLK to MCK delay			2		
	VD4 paried	x1 mode		ns		
t _{P1}	XP1 period	x2 mode	t _N	ns		
t _{TR_P1_x1}	VD4 rising adapted from MCK	x1 mode	0	t _{MCLK} × 47/48	ns	
t _{TR_P1_x2}	XP1 rising edge delay from MCK	x2 mode	0	t _{MCLK} × 23/24	ns	
t _{TF_P1_x1}	VD4 falling adapt dalar from MCV	x1 mode	0	t _{MCLK} × 47/48	ns	
t _{TF_P1_x2}	XP1 falling edge delay from MCK	x2 mode	0	t _{MCLK} × 23/24	ns	
t _{W_P1}	VD4 mula a midth	x1 mode	2	t _{MCLK} – 2	ns	
	XP1 pulse width	x2 mode	2	t _{MCLK} × 1/2 – 2	ns	

LED DRIVER

These devices have three constant-current sink LED driver channels. The output current for each channel can be independently set via register settings within a 0 mA to 60 mA range in 4-mA steps. The maximum allowable total constant-current value for all three channel drivers is 120 mA. Because the circuitry that limits the total constant-current is not incorporated, the current value should be carefully set when multiple channels are concurrently active.

Figure 20 shows an LED driver block diagram and the connection with the external LED device. This driver supports V_{LD} (driver voltage) within a range of 0.7 V to 4.5 V. V_{LD} depends on the V_F (LED forward voltage) because this driver is a constant-current source. The LED driver power consumption, defined as $V_{LD} \times I_{LD}$ (LED current), affects package temperature. Therefore, when V_F is small, it is recommended to insert an external resister between LEDn (the LED driver pin) and LEDVDD (the LED power supply) to reduce thermal affects caused by high-power consumption.

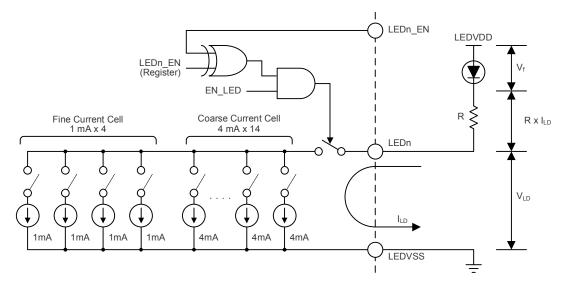


Figure 20. LED Driver Block Diagram

This driver can be turned on or off with a combination of logic circuitry driven by internal register settings and external pins, as shown in Table 13. Note that the internal EN_LED register should be set to '1' to enable the logic circuit.

Table 13. LED Driver Control Register and Pin Setting⁽¹⁾

EN_LED REGISTER	LEDN_EN PIN SETTING	LEDN_EN REGISTER	LED DRIVER STATE
0	X	Disabled	
	Low	0	Disabled
1	Low	1	Enabled
1	High	0	Enabled
	High	1	Disabled

(1) n = 1, 2, and 3.

NSTRUMENTS

SERIAL INTERFACE

All device functions and settings are controlled through the serial interface. The serial interface consists of three signals (SCLK, SEN, and SDI) for register writing, and a fourth signal (SDO) for readback. SDO shares the terminal with the GPIO signal; thus, a register setting is required to activate the SDO function. Other signals are assigned to individual terminals.

Serial data are composed of 30 bits total, as shown in Figure 21. 10 bits are assigned for the register address and 20 bits for register data. The input serial data at SDI are sequentially stored in a shift register at the SCLK rising edge. Data shift operation is performed at the SCLK rising edges with SEN low. All 30 input data bits are loaded to a parallel latch in an internal register at the rising edge of SEN.

This device has two modes: read and write. The mode selection can be made via the SPL_RW internal register, located at bit 0 of address 0. SPL RW = 0 implies a write mode and SPL RW = 1 implies read mode.

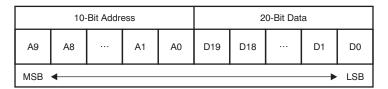


Figure 21. Serial I/F Data Format

WRITE MODE (SPI RW = 0, Default)

Normally, one serial interface command is sent by one address and data combination. The address should be sent MSB first. Data are stored into the respective register, as indicated by the address. If the serial data at the end of the data stream are less than 30 bits, the last incomplete serial data are discarded. Figure 22 shows the SPI signal flow while in write mode.

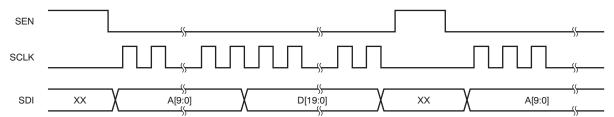


Figure 22. SPI Signal Flow of Write Mode

READ MODE (SPI_RW = 1)

In read mode, two types of connections are possible between the AFE and external systems such as an ASIC or CPU. One connection is the four-wire connection in which the SDI and SDO pins are separately connected to the system as shown in Figure 23a.

The other connection is a three-wire connection in which only the SDI pin is connected to the bidirectional I/O port of the external system, as shown in Figure 23b. In this case, SDI_BUFF_CTRL should be set to '1' to create an SPI bidirectional port. The bit flow of the four-wire connection is shown in Figure 24. The bit flow of the three-wire connection is shown in Figure 25. As shown in Figure 25, SDI changes from an input to an output at the SCLK falling edge after the end of the A[9:0] input. Because the SDI port is always in pull down mode, the external pull down resistance is unnecessary.

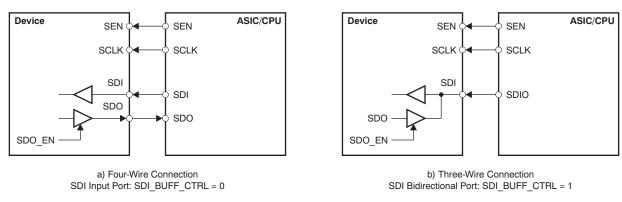


Figure 23. SPI Connection Between AFE and System

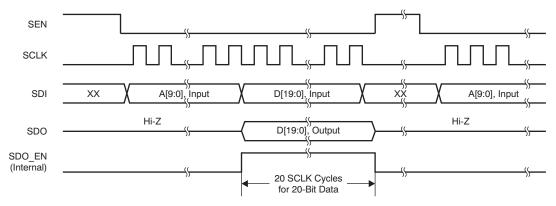


Figure 24. SPI Signal Flow of Read Mode for Four-Wire Connection

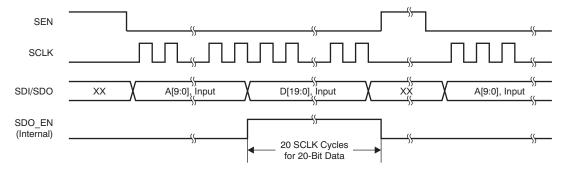


Figure 25. SPI Signal Flow of Read Mode for Three-Wire Connection

NSTRUMENTS

PACKAGE OPTION ADDENDUM

11-Apr-2013

PACKAGING INFORMATION

www.ti.com

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
VSP5620RSLR	ACTIVE	VQFN	RSL	48	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	0 to 85	VSP 5620	Samples
VSP5621RSLR	ACTIVE	VQFN	RSL	48	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	0 to 85	VSP 5621	Samples
VSP5622RSLR	ACTIVE	VQFN	RSL	48	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	0 to 85	VSP 5622	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

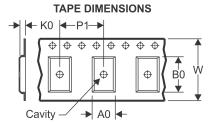
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

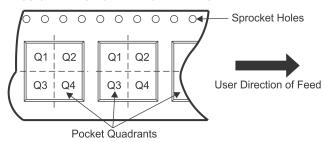
(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

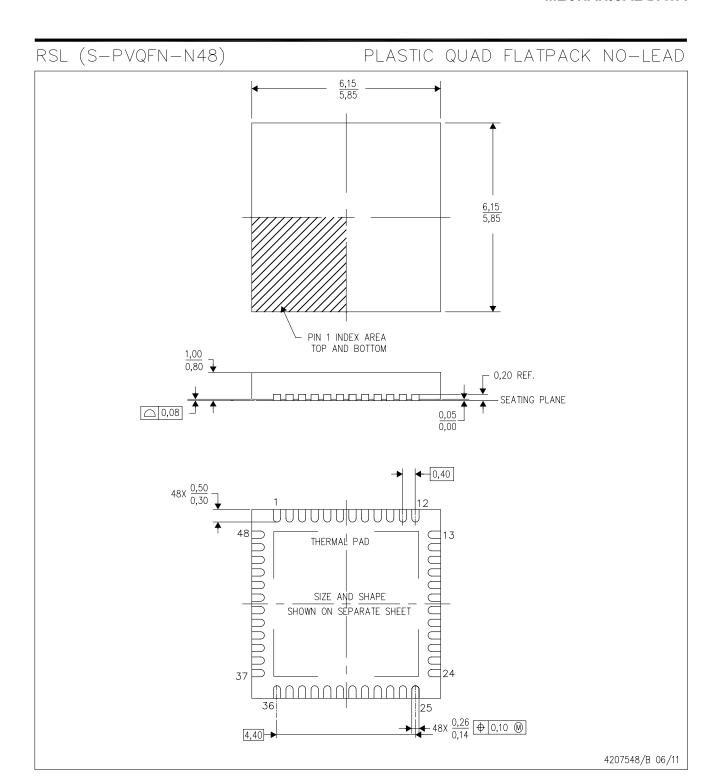
www.ti.com 5-Aug-2013


TAPE AND REEL INFORMATION

Α0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal


all differsions are norminal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
VSP5620RSLR	VQFN	RSL	48	2500	330.0	16.4	6.3	6.3	1.5	12.0	16.0	Q2
VSP5621RSLR	VQFN	RSL	48	2500	330.0	16.4	6.3	6.3	1.5	12.0	16.0	Q2
VSP5622RSLR	VQFN	RSL	48	2500	330.0	16.4	6.3	6.3	1.5	12.0	16.0	Q2

www.ti.com 5-Aug-2013

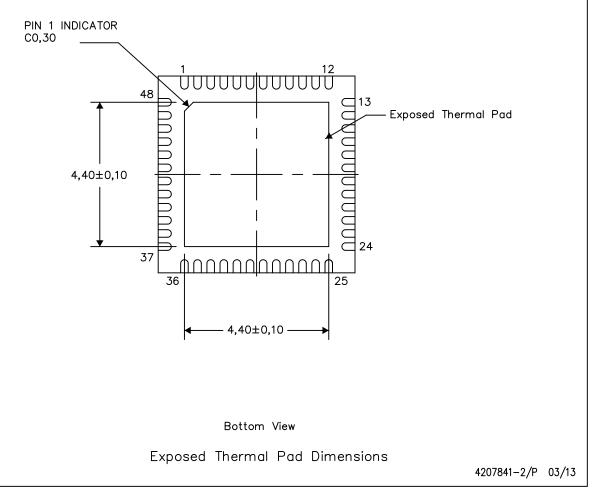
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
VSP5620RSLR	VQFN	RSL	48	2500	367.0	367.0	38.0
VSP5621RSLR	VQFN	RSL	48	2500	367.0	367.0	38.0
VSP5622RSLR	VQFN	RSL	48	2500	367.0	367.0	38.0

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.

- B. This drawing is subject to change without notice.
- C. Quad Flatpack, No-leads (QFN) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.

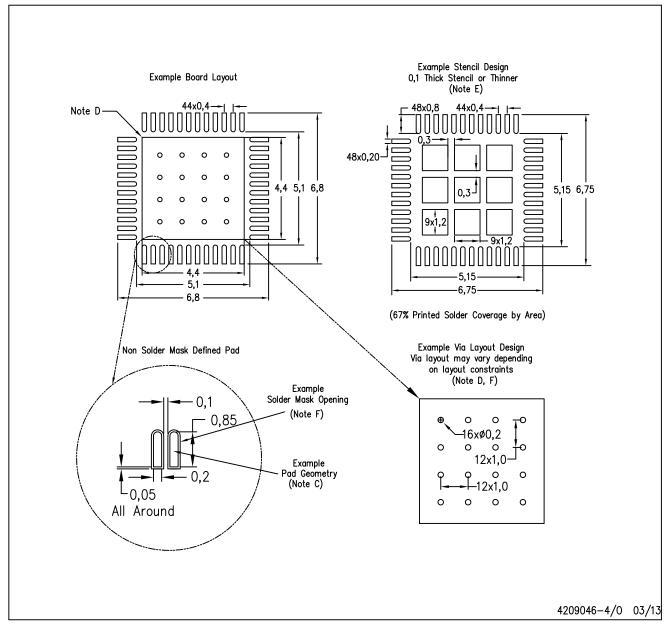
RSL (S-PVQFN-N48)


PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.


The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: All linear dimensions are in millimeters

RSL (S-PVQFN-N48)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in the thermal pad.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>