

www.ti.com

SD CARD VOLTAGE-TRANSLATION TRANSCEIVER

Check for Samples: TXS0206A

FEATURES

- Level Translator
 - V_{CCA} and V_{CCB} Range of 1.1 V to 3.6 V
 - Fast Propagation Delay (4.4 ns Max When Translating Between 1.8 V and 3 V)
- ESD Protection Exceeds JESD 22
 - 2500-V Human-Body Model (A114-B)
 - 250-V Machine Model (A115-A)
 - 1500-V Charged-Device Model (C101)

1 2 3 4 A 0000 B 0000 C 0000 D 0000 E 0000		YFP (T			(AG EW)	E
в 0000 с 0000 р 0000		1	2	3	4	_
c 0000 d 0000	A	\bigcirc	()	()	()	
DOOOO	в	\bigcirc	()	()	\bigcirc	
	С	\bigcirc	()	()	\bigcirc	
EOOOO	D	\bigcirc	()	()	\bigcirc	
	E	()	\bigcirc	\bigcirc	()	

TERMINAL ASSIGNMENTS

	1	2	3	4
Α	DAT2A	V _{CCA}	WP	DAT2B
В	DAT3A	CD	V _{CCB}	DAT3B
С	CMDA	GND	GND	CMDB
D	DAT0A	CLKA	CLKB	DAT0B
E	DAT1A	CLK-f	EN	DAT1B

DESCRIPTION/ORDERING INFORMATION

The TXS0206A is a level shifter for interfacing microprocessors with MultiMediaCards (MMCs), secure digital (SD) cards, and Memory Stick[™] cards.

The voltage-level translator has two supply voltage pins. V_{CCA} as well as V_{CCB} can be operated over the full range of 1.1 V to 3.6 V. The TXS0206A enables system designers to easily interface applications processors or digital basebands to memory cards and SDIO peripherals operating at a different I/O voltage level.

The TXS0206A is offered in a 20-bump wafer chip scale package (WCSP). This package has dimensions of 1.96 mm \times 1.56 mm, with a 0.4-mm ball pitch for effective board-space savings. Memory cards are widely used in mobile phones, PDAs, digital cameras, personal media players, camcorders, set-top boxes, etc. Low static power consumption and small package size make the TXS0206A an ideal choice for these applications.

ORDERING INFORMATION⁽¹⁾

T _A	T _A PACKAGE ⁽²⁾		ORDERABLE PART NUMBER	TOP-SIDE MARKING
–40°C to 85°C	WCSP - YFP (Pb-free)	Tape and reel	TXS0206AYFPR	BTR

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

TXS0206A

TEXAS INSTRUMENTS

SCES833A - NOVEMBER 2011 - REVISED MAY 2012

www.ti.com

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

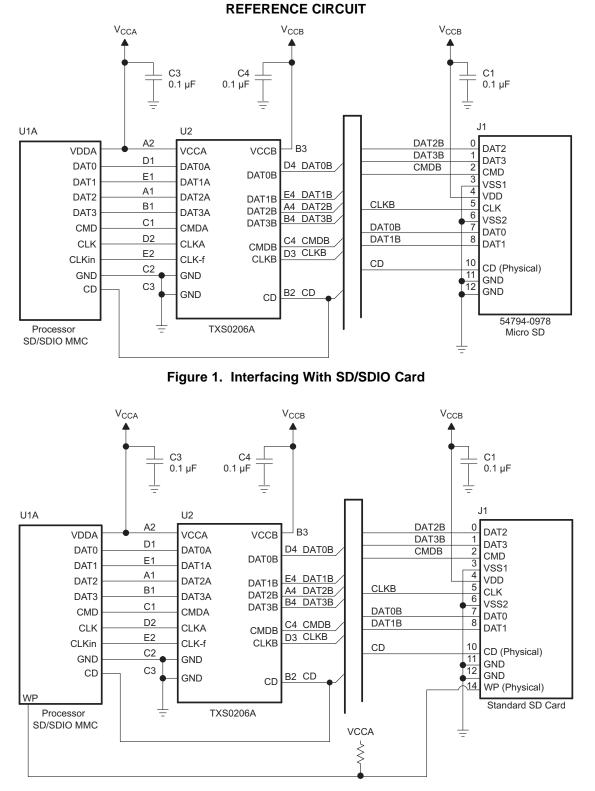
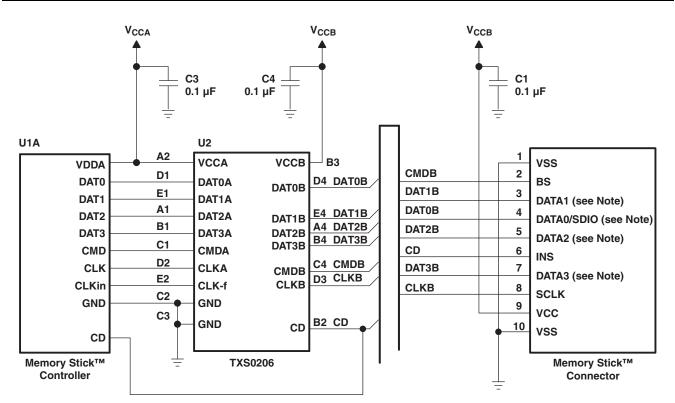
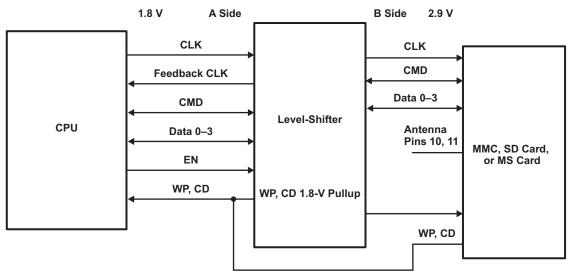



Figure 2. Interfacing With Seperate WP and CD Pin


2

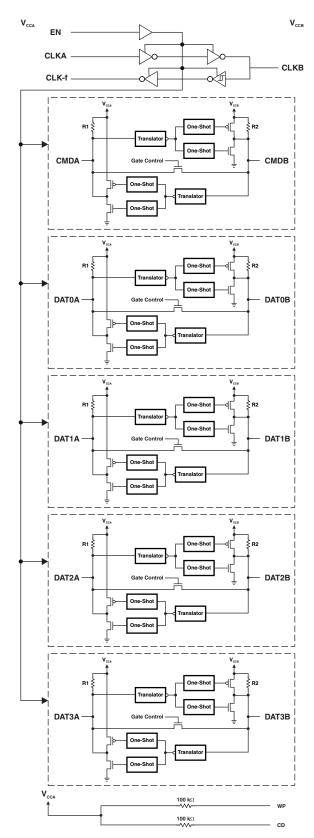
NOTE: The TXS0206A has integrated pullup resistor values that dynamically change value depending on whether a low or high signal is being transmitted through the device. When the output is low, the TXS0206A internal pullup value is 40 kΩ, and when the output is high, the internal pullup value change to a value of 4 kΩ. For MSA and MSH Memory Stick[™] memory cards, to ensure that a valid V_{IH} (i.e., receiver input voltage high) is achieved, the internal pulldown resistors for these memory cards are not smaller than a 10-kΩ value. See the *Application Information* section of this data sheet, which explains the impact of adding too heavy (i.e., <10-kΩ value) of a pulldown resistor to the data lines of the TXS0206A device and the resulting 4-kΩ pullup/10-kΩ pulldown voltage divider network, which has a direct impact on the V_{IH} of the signal being sent into the Memory Stick[™].

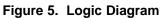
Integrated Pullup/Pulldown Resistors

Figure 4. Typical Application Circuit

www.ti.com

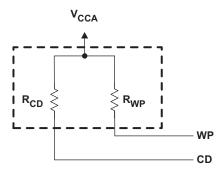
LOGIC TABLE


EN	TRANSLATOR I/Os
L	Disabled, pulled to V_{CCA},V_{CCB} through 40 $k\Omega$
Н	Active


TERMINAL FUNCTIONS

TERMINAL		TYPE	DESCRIPTION				
NO.	NAME	TIPE	DESCRIPTION				
A1	DAT2A	I/O	Data bit 2 connected to host. Referenced to V_{CCA} . Includes a 40-k Ω pullup resistor to V_{CCA} .				
A2	V _{CCA}	Pwr	A-port supply voltage. V _{CCA} powers all A-port I/Os and control inputs.				
A3	WP	0	Connected to write protect on the mechanical connector. The WP pin has an internal 100-k Ω pullup resistor to V _{CCA} .				
A4	DAT2B	I/O	Data bit 2 connected to memory card. Referenced to V_{CCB} . Includes a 40-k Ω pullup resistor to V_{CCB} .				
B1	DAT3A	I/O	Data bit 3 connected to host. Referenced to V_{CCA} . Includes a 40-k Ω pullup resistor to V_{CCA} .				
B2	CD	0	Connected to card detect on the mechanical connector. The CD pin has an internal 100-k Ω pullup resistor to V_{CCA}				
B3	V _{CCB}	Pwr	B-port supply voltage. V _{CCB} powers all B-port I/Os.				
B4	DAT3B	I/O	Data bit 3 connected to memory card. Referenced to V_{CCB} . Includes a 40-k Ω pullup resistor to V_{CCB} .				
C1	CMDA	I/O	ommand bit connected to host. Referenced to V_{CCA} . Includes a 40-k Ω pullup resistor to V_{CCA} .				
C2, C3	GND		Ground				
C4	CMDB	I/O	Command bit connected to memory card. Referenced to V_{CCB} . Includes a 40-k Ω pullup resistor to V_{CCB} .				
D1	DAT0A	I/O	Data bit 0 connected to host. Referenced to V_{CCA} . Includes a 40-k Ω pullup resistor to V_{CCA} .				
D2	CLKA	I	Clock signal connected to host. Referenced to V _{CCA} .				
D3	CLKB	0	Clock signal connected to memory card. Referenced to V _{CCB} .				
D4	DAT0B	I/O	Data bit 0 connected to memory card. Referenced to V_{CCB} . Includes a 40-k Ω pullup resistor to V_{CCB} .				
E1	DAT1A	I/O	Data bit 1 connected to host. Referenced to V_{CCA} . Includes a 40-k Ω pullup resistor to V_{CCA} .				
E2	CLK-f O Clock feedback to host for resynchronizing data to a processor. Leave unconnected if not used.		Clock feedback to host for resynchronizing data to a processor. Leave unconnected if not used.				
E3	EN	I	Enable/disable control. Pull EN low to place all outputs in Hi-Z state. Referenced to V _{CCA} .				
E4	DAT1B	I/O	Data bit 1 connected to memory card. Referenced to V_{CCB} . Includes a 40-k Ω pullup resistor to V_{CCB} .				

TEXAS INSTRUMENTS


www.ti.com

www.ti.com

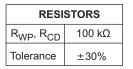


Figure 6. WP, CD Pullup Resistors

ABSOLUTE MAXIMUM RATINGS⁽¹⁾ Level Translator

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CCA}	Supply voltage range		-0.5	4.6	V
V _{CCB}	Supply voltage range		-0.5	4.6	V
		I/O ports (A port)	-0.5	4.6	
VI	Input voltage range	I/O ports (B port)	-0.5	4.6	V
		Control inputs	-0.5	4.6	
V	Voltage range applied to any output in the high-impedance or power-off	A port	-0.5	4.6	V
Vo	state	B port	-0.5	4.6	V
	Matterna second second second sectors that have been stated	A port	-0.5	4.6	
Vo	Voltage range applied to any output in the high or low state	B port	-0.5	4.6	V
I _{IK}	Input clamp current	V ₁ < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
lo	Continuous output current			±50	mA
	Continuous current through V _{CCA} or GND			±100	mA
T _{stg}	Storage temperature range		-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

THERMAL IMPEDANCE RATINGS

			UNIT
θ_{JA}	Package thermal impedance ⁽¹⁾	117	°C/W

(1) The package thermal impedance is calculated in accordance with JESD 51-7.

RECOMMENDED OPERATING CONDITIONS⁽¹⁾ Level Translator

			V _{CCA}	V _{CCB}	MIN	MAX	UNIT
V _{CCA}	Supply voltage				1.1	3.6	V
V _{CCB}	Supply voltage				1.1	3.6	V
		A-Port CMD and	1.1 V to 1.95 V	1.1 V to 1.95 V			
VIH	High-level input voltage	DATA I/Os B-Port CMD and DATA I/Os	1.95 V to 3.6 V	1.95 V to 3.6 V	V _{CCI} – 0.2	V _{CCI}	V
		EN and CLKA	1.1 V to 3.6 V	1.1 V to 3.6 V	V _{CCI} x 0.65	V _{CCI}	
		A-Port CMD and	1.1 V to 1.95 V	1.1 V to 1.95 V			
V _{IL}	Low-level input voltage	DATA I/Os B-Port CMD and DATA I/Os	1.95 V to 3.6 V	1.95 V to 3.6 V	0	0.15	V
		EN and CLKA	1.1 V to 3.6 V	1.1 V to 3.6 V	0	V _{CCI} x 0.35	
	Outrast such and	Active state			0	V _{cco}	V
Vo	Output voltage	3-state			0	3.6	V
			1.1 V to 3.6 V			-100	μA
			1.1 V to 1.3 V			-0.5	
	L Park Lawrence and and and		1.4 V to 1.6 V		-1		l
I _{OH}	High-level output current (CLK-f output)		1.65 V to 1.95 V	1.1 V to 3.6 V	-2		mA
			2.3 V to 2.7 V			-4	
			3 V to 3.6 V				
			1.1 V to 3.6 V		100		μA
			1.1 V to 1.3 V	- 1.1 V to 3.6 V	0.5		
		react (CLK f output)	1.4 V to 1.6 V				
l _{OL}	Low-level output cur	rent (CLK-r output)	1.65 V to 1.95 V			2	mA
			2.3 V to 2.7 V			4	-
			3 V to 3.6 V			8	
				1.1 V to 3.6 V		-100	μA
				1.1 V to 1.3 V	1 V to 1.3 V		
	Link laurel autout au			1.4 V to 1.6 V		-1	
lон	High-level output cu	ment (CLK output)	1.1 V to 3.6 V	1.65 V to 1.95 V		-2	mA
				2.3 V to 2.7 V		-4	
				3 V to 3.6 V		-8	
				1.1 V to 3.6 V		100	μA
				1.1 V to 1.3 V		0.5	
		mont (CLK cutruit)	11/10 201/	1.4 V to 1.6 V		1	
I _{OL}	Low-level output cur	rent (CLK output)	1.1 V to 3.6 V	1.65 V to 1.95 V		2	mA
				2.3 V to 2.7 V		4	-
				3 V to 3.6 V		8	_
Δt/Δv	Input transition rise	or fall rate				5	ns/V
T _A	Operating free-air te	mperature			-40	85	°C

 All unused data inputs of the device must be held at V_{CCI} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

www.ti.com

ELECTRICAL CHARACTERISTICS Level Translator

over recommended operating free-air temperature range (unless otherwise noted)

F	PARAMETER	TEST CONDITIONS	V _{CCA}	V _{CCB}	MIN	TYP ⁽¹⁾	MAX	UNIT	
		I _{OH} = -100 μA	1.1 V to 3.6 V		V _{CCA} * 0.8				
		I _{OH} = -0.5 mA	1.1 V		0.8				
	A port	I _{OH} = -1 mA	1.4 V		1.05				
	(CLK-f output)	I _{OH} = -2 mA	1.65 V		1.2				
V _{ОН}		$I_{OH} = -4 \text{ mA}$	2.3 V	1.65 V to 3.6 V	1.75			V	
		I _{OH} = -8 mA	3 V		2.3				
	A port (DAT and CMD outputs)	I _{OH} = -20 μA	1.1 V to 3.6 V		V _{CCA} × 0.8				
		I _{OL} = 100 μA	1.1 V to 3.6 V			V _C	_{CA} × 0.2		
		I _{OL} = 0.5 mA	1.1 V				0.35	V	
	A port (CLK-f output)	$I_{OL} = 1 \text{ mA}$	1.4 V	1.65 V to 3.6 V			0.35		
		$I_{OL} = 2 \text{ mA}$	1.65 V				0.45		
		$I_{OL} = 4 \text{ mA}$	2.3 V				0.55		
V _{OL}		$I_{OL} = 8 \text{ mA}$	3 V				0.7		
		I _{OL} = 135 μA	1.1 V				0.4		
	A port	I _{OL} = 180 μA	1.4 V				0.4		
	(DAT and CMD	I _{OL} = 220 μA	1.65 V	1.65 V to 3.6 V			0.4	V	
	outputs)	I _{OL} = 300 μA	2.3 V				0.4		
		I _{OL} = 400 μA	3 V				0.55		
B port (CLK output) V _{OH}	I _{OH} = −100 μA		1.65 V to 3.6 V	$V_{CCB} \times 0.8$					
	B port	$I_{OH} = -2 \text{ mA}$		1.65 V 2.3 V	1.2			V	
	(CLK output)	$I_{OH} = -4 \text{ mA}$	1.1 V to 3.6 V		1.75				
· ОП	1	I _{OH} = -8 mA		3 V	2.3			·	
	B port (DAT output)	I _{OH} = -20 μA		1.65 V to 3.6 V	$V_{CCB} \times 0.8$				

(1) All typical values are at $T_A = 25^{\circ}C$.

www.ti.com

ELECTRICAL CHARACTERISTICS Level Translator (continued)

over recommended operating free-air temperature range (unless otherwise noted)

F	PARAMETER	TEST CONDI	TIONS	V _{CCA}	V _{CCB}	MIN TYP ⁽¹⁾ MA	X UNIT
		I _{OL} = 100 μA			1.65 V to 3.6 V	V _{CCB} × 0	.2
	Durant	$I_{OL} = 2 \text{ mA}$			1.65 V	0.	45 V
	B port	$I_{OL} = 4 \text{ mA}$		- 1.1 V to 3.6 V	2.3 V	0.	55 V
V		$I_{OL} = 8 \text{ mA}$			3 V	(.7
V _{OL}		I _{OL} = 135 μA			1.65 V to 3.6 V	(.4
	B port (DAT output)	I _{OL} = 220 μA		1.1 V to 3.6 V	1.65 V	(.4 V
([I _{OL} = 300 μA			2.3 V	(.4 V
		I _{OL} = 300 μA			3 V	0.	55
I _I	Control inputs	$V_I = V_{CCA}$ or GND			1.65 V to 3.6 V		⊧ 1 μΑ
I _{CCA}		$V_I = V_{CCI}$	$I_{O} = 0$	1.1 V to 3.6 V	1.65 V to 3.6 V		7 μΑ
I _{CCB}		$V_I = V_{CCI}$	$I_{O} = 0$	1.1 V to 3.6 V	1.65 V to 3.6 V		11 µA
~	A port					5.5 6	.5
C _{io}	B port					7 9	.5 pF
~	Control inputs					3.5 4	.5
Ci	Clock input	$V_{I} = V_{CCA}$ or GND				3	4 pF

TIMING REQUIREMENTS

 $V_{CCA} = 1.2 \text{ V} \pm 0.1 \text{ V}$

over recommended operating free-air temperature range (unless otherwise noted)

				V _{CCB} = 1. ± 0.15		V _{CCB} = 3.3 ± 0.3 V	V	UNIT
				MIN	MAX	MIN	MAX	
		Commond	Push-pull driving		40		40	Mhaa
Data	roto	Command	Open-drain driving		1		1	Mbps
Dala	rate	Clock	Duch cull driving		40		40	MHz
		Data	Push-pull driving		40		40	Mbps
		Commond	Push-pull driving	25		25		ns
	Pulse	Command	Open-drain driving	1		1		μs
t _W	V duration Clock	Clock	Duch cull driving	10		8.3		ns
		Data	Push-pull driving	25		25		ns

TIMING REQUIREMENTS

 $V_{CCA} = 1.8 V \pm 0.15 V$

				V _{CCB} = 1.8 V ± 0.15 V		V	UNIT
			MIN	MAX	MIN	MAX	
	0	Push-pull driving		60		60	Mana
Data vata	Command	Open-drain driving		1		1	Mbps
Data rate	Clock	Duch cull deixing		60		60	MHz
	Data	Push-pull driving		60		60	Mbps
	0	Push-pull driving	17		17		ns
Puls	Command se	Open-drain driving	1		1		μs
t _W dura	ation Clock		8.3		8.3		ns
	Data	Push-pull driving	17		17		ns

www.ti.com

TIMING REQUIREMENTS

 $V_{CCA} = 3.3 V \pm 0.3 V$

				V _{CCB} = 1. ± 0.15		V _{CCB} = 3.3 ± 0.3 V	v	UNIT
				MIN	MAX	MIN	MAX	
		Commond	Push-pull driving		60		60	Milean
Data	Command Data rate		Open-drain driving		1		1	Mbps
Data	rate	Clock	Duch null driving		55		55	MHz
		Data	Push-pull driving		60		60	Mbps
		Command	Push-pull driving	17		17		ns
	Pulse	Command	Open-drain driving	1		1		μs
t _W duration		Clock	Duch null driving	9		9		ns
		Data	Push-pull driving	17		17		ns

SWITCHING CHARACTERISTICS

 $V_{CCA} = 1.2 V \pm 0.1 V$

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CCB} = 1.8 V ± 0.15 \	1	V _{CCB} = 3.3 V ± 0.3 V		UNIT	
			MIN	MAX	MIN	MAX		
	CMDA	CMDB		5.7		4.4		
	CMDB	CMDA		6.7		5.8		
	CLKA	CLKB		6.2		4.5	ns	
t _{pd}	DATxA	DATxB		7.6		7.5	115	
	DATxB	DATxA		6.3		4.6		
	CLKA	CLK-f		12		7.9		
	EN	B-port		1		1		
t _{en}	EN	A-port		1		1	μs	
	EN	B-port		412		363		
t _{dis} EN		A-port		423		422	ns	
	CMDA	rise time	3.5	8.4	3.4	8.1		
t _{rA}	CLK-f	rise time	1	4.7	1	4.1	ns	
	DATxA	rise time	3.5	8.4	3.4	8.1		
	CMDB	rise time	1.4	6.5	0.6	3.1		
t _{rB}	CLKB	rise time	0.6	5.9	0.5	4.3	ns	
	DATxE	s rise time	1.4	10.9	0.6	5		
	CMDA	fall time	2.4	5.7	2	5.1		
t _{fA}	CLK-1	fall time	0.8	2.5	0.8	3	ns	
	DATx	A fall time	2.4	5.7	1.9	5.1		
	CMDE	3 fall time	1.2	5.4	0.6	3.6		
t _{fB}	CLKB	fall time	0.6	6.3	0.5	4	ns	
	DATxE	3 fall time	0.6	6.3	0.5	3.6		
t _{SK(O)}		-to-channel kew		1		1	ns	
	Push-			40		40	Mb	
May data rata	Command	Open-drain driving		1		1	Mbps	
Max data rate	C	lock		40		60	MHz	
	Г	Data		40		40	Mbps	

www.ti.com

SWITCHING CHARACTERISTICS $V_{CCA} = 1.8 V \pm 0.15 V$

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CCB} = 1.8 V ± 0.15 \		V _{CCB} = 3.3 V ± 0.3 V		UNIT	
			MIN	MAX	MIN	MAX		
	CMDA	CMDB		4.9		3.3		
	CMDB	CMDA		5.6		3.6		
	CLKA	CLKB		5.4		3.4	ns	
t _{pd}	DATxA	DATxB		5		4.4		
	DATxB	DATxA		5.4		3.5		
	CLKA	CLK-f		10.2		5.7		
+	EN	B-port		1		1		
t _{en}	EN	A-port		1		1	μs	
	EN	B-port		411		411		
t _{dis} EN CMDA r		A-port		413		361	ns	
		rise time	2.1	4.5	2.1	4.1		
t _{rA}	CLK-f	rise time	0.6	2.5	0.6	2.3	ns	
	DATxA	rise time	1.8	4.5	1.8	4.2		
	CMDB	rise time	1.4	6.6	0.7	3.8		
t _{rB}	CLKB	rise time	0.5	5.8	0.5	4.4	ns	
	DATxB	rise time	1.4	10.8	0.7	8		
	CMDA	fall time	0.4	3.4	0.3	2.9		
t _{fA}	CLK-f	fall time	0.3	2.8	0.3	2.8	ns	
	DATxA	fall time	0.4	3.4	0.3	2.9		
	CMDE	s fall time	1.1	6.3	0.6	3.7		
t _{fB}	CLKB	fall time	0.6	8.7	0.5	4.1	ns	
	DATxE	3 fall time	1.2	7	0.2	4		
t _{SK(O)}		Channel-to-channel skew		1		1	ns	
	Command	Push-pull driving		60		60	Mbps	
Max data rate	Command	Open-drain driving		1		1	Rain	
widk udid fale	C	lock		60		60	MHz	
	C	Data		60		60	Mbps	

SWITCHING CHARACTERISTICS

 $V_{CCA} = 3.3 V \pm 0.3 V$

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CCB} = 1.8 V ± 0.15 V		V _{CCB} = 3.3 V ± 0.3 V		UNIT	
			MIN	MAX	MIN	MAX		
t _{pd}	CMDA	CMDB		5.3		3.2	ns	
	CMDB	CMDA		5.1		3		
	CLKA	CLKB		4.8		3.1		
	DATxA	DATxB		5.1		3.2		
	DATxB	DATxA		9.6		5.1		
	CLKA	CLK-f		6.8		4.2		
t _{en}	EN	B-port		1		1	μs	
	EN	A-port		1		1		
t _{dis}	EN	B-port		410		364	ns	
	EN	A-port		396		398		
t _{rA}	CMD	A rise time	1.4	4.2	1.4	4.2	ns	
	CLK-	f rise time	0.5	1.5	0.5	1.4		
	DATx	A rise time	1.4	3.4	1.3	3		
t _{rB}	CMD	B rise time	1.4	6.4	0.9	4	ns	
	CLKE	3 rise time	0.6	5.9	0.5	4.4		
	DATx	B rise time	1.4	14	0.9	14		
t _{fA}	CMD	A fall time	0.8	2.3	0.8	2.3	ns	
	CLK-	f fall time	0.4	1.3	0.4	1.3		
	DATx	A fall time	0.8	2.2	0.7	2		
t _{fB}	CMD	B fall time	0.8	6.2	0.8	5	ns	
	CLK	3 fall time	0.6	7.8	0.5	4.3		
	DATx	B fall time	0.7	6.8	0.6	5		
t _{SK(O)}		el-to-channel skew		1		1	ns	
	P			60		60	Mhac	
May data rata	Command	Open-drain driving		1		1	Mbps	
Max data rate	(Clock		55		55	MHz	
		Data		60		60	Mbps	

OPERATING CHARACTERISTICS

 $T_A = 25^{\circ}C$, $V_{CCA} = 1.2$ V

	PARAMETE	D	TEST	V _{CCE}	UNIT	
	PARAMETE	:K	CONDITIONS	1.8 V	3.3 V	UNIT
	A-port input,	CLK Enabled		15.1	15	
	B-port output	DATA Enabled		9.26	9.19	
c (1)	B-port input, A-port output	DATA Enabled	$C_{L} = 0,$	12.4	11.9	-5
C _{pdA} ⁽¹⁾	A-port input,	CLK Disabled	f = 10 MHz, t _r = t _f = 1 ns	0.1	0.1	pF
	B-port output	DATA Disabled		1.3	1.3	
	B-port input, A-port output	DATA Disabled		0.1	0.1	

(1) Power dissipation capacitance per transceiver

NSTRUMENTS

EXAS

OPERATING CHARACTERISTICS (continued)

 $T_A = 25^{\circ}C, V_{CCA} = 1.2 V$

	PARAMETE	B	TEST	V _{CCB}	ТҮР	UNIT	
	FARAMETE		CONDITIONS	1.8 V	3.3 V	UNIT	
	A-port input, B-port output	DATA Enabled		26.7	30.3		
	B-port input, A-port output A-port input, B-port output	CLK Enabled		25.6	27		
c (1)		DATA Enabled	$C_{L} = 0,$	16.38	19.91	۶Ē	
C _{pdB} ⁽¹⁾		DATA Disabled	f = 10 MHz, $t_r = t_f = 1 \text{ ns}$	0.1	0.1	pF	
	B-port input,	CLK Disabled		0.1	0.1		
	A-port output	DATA Disabled		1.1	0.8		

OPERATING CHARACTERISTICS

 $T_A = 25^{\circ}C, V_{CCA} = 1.8 V$

	A-port input, B-port output DATA Enabled		TEST	V _{CCE}	TYP	UNIT
	PARAMETE	:R	CONDITIONS	1.8 V	1.8 V 3.3 V	
	A-port input,	CLK Enabled		17.5	17.1	
	B-port output	DATA Enabled		9.96	9.82	
C_{pdA} ⁽¹⁾	B-port input, A-port output	DATA Enabled	$C_{L} = 0,$	15.6	14	~ 5
	A-port input,	CLK Disabled	f = 10 MHz, $t_r = t_f = 1 \text{ ns}$	0.1	0.1	pF
	B-port output	DATA Disabled		1.3	1.3	
	B-port input, A-port output	DATA Disabled		0.1	0.1	
	A-port input, B-port output	DATA Enabled		26	28.5	
	B-port input,	CLK Enabled		25.8	27	
c (1)	A-port output	DATA Enabled	$C_{L} = 0,$	16.69	19.60	
C _{pdB} ⁽¹⁾	A-port input, B-port output	DATA Disabled	f = 10 MHz, $t_r = t_f = 1 \text{ ns}$	0.1	0.1	– pF
	B-port input,	CLK Disabled		0.1	0.1	
	A-port output	DATA Disabled		1.1	0.8	

(1) Power dissipation capacitance per transceiver

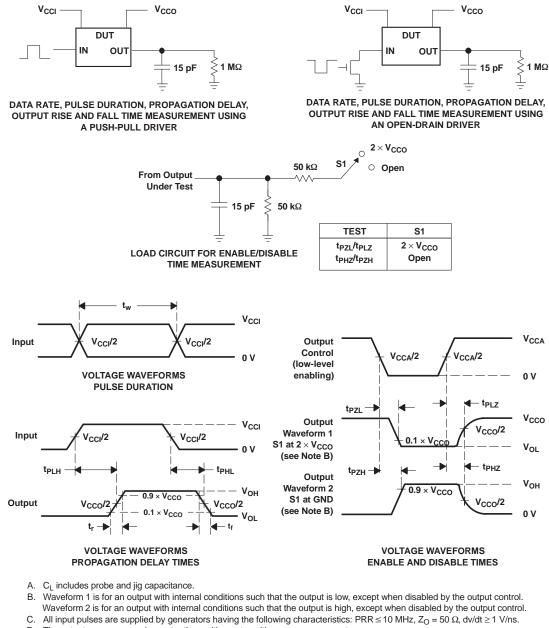
OPERATING CHARACTERISTICS

 $T_A = 25^{\circ}C, V_{CCA} = 3.3 V$

	PARAMETE	D	TEST	V _{CCB}		
	FARAMETE		CONDITIONS	1.8 V	3.3 V	UNIT
	A-port input,	CLK Enabled		17.5	17.1	
	B-port output	DATA Enabled		12.50	13.29	
c (1)	B-port input, A-port output	DATA Enabled	$C_L = 0,$	15.6	15.6 14	
C _{pdA} ⁽¹⁾	A-port input,	CLK Disabled	f = 10 MHz, t _r = t _f = 1 ns	0.1	0.1	pF
	B-port output	DATA Disabled		1.3	1.3	
	B-port input, A-port output	DATA Disabled		0.1	0.1	

(1) Power dissipation capacitance per transceiver

SCES833A-NOVEMBER 2011-REVISED MAY 2012


OPERATING CHARACTERISTICS (continued)

 $T_A = 25^{\circ}C, V_{CCA} = 3.3 V$

	PARAMETE	P	TEST	V _{CCB}	TYP	UNIT	
	PARAMETE	LK	CONDITIONS	1.8 V	3.3 V	UNIT	
	A-port input, B-port output	DATA Enabled		26	28.5		
	B-port input, A-port output A-port input, B-port output B-port input,	CLK Enabled		25.8	27		
c (1)		DATA Enabled	$C_{L} = 0,$	16.67	19.92	~ F	
C _{pdB} ⁽¹⁾		DATA Disabled	$\begin{array}{l} f=10 \text{ MHz},\\ t_r=t_f=1 \text{ ns} \end{array}$	0.1	0.1	pF	
		CLK Disabled		0.1	0.1		
	A-port output	DATA Disabled		1.1	0.8]	

www.ti.com

PARAMETER MEASUREMENT INFORMATION

- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. V_{CCI} is the V_{CC} associated with the input port.
- I. V_{CCO} is the V_{CC} associated with the output port.
- J. All parameters and waveforms are not applicable to all devices.

Figure 7. Load Circuit and Voltage Waveforms

APPLICATION INFORMATION

The TXS0206A has integrated pullup resistors on the data and command ports and their values dynamically change. When the port is in a low signal state, there is a nominal pullup resistor value of 40 k Ω , and power consumption is minimized. When the port is in a high signal state, the nominal pullup resistor value changes to 4 k Ω , and simultaneous switching performance is improved as a result. The threshold at which the resistance changes is approximately V_{CCx}/2.

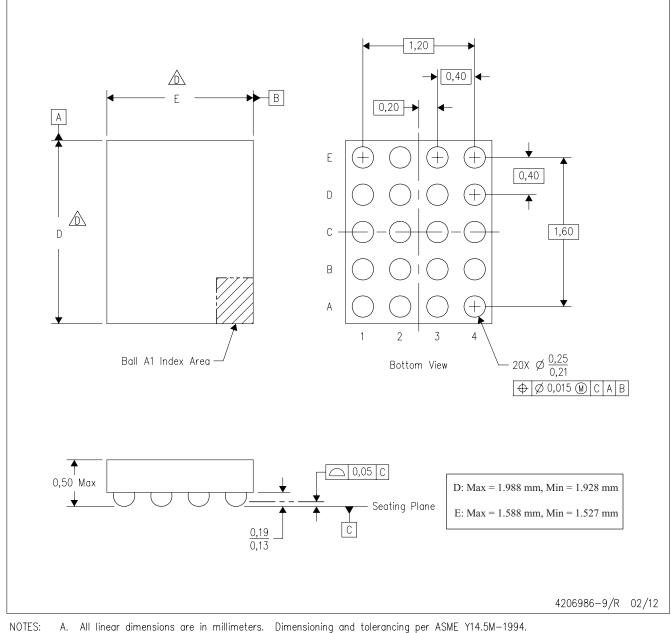
When using the TXS0206A device with MMCs, SD, and Memory StickTM to ensure that a valid receiver input voltage high (V_{IH}) is achieved, the value of any pulldown resistors (external or internal to a memory card) must not be smaller than a 10-k Ω value. The impact of adding too heavy (i.e., <10-k Ω value) a pulldown resistor to the data and command lines of the TXS0206A device and the resulting 4-k Ω pullup / 10-k Ω pulldown voltage divider network has a direct impact on the V_{IH} of the signal being sent into the memory card and its associated logic.

The resulting V_{IH} voltage for the 10-k Ω pulldown resistor value would be:

 $V_{CC} \times 10 \text{ k}\Omega / (10 \text{ k}\Omega + 4 \text{ k}\Omega) = 0.714 \times V_{CC}$

This is marginally above a valid input high voltage for a 1.8-V signal (i.e., $0.65 \times V_{CC}$).

The resulting V_{IH} voltage for 20-k Ω pulldown resistor value would be:


 $V_{CC} \times 20 \text{ k}\Omega / (20 \text{ k}\Omega + 4 \text{ k}\Omega) = 0.833 \times V_{CC}$

Which is above the valid input high voltage for a 1.8-V signal of 0.65 \times V_{CC}.

MECHANICAL DATA

YFP (R-XBGA-N20)

DIE-SIZE BALL GRID ARRAY

- B. This drawing is subject to change without notice.
- C. NanoFree™ package configuration.
- The package size (Dimension D and E) of a particular device is specified in the device Product Data Sheet version of this drawing, in case it cannot be found in the product data sheet please contact a local TI representative.
- E. Reference Product Data Sheet for array population.
- 2 x 2 matrix pattern is shown for illustration only.
- F. This package contains Pb-free balls.

NanoFree is a trademark of Texas Instruments

20-May-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)		(3)		(4/5)	
TXS0206AYFPR	ACTIVE	DSBGA	YFP	20	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	TXS0206A	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

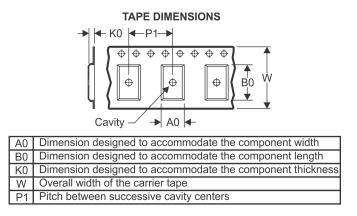
⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


PACKAGE MATERIALS INFORMATION

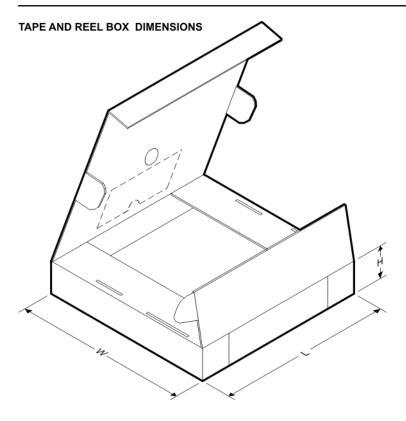
www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal	
-----------------------------	--

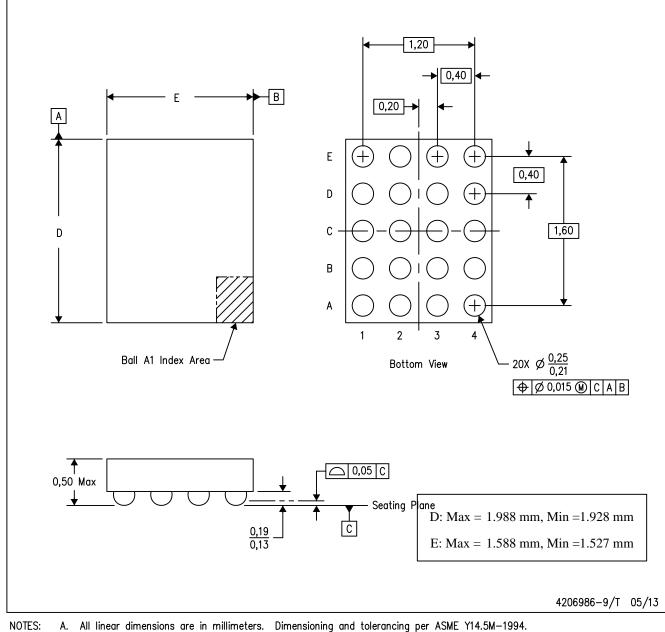

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TXS0206AYFPR	DSBGA	YFP	20	3000	180.0	8.4	1.66	2.06	0.56	4.0	8.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

23-Aug-2013



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TXS0206AYFPR	DSBGA	YFP	20	3000	182.0	182.0	17.0

YFP (R-XBGA-N20)

DIE-SIZE BALL GRID ARRAY

B. This drawing is subject to change without notice.

C. NanoFree™ package configuration.

NanoFree is a trademark of Texas Instruments

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications			
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive		
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications		
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers		
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps		
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy		
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial		
Interface	interface.ti.com	Medical	www.ti.com/medical		
Logic	logic.ti.com	Security	www.ti.com/security		
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense		
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video		
RFID	www.ti-rfid.com				
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com		
Wireless Connectivity	www.ti.com/wirelessconnectivity				

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated