

www.ti.com SWCS079 – JUNE 2012

PMU FOR PROCESSOR POWER

Check for Samples: TPS659122

1 INTRODUCTION

1.1 Features

- 4 Step-Down Converters:
 - V_{IN} Range From 2.7V to 5.5V
 - Power Save Mode at Light Load Current
 - Output Voltage Accuracy in PWM Mode ±2%
 - Typical 26 µA Quiescent Current per Converter
 - Dynamic Voltage Scaling
 - 100% Duty Cycle for Lowest Dropout
- 10 LDOs:
 - 8 General Purpose LDOs
 - Output Voltage Range 0.8V to 3.3V
 - 2 Low Noise RF-LDOs
 - Output Voltage Range 1.6V to 3.3V
 - 32 μA Quiescent Current
 - Pre-Regulation Support by Separate Power Inputs
 - ECO mode
 - V_{IN} Range of LDOs:
 - 1.8V to 3.6V or
 - 3.0V to 5.5V, respectively
- 3 LED Outputs:
 - Internal Dimming Using I2C
- 1.2 Applications
- Data cards
- Smartphones

- Multiplexed with GPIOs
- Up to 20mA per Current Sink
- Thermal Monitoring
 - High Temperature Warning
 - Thermal Shutdown
- Bypass Switch
 - Used with DCDC4 in Applications Powering an RF-PA
 - As Supply Switch for e.g. SD cards
- Interface
 - I²C Interface
 - Power I²C Interface for Dynamic Voltage Scaling
 - SPI
- 32kHz RC Oscillator
- Undervoltage Lockout and Battery Fault Comparator
- Long Button-Press Detection
- Flexible Power-Up and Power-Down Sequencing
- 3.6mm x 3.6mm WCSP Package with 0.4mm pitch

1.3 Description

The TPS659122 device provides four configurable step-down converters with up to 2.5A output current for memory, processor core, I/O, or pre-regulation of LDOs. It also contains 10 LDO regulators for external usage which can be supplied from either a battery or a pre-regulated supply. Power-up/power-down controller is configurable and can support any power-up/power-down sequences (OTP based). TPS659122 integrate a 32 kHz RC Oscillator to sequence all resources during Power up / down. All LDOs and DCDC converters can be controlled by I2C/SPI interface or Basic ENABLE Balls. In addition, an Independent automatic Voltage Scaling interface allows transitioning DCDC to different voltage by I2C or basic Roof/Floor Control. 3 RGB LED with advanced dimming feature are integrated inside the device. GPIO functionality is multiplexed with LED/ENBLE/SPI when not used. Each GPIO can be configured as part of the Power up sequence to control external resources. One Sleep pin enables power mode control between ACTIVE and pre-programmed SLEEP mode for power optimization. For system control the TPS659122 has 1 comparator for system state management. The TPS659122 comes in a 9 ball x 9 ball WCSP package (3.6mm x 3.6mm) with a 0.4mm pitch. To request a full data sheet, please send an email to: pmu_contact@list.ti.com.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SWCS079 - JUNE 2012

1.4 Block Diagram & Pin Functions

1.4.1 Functional Block Diagram

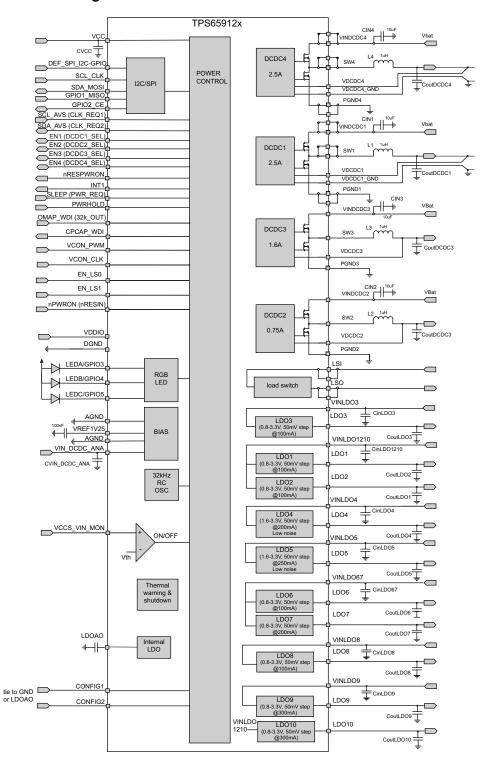
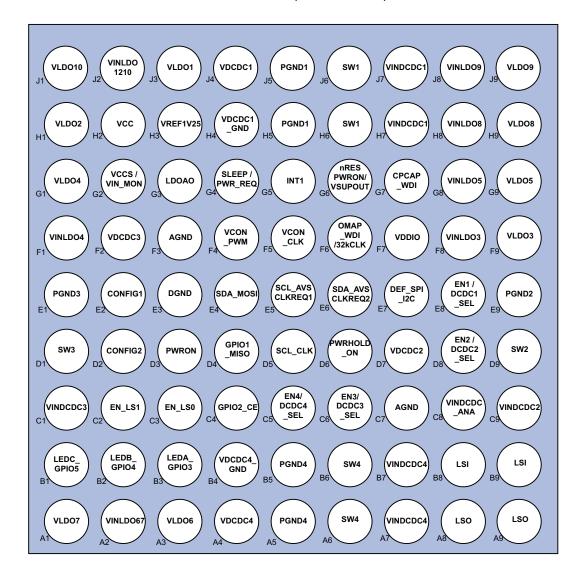


Figure 1-1. TPS65912x Block Diagram



www.ti.com SWCS079 – JUNE 2012

1.4.2 Pinout

YFF PACKAGE (BOTTOM VIEW)

TPS65912 (bottom view)

SWCS079 – JUNE 2012 www.ti.com

Table 1-1. TERMINAL FUNCTIONS

TERMINAL	-	1/0	DECORPTION						
NAME NO.		1/0	DESCRIPTION						
TPS659121									
REFERENCE									
VREF1V25	НЗ	0							
AGND	F3, C7	-	analog ground connection; connect to PGND on the PCB						
DRIVERS / LIGHTING	;								
LEDA/GPIO3	В3	I/O	general purpose I/O or LED driver output						
LEDB/GPIO4	B2	I/O	general purpose I/O or LED driver output						
LEDC/GPIO5	B1	I/O	general purpose I/O or LED driver output						
STEP_DOWN CONVE	ERTERS								
VINDCDC_ANA	C8	I	analog supply input for DCDC converters; needs to be connected to VINDCDC1, VINDCDC2, VINDCDC3 and VINDCDC4						
VINDCDC1	H7, J7	I	power input to DCDC1 converter; connect to VINDCDC2, VINDCDC3, VINDCDC4 and VINDCDC_ANA						
VDCDC1	J4	I	voltage sense (feedback) input "+" for DCDC1						
VDCDC1_GND	H4	I	voltage sense (feedback) input "GND" for DCDC1						
SW1	H6, J6	0	switch node of DCDC1; connect output inductor						
PGND1	H5, J5	-	power GND connection for DCDC1 converter						
VCON_PWM	F4	I	PWM period signal for dynamic voltage scaling on DCDC1						
VCON_CLK	F5	I	clock signal for dynamic voltage scaling on DCDC1						
VINDCDC2	C9	I	power input to DCDC2 converter; connect to VINDCDC1, VINDCDC3, VINDCDC4 and VINDCDC_ANA						
VDCDC2	D7	I	voltage sense (feedback) input for DCDC2						
SW2	D9	0	switch node of DCDC2; connect output inductor						
PGND2	E9	-	power GND connection for DCDC2 converter						
VINDCDC3	C1	I	power input to DCDC3 converter; connect to VINDCDC1, VINDCDC2, VINDCDC4 and VINDCDC_ANA						
VDCDC3	F2	I	voltage sense (feedback) input for DCDC3						
SW3	D1	0	switch node of DCDC3; connect output inductor						
PGND3	E1	-	power GND connection for DCDC3 converter						
VINDCDC4	A7, B7	I	power input to DCDC4 converter; connect to VINDCDC1, VINDCDC2, VINDCDC3 and VINDCDC_ANA						
VDCDC4	A4	I	voltage sense (feedback) input "+" for DCDC4						
VDCDC4_GND	B4	I	voltage sense (feedback) input "GND" for DCDC4						
SW4	A6, B6	0	switch node of DCDC4; connect output inductor						
PGND4	A5, B5	-	power GND connection for DCDC4 converter						
LOAD SWITCH	T								
LSI	B8, B9	I	input of the load switch						
LSO	A8, A9	0	output of the load switch						
EN_LS0	C3	I	load switch enable pin; the status is copied to Bit [LOADSWITCH:ENABLE0] in state CONFIG						
EN_LS1	C2	I	load switch enable pin; the status is copied to Bit [LOADSWITCH:ENABLE1] in state CONFIG						
LOW DROPOUT REG	ULATORS								
VINLDO1210	J2	I	power input for LDO1, LDO2 and LDO10						
VINLDO3	F8	I	power input for LDO3						
VINLDO4	F1	I	power input for LDO4						
VINLDO5	G8	I	power input for LDO5						
VINLDO67	A2	I	power input for LDO6 and LDO7						
VINLDO8	H8	I	power input for LDO8						
VINLDO9	J8	1	power input for LDO9						

www.ti.com SWCS079 – JUNE 2012

Table 1-1. TERMINAL FUNCTIONS (continued)

TERMINAL NAME	NO.	1/0	DESCRIPTION
TPS659121	110.		
LDOAO	G3	0	"LDO always on" internal supply; connect buffer capacitor
VLDO1	J3	0	LDO1 output
VLDO2	H1	0	LDO2 output
VLDO3	F9	0	LDO3 output
VLDO4	G1	0	LDO4 output
VLDO5	G9	0	LDO5 output
VLDO6	A3	0	LDO6 output
VLDO7	A1	0	LDO7 output
VLDO8	H9	0	LDO8 output
VLDO9	J9	0	LDO9 output
VLDO10	J1	0	LDO10 output
STANDARD INTERFA	CE		· · · ·
DEF_SPI_I2C-GPIO	E7	I	digital input that defines whether SPI or I2C and GPIOs is available on pins C4, D4, E4, D5: 0=SPI; 1=I2C and GPIO1 and GPIO2
SCK	D5	ı	I2C SCL for DEF_SPI_I2C=1 or SPI SCK for DEF_SPI_I2C=0
MOSI	E4	I/O	I2C SDA for DEF_SPI_I2C=1 or SPI MASTER OUT SLAVE IN (MOSI) for DEF_SPI_I2C=0
MISO	D4	I/O	GPIO1 for DEF_SPI_I2C=1 or SPI MASTER IN SLAVE OUT (MISO) for DEF_SPI_I2C=0
CE	C4	I/O	GPIO2 for DEF_SPI_I2C=1 or SPI CHIP ENABLE (CE) active HIGH for DEF_SPI_I2C=0
ENABLE / VOLTAGE S	SCALING		
			DCDCx_SEL is selected by pulling pin CONFIG2 to GND; this also selects CLK_REQx and PWR_REQ as enable resources
DCDC1_SEL	E8	I	enable pin or voltage scaling pin changing the output of a converter or a group of converters between 2 pre-defined values
DCDC2_SEL	D8	I	enable pin or voltage scaling pin changing the output of a converter or a group of converters between 2 pre-defined values
DCDC3_SEL	C6	I	enable pin or voltage scaling pin changing the output of a converter or a group of converters between 2 pre-defined values
DCDC4_SEL	C5	I	enable pin or voltage scaling pin changing the output of a converter or a group of converters between 2 pre-defined values
			CLK-REQ1, CLK_REQ2 and PWR_REQ is selected by puling pin CONFIG2 to GND
CLK_REQ1	E5	I	power I2C for dynamic voltage scaling: clock pin or clock request signal1 used to enable and disable power resources
CLK_REQ2	E6	I/O	power I2C for dynamic voltage scaling; data pin or clock request signal2 used to enable and disable power resources
PWR_REQ	G4	I	SLEEP mode input or CLK request input
VSUP_OUT	G6	0	Reset output or output of voltage monitor
VIN_MON	G2	I	voltage sense for input voltage monitor; output on pin VSUP_OUT
ON	D6	I	POWERHOLD or ON; enable input
INT1	G5	0	interrupt output
RESIN (optional)	D3	I	active low, debounced power-on input or power request input to start power-up sequencing; alternatively active low reset input to TPS65912x; debounced by 10ms(OTP option); tie to LDOAO for a logic high if not used.
OMAP_WDI_32k_OU T	F6	I	input from OMAP WDI pin to AND gate; alternatively 32kHz RC oscillator output. The option is
CPCAP_WDI	G7	0	push-pull output at VDDIO level of AND gate; connect to CPCAP WDI input
CONFIG1	E2	I	selects pre-defined startup options and default voltages; chooses from two internal OTP settings; tie to GND or LDOAO
CONFIG2	D2	I	selects pre-defined startup options; configures pins as DCDC1_SEL, DCDC2_SEL, DCDC3_SEL and DCDC4_SEL as well as CLK_REQ and PWR_REQ signals with CONFIG2 tied to GND. Tie to LDOAO for a logic high level.

SWCS079 – JUNE 2012 www.ti.com

Table 1-1. TERMINAL FUNCTIONS (continued)

TERMINAL		I/O	DESCRIPTION					
NAME	NO.	1/0	JESCRIPTION					
TPS659121								
VCC	H2	I	digital supply input					
VDDIO	F7	I	supply voltage input for GPIOs and output stages that sets the HIGH level voltage (I/O voltage)					
DGND	E3	-	digital GND connection, tie to AGND and PGNDx on the pcb					

PACKAGE OPTION ADDENDUM

11-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
TPS659122YFFR	ACTIVE	DSBGA	YFF	81	1500	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	TPS659122	Samples
TPS659122YFFT	ACTIVE	DSBGA	YFF	81	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	TPS659122	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

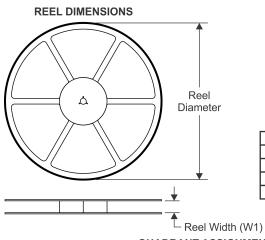
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

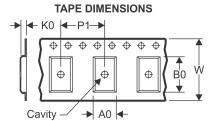
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

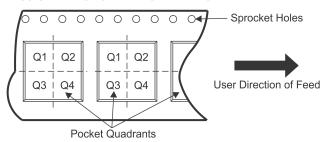
(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

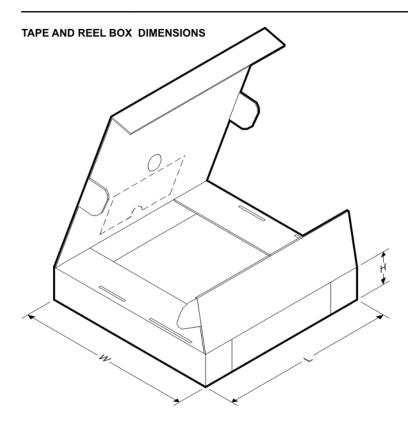
PACKAGE MATERIALS INFORMATION

www.ti.com 1-Oct-2013


TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS659122YFFR	DSBGA	YFF	81	1500	180.0	12.4	3.79	3.79	0.71	8.0	12.0	Q1
TPS659122YFFT	DSBGA	YFF	81	250	180.0	12.4	3.79	3.79	0.71	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 1-Oct-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS659122YFFR	DSBGA	YFF	81	1500	182.0	182.0	17.0
TPS659122YFFT	DSBGA	YFF	81	250	182.0	182.0	17.0

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>