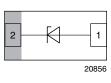
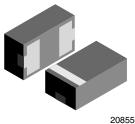
RoHS


HALOGEN FREE


**GREEN** 



## Vishay Semiconductors

### **ESD-Protection Diode in LLP1006-2L**





#### MARKING (example only)



Bar = cathode marking X = date code

Y = type code (see table below)

#### **FEATURES**

- Ultra compact LLP1006-2L package
- Low package height < 0.4 mm
- 1-line ESD-protection
- Low leakage current < 0.01 μA
- Low load capacitance C<sub>D</sub> = 12.5 pF (V<sub>R</sub> = 6 V; f = 1 MHz)
- ESD-protection acc. IEC 61000-4-2
  ± 30 kV contact discharge
  ± 30 kV air discharge
- High surge current acc. IEC61000-4-5 I<sub>PP</sub> > 4 A
- Soldering can be checked by standard vision inspection.
  No X-ray necessary
- Pin plating NiPdAu (e4) no whisker growth
- Material categorization: For definitions of compliance please see <a href="https://www.vishay.com/doc?99912"><u>www.vishay.com/doc?99912</u></a>

| mple only) | _ |
|------------|---|
|            |   |

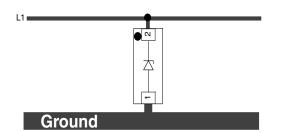
| ORDERING INFORMATION |                    |                                                |                        |  |  |
|----------------------|--------------------|------------------------------------------------|------------------------|--|--|
| DEVICE NAME          | ORDERING CODE      | TAPED UNITS PER REEL<br>(8 mm TAPE ON 7" REEL) | MINIMUM ORDER QUANTITY |  |  |
| VESD12A1C-HD1        | VESD12A1C-HD1-GS08 | 8000                                           | 8000                   |  |  |

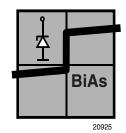
| PACKAGE DATA  |                 |              |         |                                      |                                   |                          |
|---------------|-----------------|--------------|---------|--------------------------------------|-----------------------------------|--------------------------|
| DEVICE NAME   | PACKAGE<br>NAME | TYPE<br>CODE | WEIGHT  | MOLDING COMPOUND FLAMMABILITY RATING | MOISTURE<br>SENSITIVITY LEVEL     | SOLDERING<br>CONDITIONS  |
| VESD12A1C-HD1 | LLP1006-2L      | G            | 0.72 mg | UL 94 V-0                            | MSL level 1 (according J-STD-020) | 260 °C/10 s at terminals |

| ABSOLUTE MAXIMUM RATINGS VESD12A1C-HD1 |                                                           |                  |               |      |  |  |
|----------------------------------------|-----------------------------------------------------------|------------------|---------------|------|--|--|
| PARAMETER                              | TEST CONDITIONS                                           | SYMBOL           | VALUE         | UNIT |  |  |
| Peak pulse current                     | acc. IEC 61000-4-5; t <sub>p</sub> = 8/20 µs; single shot | I <sub>PPM</sub> | 4             | Α    |  |  |
| Peak pulse power                       | acc. IEC 61000-4-5; t <sub>p</sub> = 8/20 µs; single shot | P <sub>PP</sub>  | 92            | W    |  |  |
| ESD immunity                           | Contact discharge, acc. IEC61000-4-2; 10 pulses           | V <sub>ESD</sub> | ± 30          | kV   |  |  |
|                                        | Air discharge, acc. IEC61000-4-2; 10 pulses               | V <sub>ESD</sub> | ± 30          | kV   |  |  |
| Operating temperature                  | Junction temperature                                      | TJ               | - 40 to + 125 | °C   |  |  |
| Storage temperature                    |                                                           | T <sub>STG</sub> | - 55 to + 150 | °C   |  |  |



### Vishay Semiconductors


#### **BIAs-MODE** (Bidirectional asymmetrical protection mode)


With the VESD12A1C-HD1 one signal- or data-lines (L1) can be protected against voltage transients. With pin 1 connected to ground and pin 2 connected to a signal- or data-line which has to be protected. As long as the voltage level on the data- or signal-line is between 0 V (ground level) and the specified maximum reverse working voltage (V<sub>RWM</sub>) the protection diode between data line and ground offers a high isolation to the ground line. The protection device behaves like an open switch. As soon as any positive transient voltage signal exceeds the break through voltage level of the protection diode, the diode

As soon as any positive transient voltage signal exceeds the break through voltage level of the protection diode, the diode becomes conductive and shorts the transient current to ground. Now the protection device behaves like a closed switch. The clamping voltage (V<sub>C</sub>) is defined by the breakthrough voltage (V<sub>BR</sub>) level plus the voltage drop at the series impedance (resistance and inductance) of the protection device.

Any negative transient signal will be clamped accordingly. The negative transient current is flowing in the forward direction of the protection diode. The low forward voltage (V<sub>F</sub>) clamps the negative transient close to the ground level.

Due to the different clamping levels in forward and reverse direction the VESD12A1C-HD1 clamping behaviour is bidirectional and asymmetrical (BiAs).





| <b>ELECTRICAL CHARACTERISTICS VESD12A1C-HD1</b> BiAs mode (between pin 1 and pin 2) (T <sub>amb</sub> = 25 °C, unless otherwise specified) |                                             |                      |      |        |      |       |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------|------|--------|------|-------|--|
| PARAMETER                                                                                                                                  | TEST CONDITIONS/REMARKS                     | SYMBOL               | MIN. | TYP.   | MAX. | UNIT  |  |
| Protection paths                                                                                                                           | Number of lines which can be protected      | N <sub>channel</sub> | -    | -      | 1    | lines |  |
| Reverse stand-off voltage                                                                                                                  | Max. reverse working voltage                | $V_{RWM}$            | -    | -      | 12   | V     |  |
| Reverse voltage                                                                                                                            | at I <sub>R</sub> = 0.1 μA                  | $V_R$                | 12   | -      | -    | V     |  |
| Reverse current                                                                                                                            | at V <sub>RWM</sub> = 12 V                  | I <sub>R</sub>       | -    | < 0.01 | 0.1  | μΑ    |  |
| Reverse breakdown voltage                                                                                                                  | at I <sub>R</sub> = 1 mA                    | $V_{BR}$             | 13.5 | 14     | 16   | V     |  |
| Reverse clamping voltage                                                                                                                   | at I <sub>PP</sub> = 1 A                    | V <sub>C</sub>       | -    | 15.8   | 17   | V     |  |
|                                                                                                                                            | at I <sub>PP</sub> = I <sub>PPM</sub> = 4 A | V <sub>C</sub>       | -    | 20     | 23   | V     |  |
|                                                                                                                                            | at I <sub>PP</sub> = 0.2 A                  | $V_{F}$              |      | 0.9    | 1.2  | V     |  |
| Forward clamping voltage                                                                                                                   | at I <sub>PP</sub> = 1 A                    | $V_{F}$              |      | 1.1    | 1.5  | V     |  |
|                                                                                                                                            | at I <sub>PP</sub> = I <sub>PPM</sub> = 4 A | $V_{F}$              |      | 1.7    | 2.1  | V     |  |
| Capacitance                                                                                                                                | at V <sub>R</sub> = 0 V; f = 1 MHz          | C <sub>D</sub>       | -    | 30     | 36   | pF    |  |
|                                                                                                                                            | at V <sub>R</sub> = 6 V; f = 1 MHz          | C <sub>D</sub>       | -    | 12.5   | -    | pF    |  |

# Vishay Semiconductors

### TYPICAL CHARACTERISTICS (T<sub>amb</sub> = 25 °C, unless otherwise specified)

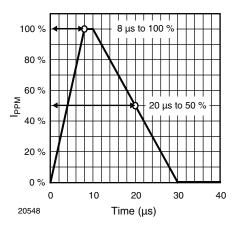



Fig. 1 - 8/20 µs Peak Pulse Current Wave Form (acc. IEC 61000-4-5)

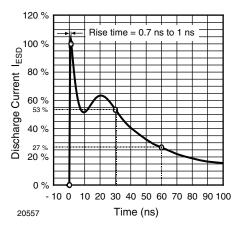



Fig. 2 - ESD Discharge Current Wave Form acc. IEC 61000-4-2 (330  $\Omega/150~\text{pF})$ 

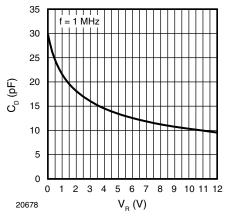



Fig. 3 - Typical Capacitance C<sub>D</sub> vs. Reverse Voltage V<sub>R</sub>

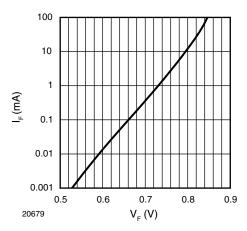



Fig. 4 - Typical Forward Current  $I_F$  vs. Forward Voltage  $V_F$ 

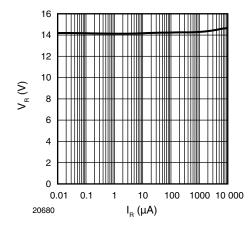



Fig. 5 - Typical Reverse Voltage  $V_{\text{R}}$  vs. Reverse Current  $I_{\text{R}}$ 

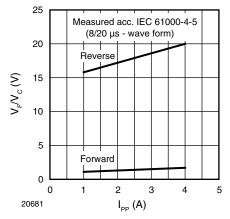



Fig. 6 - Typical Clamping Voltage vs. Peak Pulse Current IPP



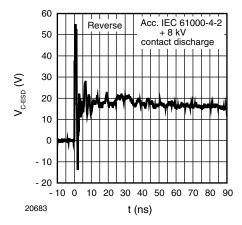



Fig. 7 - Typical Clamping Performance at + 8 kV Contact Discharge (acc. IEC 61000-4-2)

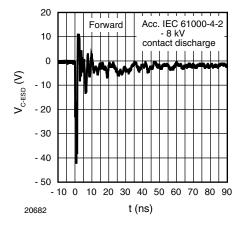



Fig. 8 - Typical Clamping Performance at - 8 kV Contact Discharge (acc. IEC 61000-4-2)

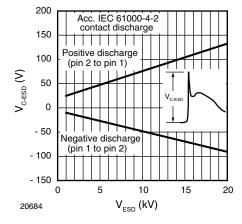
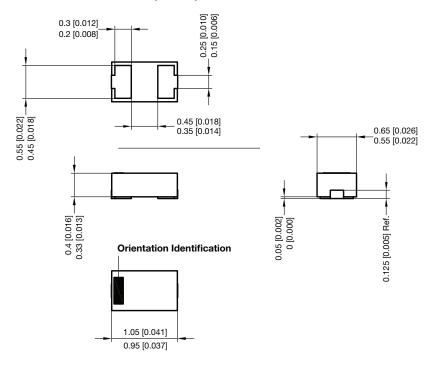
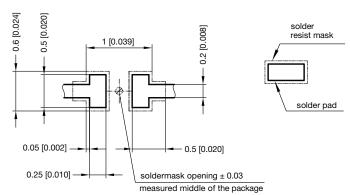




Fig. 9 - Typical Clamping Voltage at ± ESD Contact Discharge Fig. 10 - (acc. IEC 61000-4-2)




# Vishay Semiconductors

### PACKAGE DIMENSIONS in millimeters (inches): LLP1006-2L



#### Foot print recommendation:



Created - Date: 13. July. 2007 Rev. 5 - Date: 21 April 2010 Document no.:S8-V-3906.04-005 (4)



## **Legal Disclaimer Notice**

Vishay

### **Disclaimer**

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

# **Material Category Policy**

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Revision: 02-Oct-12 Document Number: 91000