

Integrated Power-Management Unit Top Specification

Check for Samples: TPS659119-Q1

FEATURES

- Qualified for Automotive Applications
- AEC-Q100 Qualified with the Following Results:
 - Device Temperature Grade 3: -40°C to 85°C
 Ambient Operating Temperature Range
 - Device HBM ESD Classification Level H2
 - Device CDM ESD Classification Level C4A
- Embedded Power Controller (EPC) With EEPROM Programmability
- Two Efficient Step-Down DCDC Converters with Dynamic Voltage Scaling for Processor Cores (VDD1, VDD2)
- One Efficient Step-Down DCDC Converter for I/O Power (VIO)
- An Interface to Control an External DCDC Converter (EXTCTRL)
- Eight LDO Voltage Regulators and One RTC LDO (Supply for Internal RTC)
- One High-Speed I²C[™] Interface for General-Purpose Control Commands (CTL-I²C)
- Two Independent Enable Signals for Controlling Power Resources (EN1, EN2) Which can be Used as a High-Speed I²C Interface Dedicated for VDD1 and VDD2 Voltage Scaling.
- Thermal Shutdown Protection and Hot-Die Detection
- A Real-Time Clock (RTC) Resource with:
 - Fast Start-Up 16.384-MHz Crystal Oscillator
 - Configurable Clock Source from Crystal Oscillator, External 32-kHz Clock or Internal 32-kHz RC Oscillator
 - Date, Time, and Calendar
 - Alarm Capability
- Nine Configurable GPIOs with Multiplexed Feature Support:
 - Four can be Used as Enable for External Resources, Included into Power-Up Sequence and Controlled by State-Machine
 - As GPI, GPIOs Support Logic-level
 Detection and Can Generate Maskable
 Interrupt for Wake-Up

- Two of the GPIOs Have 10-mA Current Sink Capability for Driving LEDs
- DCDCs Switching Synchronization Through an External 3-MHz Clock
- Two Reset Inputs, for Cold Reset (HDRST) and a Power Initialization Reset (PWRDN) for Thermal Reset Input
- 32-kHz Clock Output (CLK32KOUT) and System Reset (NRESPWRON) Included in Power Sequence
- Watchdog
- Two ON/OFF LED Pulse Generators and One PWM Generator

APPLICATIONS

- Automotive Applications
- Infotainment
- ADAs
- Instrument Cluster

DESCRIPTION

The TPS659119-Q1 is an integrated power management integrated circuit (PMIC) available in an 80-pin, 0.5-mm pitch, LQFP with thermal pad, and dedicated to applications powered by a 5-V input, and which require multiple power rails. The device provides three step-down converters and an interface to control an external converter, eight LDOs, and is designed to be a flexible PMIC for supporting different processors and applications.

Two of the step-down converters support dynamic voltage scaling by a dedicated I²C interface for optimum power savings. The third converter provides power for the I/Os and memory in the system.

The device includes eight general-purpose LDOs providing a wide range of voltage and current capabilities. Five of the LDOs support 1 to 3.3 V with 100-mV step and three (LDO1, LDO2, LDO4) support 1 to 3.3 V with 50-mV step. All LDOs are fully controllable by the I²C interface.

In addition to the power resources, the device contains an EPC to manage the power sequencing requirements of systems and an RTC. Power sequencing is programmable by EEPROM.

Figure 1 shows the top-level diagram of the device.

A

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

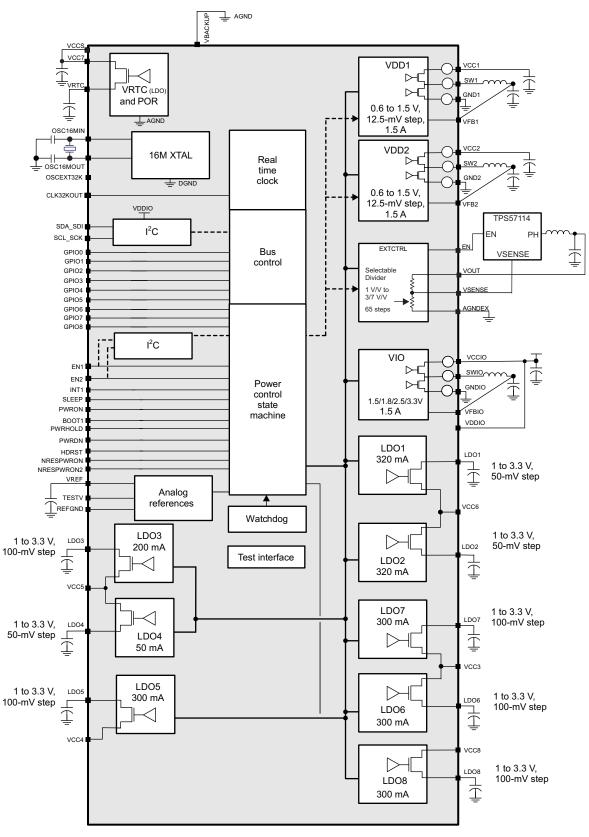


Figure 1. Top-Level Diagram

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ABSOLUTE MAXIMUM RATINGS(1)

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	CONDITION	MIN	MAX	UNIT
Voltage range on pins VCC1, VCC2, VCCIO, VCC3, VCC4, VCC5, VCC7, VCC8			-0.3	7	V
Voltage range	on pins VCC6, VDDIO		-0.3	3.6	V
Voltage range on pins SW1, SW2, SWIO			-0.3	7	V
voltage range	on pins 3w1, 3w2, 3wio	10 ns Transient	-2	7	V
Voltage range	on pins VFB1,VFB2,VFBIO		-0.3	3.6	V
Voltage range	on pins VOUT, VSENSE		-0.3	7	V
Voltage range	on pins BOOT1		-0.3	VRTCMAX + 0.3	V
Voltage range on pins SDA_SDI, SCL_SCK, EN2, EN1, SLEEP, INT1, CLK32KOUT, NRESPWRON			-0.3	VDDIOMAX + 0.3	V
Voltage range on pins PWRON			-0.3	7	V
Voltage range on pins PWRHOLD, GPIO0			-0.3	7	V
Voltage range on pins OSCEXT32K, GPIO1, GPIO2, GPIO3, GPIO4, GPIO5, GPIO6, GPIO7, GPIO8 ⁽²⁾			-0.3	7	V
Voltage range	on pins HDRST		-0.3	VRTCMAX + 0.3	V
Voltage range	on pins OSC16MIN, OSC16MOUT		-0.3	5.7	V
Voltage range	on pins NRESPWRON2 ⁽²⁾		-0.3	7	V
Voltage range	on pin PWRDN ⁽³⁾		-0.3	7	V
Voltage range	on pin VCCS		-0.3	7	V
Functional jun	Functional junction temperature range			150	°C
Storage temperature (T _{stg})			-55	150	°C
Peak output current on all other terminals than power resources			-5	5	mA
CCD Botings	Human body model (HBM) AEC-Q100 classification level H2			2000	V
ESD Ratings Charged device model (CDM) AEC-Q100 classif		vel C4A		750	V

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

THERMAL CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)

	THERMAL METRIC ⁽¹⁾		LINUT
			UNIT
θ_{JA}	Junction-to-ambient thermal resistance	34.1	
$\theta_{\text{JC(TOP)}}$	Junction-to-case(top) thermal resistance	9.6	
θ_{JB}	Junction-to-board thermal resistance	10.1	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	0.3	*C/vv
ΨЈВ	Junction-to-board characterization parameter	9.9	
$\theta_{\text{JC(BOTTOM)}}$	Junction-to-case(bottom) thermal resistance	0.9	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

⁽²⁾ I/O supplied from VRTC but which can be driven from VCC7 or to VCC7 voltage level.

⁽³⁾ Input supplied from VRTC but can be driven from VCC7 voltage level.

RECOMMENDED OPERATING CONDITIONS

over operating free-air temperature range (unless otherwise noted)

Note: VCC7 should be connected to highest supply that is connected to device VCCx pin.

Exception: VCC4, VCC5, VIN, and AVIN inputs can be higher than VCC7. VCCS can be higher than VCC7 if

VMBBUF_BYPASS = 0 (buffer is enabled).

PARAMETER	MIN	TYP	MAX	UNIT
Input voltage range on pins VCC5, VCCS	2.7		5.5	V
Input voltage range on pins VCC3, VCC4, VCC8	1.7		5.5	V
Input voltage range on pins VCC1, VCC2, VCCIO, VCC7	4	5	5.5	V
Input voltage range on pins VCC6, VDDIO	1.4	3.3	3.6	V
Input voltage range on pin VSENSE	-0.1		6.5	V
Input voltage range on pins PWRON	0	3.8	5.5	V
Input voltage range on pins SDA_SDI, SCL_SCK, EN2, EN1, SLEEP, INT1, CLK32KOUT	1.65	VDDIO	3.45	V
Input voltage range on pins PWRHOLD, HDRTS	1.65	VRTC	5.5	V
Input voltage range on pins GPIO0, GPIO1, GPIO2, GPIO3, GPIO4, GPIO5, GPIO6, GPIO7, GPIO8, PWRDN	1.65	VRTC	5.5	V
Input voltage range on pin VCCS	0		5.5	V
Input voltage range on pin OSCEXT32K	0		5.5	V

EXTERNAL COMPONENT RECOMMENDATION

For crystal oscillator components, see 32-kHz RTC CLOCK.

Note: VCC7 supply should have enough capacitance to specify that when the supply is switched off, voltage does not fall at a rate faster than 10 mV/ms. This ensures that RTC domain data is maintained.

PARAMETER	TEST CONDITIONS	MIN	NOM	MAX	UNIT
Power References					
VREF filtering capacitor C _{O(VREF)}	Connected from VREF to REFGND		100		nF
VDD1 SMPS					
Input capacitor C _{I(VCC1)}	X5R or X7R dielectric		10		μF
Output filter capacitor C _{O(VDD1)}	X5R or X7R dielectric	4	10	12	μF
C _O filter capacitor ESR	f = 3 MHz		10	300	mΩ
Inductor L _{O(VDD1)}			2.2		μΗ
L _O inductor dc resistor DCR _L				125	mΩ
VDD2 SMPS					
Input capacitor C _{I(VCC2)}	X5R or X7R dielectric		10		μF
Output filter capacitor C _{O(VDD2)}	X5R or X7R dielectric	4	10	12	μF
C _O filter capacitor ESR	f = 3 MHz		10	300	mΩ
Inductor L _{O(VDD2)}			2.2		μΗ
L _O inductor dc resistor DCR _L				125	mΩ
VIO SMPS					
Input capacitor C _{I(VCCIO)}	X5R or X7R dielectric		10		μF
Output filter capacitor C _{O(VIO)}	X5R or X7R dielectric	4	10	12	μF
C _O filter capacitor ESR	f = 3 MHz		10	300	$m\Omega$
Inductor L _{O(VIO)}			2.2		μΗ
L _O inductor dc resistor DCR _L				125	mΩ
LDO1					
Input capacitor C _{I(VCC6)}	X5R or X7R dielectric		4.7		μF
Output filtering capacitor C _{O(LDO1)}		0.8	2.2	2.64	μF
C _O filtering capacitor ESR		0		500	mΩ

EXTERNAL COMPONENT RECOMMENDATION (continued)

For crystal oscillator components, see 32-kHz RTC CLOCK.

Note: VCC7 supply should have enough capacitance to specify that when the supply is switched off, voltage does not fall at a rate faster than 10 mV/ms. This ensures that RTC domain data is maintained.

PARAMETER	TEST CONDITIONS	MIN	NOM	MAX	UNIT
LDO2					
Output filtering capacitor C _{O(LDO2)}		0.8	2.2	2.64	μF
C _O filtering capacitor ESR		0		500	mΩ
LDO3					
Input capacitor C _{I(VCC5)}	X5R or X7R dielectric		4.7		μF
Output filtering capacitor C _{O(LDO3)}		0.8	2.2	2.64	μF
C _O filtering capacitor ESR		0		500	mΩ
LDO4					
Output filtering capacitor C _{O(LDO4)}		0.8	2.2	2.64	μF
C _O filtering capacitor ESR		0		500	mΩ
LDO5		-			
Input capacitor C _{I(VCC4)}	X5R or X7R dielectric		4.7		μF
Outside Election and sites O	V _{OUT} (LDOx) > 1.2 V	0.8	2.2	2.64	
Output filtering capacitor $C_{O(LDO5)}$	V _{OUT} (LDOx) ≤ 1.2 V	0.8	2	2.2	μF
C _O filtering capacitor ESR		0		500	mΩ
LDO6		·		•	
Input capacitor C _{I(VCC3)}	X5R or X7R dielectric		4.7		μF
Output filtering consoiter C	$V_{OUT}(LDOx) > 1.2 V$	0.8	2.2	2.64	
Output filtering capacitor $C_{O(LDO6)}$	V _{OUT} (LDOx) ≤ 1.2 V	0.8	2	2.2	μF
C _O filtering capacitor ESR		0		500	mΩ
LDO7					
Output filtering conscitor C	$V_{OUT}(LDOx) > 1.2 V$	0.8	2.2	2.64	
Output filtering capacitor C _{O(LDO7)}	V _{OUT} (LDOx) ≤ 1.2 V	0.8	2	2.2	μF
C _O filtering capacitor ESR		0		500	$m\Omega$
LDO8		·		•	
Input capacitor C _{I(VCC8)}	X5R or X7R dielectric		4.7		μF
Output filtering conscitor C	$V_{OUT}(LDOx) > 1.2 V$	0.8	2.2	2.64	
Output filtering capacitor $C_{O(LDO8)}$	$V_{OUT}(LDOx) \le 1.2 \text{ V}$	0.8	2	2.2	μF
C _O filtering capacitor ESR		0		500	mΩ
VRTC LDO					
Input capacitor C _{I(VCC7)}	X5R or X7R dielectric		4.7		μF
Output filtering capacitor C _{O(VRTC)}		0.8	2.2	2.64	μF
C _O filtering capacitor ESR		0		500	mΩ

I/O PULLUP AND PULLDOWN CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted) (1)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SDA_SDI, SCL_SCK, SDASR_EN2, SCLSR_EN1 external pullup resistor	Connected to VDDIO		1.2		kΩ
SDA_SDI, SCL_SCK, SDASR_EN2, SCLSR_EN1 programmable pullup (DFT, default inactive)	Grounded, VDDIO = 1.8 V	-45%	8	45%	kΩ
SLEEP, PWRHOLD, programmable pulldown (default active)	at 1.8 V, VRTC = 1.8 V; $T_A = 25$ °C for PWRHOLD	2	4.5	10	μΑ
NRESPWRON, NRESPWRON2 pulldown	at 1.8 V, VCC7 = 5.5 V, OFF state	2	4.5	10	μA
32KCLKOUT pulldown (disabled in ACTIVE-SLEEP state)	at 1.8 V, VRTC = 1.8 V, OFF state	2	4.5	10	μΑ
PWRON programmable pullup (default active)	Grounded, VCC7 = 5.5 V	-43	-31	-15	μΑ
GPIO0-8 programmable pulldown (default active except GPIO0)	at 1.8 V, VRTC = 1.8 V, OFF state	2	4.5	15	μΑ
GPIO0-8 external pullup resistor	Connected to VDDIO	-20%	120	20%	kΩ
HDRST programmable pulldown (default active)	at 1.8 V, VRTC = 1.8 V	2	4.5	10	μΑ

⁽¹⁾ The internal pullups on the CTL-I²C and SR-I²C pins are used for test purposes or when the SR-I²C interface is not used. Discrete pullups to the VIO supply must be mounted on the board in order to use the I²C interfaces. The internal I²C pullups must not be used for functional applications

DIGITAL I/O VOLTAGE ELECTRICAL CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)

PARAMETER		MIN	TYP MAX	UNIT
Related I/Os: PWRON				
Low-level input voltage V _{IL}			0.3 x VBAT	V
High-level input voltage V _{IH}		0.7 x VBAT		V
Related I/Os: PWRHOLD, GPIO0-8, PW	RDN	•		
Low-level input voltage V _{IL}			0.45	V
High-level input voltage V _{IH}		1.3	VBAT	V
Related I/Os: BOOT1		·		
Low level input – Impedance between BC	OT1 and GND		10	kΩ
High level input – Impedance between BC	OOT1 and VRTC		10	kΩ
Hi-Z level input – Impedance between BC	OT1 and GND	500		kΩ
Related I/Os: SLEEP		·		
Low-level input voltage V _{IL}			0.35 x VDDIO	V
High-level input voltage V _{IH}		0.65 x VDDIO		V
Related I/Os: HDRST			•	
Low-level input voltage V _{IL}			0.35 x VRTC	V
High-level input voltage V _{IH}		0.65 x VRTC		V
Related I/Os: NRESPWRON, INT1, 32K0	CLKOUT			
Low-level output voltage V _{OL}	$I_{OL} = 100 \mu A$		0.2	V
	$I_{OL} = 2 \text{ mA}$		0.45	V
High-level output voltage V _{OH}	$I_{OH} = 100 \mu A$	VDDIO - 0.2		V
	$I_{OH} = 2 \text{ mA}$	VDDIO - 0.45		V
Related I/Os: EN		·		
Low-level output voltage V _{OL}	$I_{OL} = 100 \mu A$		0.2	V
	I _{OL} = 2 mA		0.9	V
High-level output voltage V _{OH}	I _{OH} = 100 μA	VCC7- 0.2		V
	I _{OH} = 2 mA	VCC7 - 0.45		V

DIGITAL I/O VOLTAGE ELECTRICAL CHARACTERISTICS (continued)

over operating free-air temperature range (unless otherwise noted)

PARAMETER		MIN	TYP MAX	UNIT
Related I/Os: GPIO0 (PUSH-PULL MO	DE)	•		
Low-level output voltage V _{OL}	I _{OL} = 100 μA		0.2	V
	I _{OL} = 2 mA		0.45	V
High-level output voltage V _{OH}	I _{OH} = 100 μA	VCC7 - 0.2		V
	I _{OH} = 2 mA	VCC7 - 0.45		V
Related Open-Drain I/Os: GPIO0, GPIO	02, GPIO4-8, NRESPWRON2			
Low-level output voltage V _{OL}	I _{OL} = 100 μA		0.2	V
	I _{OL} = 2 mA		0.45	V
Related Open-Drain I/Os: GPIO1, GPIO)3			
Low-level output voltage V _{OL}	I _{OL} = 100 μA		0.2	V
	I _{OL} = 2 mA		0.4	V
I ² C-Specific Related I/Os: SCL, SDA, E	EN1, EN2			
Low-level input voltage V _{IL}		-0.5	0.3 x VDDIO	V
High-level input voltage V _{IH}		0.7 x VDDIO		V
Hysteresis		0.1 x VDDIO		V
Low-level output voltage V _{OL} at 3 mA (si	nk current), VDDIO = 1.8 V		0.2 × VDDIO	V
Low-level output voltage V _{OL} at 3 mA (si	nk current), VDDIO = 3.3 V		0.4 x VDDIO	V

I²C INTERFACE AND CONTROL SIGNALS

over operating free-air temperature range (unless otherwise noted)

NO.	PARAMETER	TEST CONDITIONS ⁽¹⁾ (2)	MIN	TYP	MAX	UNIT
		INT1 rise and fall times, C _L = 5 to 35 pF	5		10	ns
		NRESPWRON rise and fall times, $C_L = 5$ to 35 pF	5		10	ns
SLAVE H	IGH-SPEED MOD	E				
		SCL/EN1 and SDA/EN2 rise and fall time, C _L = 10 to 100 pF	10		80	ns
		Data rate			3.4	Mbps
13	t _{su(SDA-SCLH)}	Setup time, SDA valid to SCL high	10			ns
14	t _{h(SCLL-SDA)}	Hold time, SDA valid from SCL low	0		70	ns
17	t _{su(SCLH-SDAL)}	Setup time, SCL high to SDA low	160			ns
18	t _{h(SDAL-SCLL)}	Hold time, SCL low from SDA low	160			ns
19	t _{su(SDAH-SCLH)}	Setup time, SDA high to SCL high	160			ns
SLAVE F	AST MODE					
		SCL/EN1 and SDA/EN2 rise and fall time, C _L = 10 to 400 pF	20 + 0.1 × C _L		250	ns
		Data rate			400	Kbps
13	t _{su(SDA-SCLH)}	Setup time, SDA valid to SCL high	100			ns
14	t _{h(SCLL-SDA)}	Hold time, SDA valid from SCL low	0		0.9	μs
17	t _{su(SCLH-SDAL)}	Setup time, SCL high to SDA low	0.6			μs
18	t _{h(SDAL-SCLL)}	Hold time, SCL low from SDA low	0.6			μs
19	t _{su(SDAH-SCLH)}	Setup time, SDA high to SCL high	0.6			μs
SLAVE S	TANDARD MODE					
		SCL/EN1 and SDA/EN2 rise and fall time, $C_L = 10$ to 400 pF			250	ns
		Data rate			100	Kbps
13	t _{su(SDA-SCLH)}	Setup time, SDA valid to SCL high	250			ns
14	t _{h(SCLL-SDA)}	Hold time, SDA valid from SCL low	0			μs
17	t _{su(SCLH-SDAL)}	Setup time, SCL high to SDA low	4.7			μs
18	t _{h(SDAL-SCLL)}	Hold time, SCL low from SDA low	4			μs
19	t _{su(SDAH-SCLH)}	Setup time, SDA high to SCL high	4			μs
SWITCHII	NG CHARACTERIS	STICS				
SLAVE H	IGH-SPEED MOD	E				
I1	t _{w(SCLL)}	Pulse duration, SCL low	160			ns
12	t _{w(SCLH)}	Pulse duration, SCL high	60			ns
SLAVE F	AST MODE					
I1	t _{w(SCLL)}	Pulse duration, SCL low	1.3			μs
12	t _{w(SCLH)}	Pulse duration, SCL high	0.6			μs
SLAVE S	TANDARD MODE					
l1	t _{w(SCLL)}	Pulse duration, SCL low	4.7			μs
12	t _{w(SCLH)}	Pulse duration, SCL high	4			μs

⁽¹⁾ The input timing requirements are given by considering a rising or falling time of: 80 ns in high–speed mode (3.4 Mbps) 300 ns in fast–speed mode (400 kbps) 1000 ns in Standard mode (100 kbps)

⁽²⁾ SDA is SDA_SDI or EN2 signal, SCL is SCL_SCK or EN1 signal

POWER CONSUMPTION

over operating free-air temperature range (unless otherwise noted)

All current consumption measurements are relative to the FULL chip, all VCC inputs set to VBAT voltage, COMP2 is off.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Device OFF state	VBAT = 5 V, XTAL oscillator running		2.5		mA
Device OFF state	VBAT = 5 V, Bypass clock used		22		μΑ
Device SLEEP state VBAT = 5 V, 3 DCDCs on in PFM mode, 5 LDOs on, no load, XTAL oscillator running			2.8		mA
Device ACTIVE state	VBAT = 5 V, 3 DCDCs on in PWM mode, 5 LDOs on, no load, XTAL oscillator running		26.6		mA

POWER REFERENCES AND THRESHOLDS

over operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Output reference voltage (VREF terminal)	Device in active or low-power mode	-1%	0.85	1%	V
Main battery not present falling threshold VBNPR	Measured on terminal VCC7, falling (Triggering monitored on terminal VRTC)	1.8	2.1	2.3	V
PORXTAL	The POR threshold for rising VCC7 voltages	3.58	3.77	3.96	V
	The POR threshold for falling VCC7 voltages	3.50	3.68	3.87	V
	Difference between rising and falling thresholds	62.55	89.35	200	mV

THERMAL MONITORING AND SHUTDOWN

over operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	THERM_HDSEL[1:0] = 00		117		
	THERM_HDSEL[1:0] = 01		121		°C
Hot-die temperature rising threshold	THERM_HDSEL[1:0] = 10	113	125	136	٠.
	THERM_HDSEL[1:0] = 11		130		
Hot-die temperature hysteresis			10		°C
Thermal shutdown temperature rising threshold		150	165	180	°C
	THERM_HDSEL[1:0] = 00		107		
Thermal shutdown temperature recovery	THERM_HDSEL[1:0] = 01		111		°C
threshold	THERM_HDSEL[1:0] = 10		115		
	THERM_HDSEL[1:0] = 11		120		
Ground current	Device in ACTIVE state, Temp = 27°C, VCC7 = 3.8 V		6		μΑ

32-kHz RTC CLOCK

over operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
CLK32KOUT rise and fall time	$C_L = 35 \text{ pF}$			10	ns
xternal Clock (OSC16MIN grounded, OSC16MOUT floating, and OSCEXT32K input)					
Input bypass clock frequency	OSCKIN input		32		kHz
Input bypass clock duty cycle	OSCKIN input	40		60	%
Input bypass clock rise and fall time	10% - 90%, OSCEXT32K input		10	20	ns
CLK32KOUT duty cycle	Logic output signal	40		60	%
Bypass clock setup time	32KCLKOUT output			1	ms
Ground current	Bypass mode			1.5	μΑ

32-kHz RTC CLOCK (continued)

over operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Crystal Oscillator (Crystal between	OSC16MIN and OSC16MOUT, OSCEXT32K ground	ed)			
Crystal frequency	at specified load cap value		16.384		MHz
Crystal tolerance	at 27°C	-20	0	20	ppm
Oscillator frequency drift	T _J from –40°C to 125°C, VCC7 from 4 V to 5.5 V; excluding crystal drift	-50		50	ppm
Max crystal series resistor	at fundamental frequency			90	Ω
Oscillator startup time	Power on until first time slot			13.2	ms
Drive level power	Steady state operation		15	120	μW
Ground current			2.5		mA
Overall frequency tolerance	CLK32KOUT output	-1		1	%
Output frequency	CLK32KOUT output		32.768		kHz
Crystal motional inductance	According to crystal data sheet	23	33	43	μH
Crystal shunt capacitance	According to crystal data sheet	0.5		4	pF
Crystal load capacitance	According to crystal data sheet; including PCB parasitic capacitance	9	10	11	pF
RC Oscillator (OSC16MIN and OSC	EXT32K grounded, OSC16MOUT floating)				
Output frequency	CK32KOUT output		32		kHz
Output frequency accuracy	at 25°C	-15	0	15	%
Cycle jitter (RMS)	Oscillator contribution			10	%
Output duty cycle		40	50	60	%
Settling time				150	μs
Ground current	Active at fundamental frequency		4		μΑ

VRTC LDO

over operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITION	IS	MIN	TYP	MAX	UNIT
In most consistence N/	On mode		2.5		5.5	V
Input voltage V _{IN}	Backup mode		1.9		3	V
DC autaut valta as V	On mode, 3 V < V _{IN} < 5.5 V		1.78	1.83	1.9	V
DC output voltage V _{OUT}	Backup mode, 2.3 V ≤ V _{IN} ≤ 2.6 V		1.72	1.78	1.9	V
Data d autout aumant l	On mode		20			A
Rated output current I _{OUTmax}	Backup mode		0.1			mA
DO lead as adults.	On mode, $I_{OUT} = I_{OUTmax}$ to 0				100	mV
OC load regulation	Backup mode, I _{OUT} = I _{OUTmax} to 0				100	
DC line regulation	On mode, $V_{IN} = 3 \text{ V to } V_{INmax}$ at $I_{OUT} = I_{C}$	UTmax			2.5	\/
	Backup mode, V _{IN} = 2.3 V to 5.5 V at I _{OU}	$T = I_{OUTmax}$			100	mV
Transient load regulation	On mode, V _{IN} = V _{INmin} + 0.2 V to V _{INmax} I _{OUT} = I _{OUTmax} /2 to I _{OUTmax} in 5 µs and I _{OUT} = I _{OUTmax} to I _{OUTmax} / 2 in 5 µs				50 ⁽¹⁾	mV
Transient line regulation	On mode, $V_{IN} = V_{INmin} + 0.5 \text{ V to } V_{INmin}$ ir and $V_{IN} = V_{INmin}$ to $V_{INmin} + 0.5 \text{ V}$ in 30 μ s $I_{OUT} = I_{OUTmax} / 2$				25 ⁽¹⁾	mV
Turn-on time	I_{OUT} = 0, V_{IN} rising from 0 up to 3.6 V, at V_{OUTmin}	$V_{OUT} = 0.1 \text{ V up to}$		2.2		ms
B. 1	$V_{IN} = V_{INDC} + 100 \text{ mV}_{pp} \text{ tone, } V_{INDC+} =$	f = 217 Hz		55		ID.
Ripple rejection	V_{INmin} + 0.1 V to V_{INmax} at $I_{\text{OUT}} = I_{\text{OUTmax}} / 2$	f = 50 kHz		35		dB

(1) These parameters are not tested. They are used for design specification only.

VRTC LDO (continued)

over operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Ground current	Device in ACTIVE state		23		
	Device in BACKUP or OFF state		3		μΑ

VIO SMPS

over operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITION	IS	MIN	TYP	MAX	UNIT
Input voltage (VCCIO and VCC7) V _{IN}	V _{OUT} = 1.5 V, 1.8 V, 2.5 or 3.3 V		4		5.5	V
		VSEL = 00	-1.5%	1.5	3%	
		VSEL = 01	-1.5%	1.8	3%	
DC output voltage (V _{OUT})	PWM mode (VIO_PSKIP = 0) I _{OUT} = 0	VSEL = 10	-1.5%	2.5	3%	V
		VSEL = 11	-1.5%	3.3	3%	
		Power down		0		
Rated output current I _{OUTmax}	TPS659119xAIPFPRQ1		1500			mA
P-channel MOSFET	$V_{IN} = V_{INmin}$			300		
On-resistance R _{DS(ON)_PMOS}	V _{IN} = 4 V			250	400	mΩ
P-channel leakage current I _{LK_PMOS}	V _{IN} = V _{INMAX} , SWIO = 0 V				2	μΑ
N-channel MOSFET	$V_{IN} = V_{MIN}$			300		
On-resistance R _{DS(ON)_NMOS}	V _{IN} = 4 V			250	400	mΩ
N-channel leakage current I _{LK_NMOS}	$V_{IN} = V_{INmax}$, SWIO = V_{INmax}				2	μΑ
PMOS and NMOS current limit (high side and low	$V_{IN} = V_{INmin}$ to V_{INmax} source current load	; when ILIM[1:0] = 00	700			mA
	when ILIM[1:0] = 01		1200			mA
side) TPS659119xAIPFPRQ1	when ILIM[1:0] = 10		1700		60	mA
TF3039T19XAIFFFRQ1	when ILIM[1:0] = 11		> 1700			mA
DC load regulation	On mode, $I_{OUT} = 0$ to I_{OUTmax}				60	mV/A
DC line regulation	On mode, $V_{IN} = V_{INmin}$ to V_{INmax} at $I_{OUT} = 0$				30	mV
Transient load regulation	V_{OUT} = 1.8 V I_{OUT} = 0 to 500 mA , Max slew = 100 mA, I_{OUT} = 700 to 1200 mA , Max slew = 100			50		mV
t _{on} , off to on	I _{OUT} = 200 mA			350		μs
Overshoot	SMPS turned on			3		%
Power-save mode ripple voltage	PFM (pulse skip mode) mode, I _{OUT} = 1 m	Α		0.025 × V _{OUT}		V_{PP}
Switching frequency			2.7	3	3.3	MHz
Duty cycle					100	%
Minimum on time T _{ON(MIN)} P-channel MOSFET				35		ns
VFBIO internal resistance			0.5	1		ΜΩ
	Off				1	
	PWM mode, $I_{OUT} = 0$ mA, $V_{IN} = 3.8$ V, VI	O_PSKIP = 0		7500		
vershoot vershoot vershoot vershoot vershoot vershoot sower-save mode ripple ltage vitching frequency uty cycle nimum on time T _{ON(MIN)} channel MOSFET FBIO internal resistance cound current (I _Q) F	PFM (pulse skipping) mode, no switching	, 3-MHz clock on		250		μΑ
	Low-power (pulse skipping) mode, no switching	ST[1:0] = 11		63	5.5 3% 3% 3% 3% 400 2 400 2 400 30 3.3 100	

Copyright © 2013, Texas Instruments Incorporated

VIO SMPS (continued)

over operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITION	S	MIN	TYP	MAX	UNIT
		I _{OUT} = 10 mA		40		
	PWM mode, DCR _I < 50 m Ω , V _{OUT} = 1.8	I _{OUT} = 100 mA		83		
		I _{OUT} = 400 mA		85		%
Conversion efficiency		I _{OUT} = 600 mA		80		
		I _{OUT} = 1 mA		68		
	PFM mode, DCR _L < 50 m Ω , V _{OUT} = 1.8 V, V _{IN} = 3.6 V:	I _{OUT} = 10 mA		80		
	v, v _{IN} = 5.5 v.	I _{OUT} = 400 mA		85		

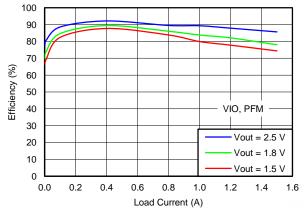


Figure 2. VIO Efficiency vs. Load Current, 25°C V_{IN} = 4 V, PFM

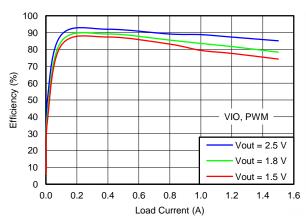


Figure 3. VIO Efficiency vs. Load Current, 25°C, V_{OUT} = 2.5 V, V_{IN} = 4 V, PWM

VDD1 SMPS

over operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	i	MIN	TYP	MAX	UNIT	
Input voltage (VCC1 and	V _{OUT} ≤ 2.7 V		4		5.5	V	
VCC7) V _{IN}	V _{OUT} > 2.7 V		4		5.5	V	
DC output voltage (V _{OUT})	$I_{OUT} = 0$ mA, PWM; $V_{IN} = 4$ V to 5.5 V; V MODE:	_{OUT} > 1 V; ON	-1.5%		3%	V	
DC output voltage programmable step (V _{OUTSTEP})	VGAIN_SEL = 00, 72 steps			12.5		mV	
Rated output current I _{OUTmax}			1500			mA	
P-channel MOSFET on- resistance R _{DS(ON)_PMOS}	V _{IN} = 4 V			250	400	mΩ	
P-channel leakage current I _{LK_PMOS}	$V_{IN} = V_{INmax}$, SW1 = 0 V				2	μΑ	
N-channel MOSFET on- resistance R _{DS(ON)_NMOS}	V _{IN} = 4 V			250	400	mΩ	
N-channel leakage current I _{LK_NMOS}	V _{IN} = V _{INmax} , SW1 = V _{INmax}				2	μΑ	
PMOS current limit (high side)	$V_{IN} = V_{INmin}$ to V_{INmax}		1700			mA	
NMOS current limit (low side)	$V_{IN} = V_{INmin}$ to V_{INmax} , source current load	d	1700			mA	
Nivios current limit (low side)	$V_{IN} = V_{INmin}$ to V_{INmax} , sink current load		1700			IIIA	
DC load regulation	On mode, $I_{OUT} = 0$ to I_{OUTmax}				60	mV/A	
DC line regulation	On mode, $V_{IN} = V_{INmin}$ to V_{INmax} at $I_{OUT} = 0$				30	mV	
Transient load regulation	$V_{OUT} = 1.2 \text{ V}$ $I_{OUT} = 0 \text{ to } 500 \text{ mA}$, Max slew = 100 mA/µs $I_{OUT} = 700 \text{ mA to } 1.2 \text{ A}$, Max slew = 100 mA/µs			50		mV	
t _{on} , off to on	I _{OUT} = 200 mA			350		μs	
		TSTEP[2:0] = 001		12.5		-	
Output voltage transition rate	From V _{OUT} = 0.6 V to 1.5 V and V _{OUT} = 1.5 V to 0.6 V I _{OUT} = 500 mA	TSTEP[2:0] = 011 (default)		7.5		mV/μs	
		TSTEP[2:0] = 111		2.5			
Overshoot	SMPS turned on			3		%	
Power-save mode ripple voltage	PFM (pulse skip mode), I _{OUT} = 1 mA			0.025 x V _{OUT}		V_{PP}	
Switching frequency			2.7	3	3.3	MHz	
Duty cycle					100	%	
Minimum on time $t_{\text{ON(MIN)}}$ P-channel MOSFET				35		ns	
VFB1 internal resistance			0.5	1		ΜΩ	
	Off				1		
	PWM mode, $I_{OUT} = 0$ mA, $V_{IN} = 3.8$ V,	DD1_PSKIP = 0		7500			
Ground current (I _Q)	Pulse skipping mode, no switching			78		μΑ	
	Low-power (pulse skipping) mode, no switching	ST[1:0] = 11		63			
		I _{OUT} = 10 mA		35			
	I _{OUT} = 100 mA		78				
	PWM mode, DCR _L < 0.1 Ω , V _{OUT} = 1.2 V, V _{IN} = 4 V:	I _{OUT} = 400 mA		80			
Conversion efficiency	·	I _{OUT} = 800 mA		74		%	
Conversion emidency		I _{OUT} = 1500 mA		62		70	
	DEM	I _{OUT} = 1 mA		59			
	PFM mode, DCR _L < 0.1 Ω , V _{OUT} = 1.2 V, V _{IN} = 4 V:	I _{OUT} = 10 mA		70			
V, '	V , $V_{IN} = 4 V$. $I_{OUT} = 400 \text{ mA}$			80			

Copyright © 2013, Texas Instruments Incorporated

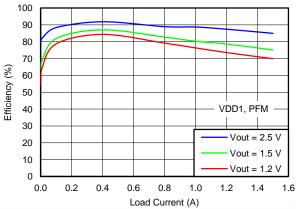


Figure 4. VDD1 Efficiency vs. Load Current, 25°C, V_{IN} = 4 V, PFM

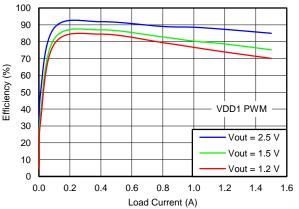


Figure 5. VDD1 Efficiency vs. Load Current, 25°C, V_{IN} = 4 V, PWM

VDD2 SMPS

over operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CON	IDITIONS	MIN	TYP	MAX	UNIT
Input voltage (VCC2 and	V _{OUT} ≤ 2.7 V		4		5.5	\/
VCC7) V _{IN}	V _{OUT} > 2.7 V		4		5.5	V
DC output voltage (V _{OUT})	$V_{OUT} = 0$ mA, PWM; $V_{IN} = 4$ V to 5	5.5 V; V _{OUT} > 1 V; ON MODE:	-1.5%		3%	V
DC output voltage programmable step (V _{OUTSTEP})	VGAIN_SEL = 00, 72 steps			12.5		mV
Rated output current I _{OUTmax}			1500			mA
P-channel MOSFET on- resistance R _{DS(ON)_PMOS}	V _{IN} = 4 V			250	400	mΩ
P-channel leakage current I _{LK_PMOS}	$V_{IN} = V_{INmax}$, SW2 = 0 V				2	μΑ
N-channel MOSFET on- resistance R _{DS(ON)_NMOS}	V _{IN} = 4 V			250	400	mΩ
N-channel leakage current I _{LK_NMOS}	$V_{IN} = V_{INmax}$, SW2 = V_{INmax}				2	μΑ
PMOS current limit (high side)	$V_{IN} = V_{INmin}$ to V_{INmax} , source curre	V _{INmin} to V _{INmax} , source current load				mA
NMOS current limit (low	$V_{IN} = V_{INmin}$ to V_{INmax} , source curre	ent load	1700		5.5 3% V m m 400 m; 400 m; 2 µ/ 400 m; 60 mV 30 m m m V; V; 3.3 MH 100%	A
side)	$V_{IN} = V_{INmin}$ to V_{INmax} , sink current	load	1700			MA
DC load regulation	On mode, $I_{OUT} = 0$ to I_{OUTmax}				60	mV/A
DC line regulation	On mode, $V_{IN} = V_{INmin}$ to V_{INmax} at	: I _{OUT} = 0			30	mV
Transient load regulation	V_{OUT} = 1.2 V I_{OUT} = 0 to 500 mA , Max slew = 1 I_{OUT} = 700 mA to 1.2 A , Max slew	00 mA/μs v = 100 mA/μs		50		mV
t _{on} , Off to on	I _{OUT} = 200 mA			350		μs
	From $V_{OUT} = 0.6 \text{ V}$ to 1.5 V and	TSTEP[2:0] = 001		12.5		
Output voltage transition rate	$V_{OUT} = 1.5 \text{ V to } 0.6 \text{ V } I_{OUT} = 500$	TSTEP[2:0] = 011 (default)		7.5		mV/μs
	mA	TSTEP[2:0] = 111		2.5	2 400 2 60 30 3.3 100%	
Overshoot	SMPS turned on			3		%
Power-save mode ripple voltage	PFM (pulse skip mode), I _{OUT} = 1 r	nA		0.025 x V _{OUT}		V _{PP}
Switching frequency			2.7	3	3.3	MHz
Duty cycle					100%	
Minimum on time				35		ns
P-Channel MOSFET						
VFB2 internal resistance			0.5	1		ΜΩ
	Off				1	
	PWM mode, $I_{OUT} = 0$ mA, $V_{IN} = 3$.	8 V, VDD2_PSKIP = 0		7500		
Ground current (I _Q)	PFM (pulse skipping) mode, no sw	vitching		78		μΑ
	Low-power (pulse skipping) mode, no switching	ST[1:0] = 11		63	5.5 5.5 3% 400 2 400 2 60 30 3.3 100%	

VDD2 SMPS (continued)

over operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CON	DITIONS	MIN	TYP	MAX	UNIT
		I _{OUT} = 10 mA		35		
		I _{OUT} = 100 mA		78		
	PWM mode, DCR _L < 50 m Ω ,	I _{OUT} = 400 mA		80		%
	$V_{OUT} = 1.2 \text{ V}, V_{IN} = 4 \text{ V}$:	I _{OUT} = 800 mA		74		70
		I _{OUT} = 1200 mA		66		
		I _{OUT} = 1500 mA		62		
		I _{OUT} = 1 mA		59		
	PFM mode, DCR _L < 50 m Ω , V _{OUT} = 1.2 V, V _{IN} = 4 V:	I _{OUT} = 10 mA		70		%
Conversion officionay	,	I _{OUT} = 400 mA		80		
Conversion efficiency		I _{OUT} = 10 mA		39		
		I _{OUT} = 100 mA		85		
	PWM mode, DCR _L < 50 m Ω ,	I _{OUT} = 400 mA		91		%
	$V_{OUT} = 3.3 \text{ V}, V_{IN} = 5 \text{ V}$:	I _{OUT} = 800 mA		90		%
		I _{OUT} = 1200 mA		86		
		I _{OUT} = 1500 mA		84		
		I _{OUT} = 1 mA		80		
	PFM mode, DCR _L < 50 m Ω , V _{OUT} = 3.3 V, V _{IN} = 5 V:	I _{OUT} = 10 mA		82		%
		I _{OUT} = 400 mA		92		

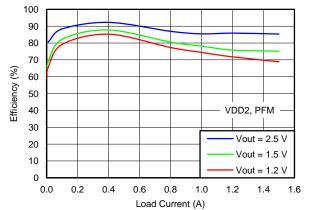


Figure 6. VDD2 Efficiency vs. Load Current, 25° C, V_{IN} = 4 V, PFM

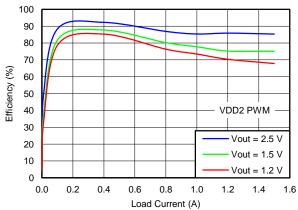


Figure 7. VDD2 Efficiency vs. Load Current, 25°C, V_{IN} = 4 V, PWM

EXTCTRL

over operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	SEL[6:0] = 0 (EN signal low)		1		
	SEL[6:0] = 1 to 3		1		
Ratio of VSENSE to VOUT (Selectable voltage divider)	For SEL[6:0] = 3 to 67				
	Ratio = 48 / (45 + SEL[6:0])				
	SEL[6:0] = 4	-0.7%	48/49	0.7%	
	SEL[6:0] = 5	-0.7%	24/25	0.7%	V/V
	SEL[6:0] = 35	-0.7%	3/5	0.7%	
	SEL[6:0] = 66	-0.7%	16/37	0.7%	
	SEL[6:0] = 67 to 127	-0.7%	3/7	0.7%	
Programmable voltage step size (with a 0.8 V reference)			16.7		mV
Output voltage transition rate (with 0.8 V reference)	From V_{OUT} = 0.8 V to 1.87 V and V_{OUT} = 1.87 V to 0.8 V		100 ⁽¹⁾		mV / 20 μs

⁽¹⁾ $100 \text{ mV} / 20 \mu \text{s}$ reached with $50 \text{ mV} / 10 \mu \text{s}$ steps

LDO1 AND LDO2

over operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	6	MIN	TYP	MAX	UNIT	
	$V_{OUT}(LDO1) = 1.05 \text{ V}$ at 320 mA and V_{OUT} mA	(LDO2) = 1.05 V at 160	1.4		3.6		
	$V_{OUT}(LDO1) = 1.2 \text{ V} / 1.5 \text{ V}$ at 100 mA and 1.1 V / 1 V	$V_{OUT}(LDO2) = 1.2 \text{ V} /$	1.7		3.6		
Input voltage (VCC6) $V_{\rm IN}$	$V_{OUT}(LDO1) = 1.5 \text{ V} \text{ and } V_{OUT} \text{ (LDO1, LDO)}$	02) = 1.8 V at 200 mA	2.1		3.6	V	
	$V_{OUT}(LDO1) = 1.8 \text{ V} \text{ and } V_{OUT}(LDO2) = 1.8 \text{ V}$	3 V	2.7		3.6		
	V _{OUT} (LDO1) = 2.7 V		3.2		3.6 3.6 3.6 3.6 3.6 3% 1000 350 17 1 100 420 600		
	V_{OUT} (LDO1) = V_{OUT} (LDO2) = 3.3 V		3.5		3.6		
LDO1					*		
				1			
				1.05			
DC output voltage V _{OUT}	ON and low-power mode, $V_{IN} = V_{INmin}$ to $V_{IN} = V_{INmin}$	_{Nmax} (V _{INmax} 3.6 V),	-2.5%		3%	V	
	I _{OUT} = 0 mA			3.25			
				3.3			
Rated output current	On mode		320				
I _{OUTmax}	Low-power mode	ow-power mode				mA	
Load current limitation (short-circuit protection)	On mode, V _{OUT} = V _{OUTmin} – 100 mV		330	600	1000	mA	
Dropout voltage V _{DO}	ON mode, $V_{DO} = V_{IN} - V_{OUT}$, $V_{IN} = 1.4 \text{ V}$, $I_{OUT} = I_{OUTmax}$	mode, $V_{DO} = V_{IN} - V_{OUT}$,			350	mV	
DC load regulation	On mode, I _{OUT} = I _{OUTmax}				17	mV	
DC line regulation	On mode, $V_{IN} = V_{INmin}$ to V_{INmax} at $I_{OUT} = I_{OUT}$	OUTmax			1	mV	
Transient load regulation	ON mode, $V_{IN} = 1.5 \text{ V}$, $V_{OUT} = 1.05 \text{ V}$ $I_{OUT} = 0.1 \times I_{OUTmax}$ to $0.9 \times I_{OUTmax}$ in 5 μ s and $I_{OUT} = 0.9 \times I_{OUTmax}$ to $0.1 \times I_{OUTmax}$ in	S		20		mV	
Transient line regulation	On mode, $V_{IN} = 2.7 + 0.5 \text{ V}$ to 2.7 in 30 µs, and $V_{IN} = 2.7$ to 2.7 + 0.5 V in 30 µs, $I_{OUT} = 0.00$			5		mV	
Town on time	$I_{OUT} = 0$, at $V_{OUT} = 0.1 \text{ V up to } V_{OUTmin}$		50	75	100		
Turn-on time	$I_{OUT} = 0$, at $V_{OUT} = 0.1 \text{ V up to } V_{OUTmax}$		200	300	420	μs	
Turn-on inrush current				300	600	mA	
Dinale selection	$V_{IN} = V_{INDC} + 100 \text{ mV}_{pp} \text{ tone, } V_{INDC+} = 1.8$	f = 217 Hz		70		10	
Ripple rejection	V, I _{OUT} = I _{OUTmax} / 2	f = 20 kHz		40		dB	
LDO1 internal resistance	LDO off			600		Ω	
	On mode, I _{OUT} = 0			63	75		
One and a second	On mode, I _{OUT} = I _{OUTmax}				2000		
Ground current	Low-power mode			22	20	μA	
	Off mode (max 85°C)				2.7		

Product Folder Links: TPS659119-Q1

LDO1 AND LDO2 (continued)

over operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	S	MIN	TYP	MAX	UNIT	
LDO2							
				1			
				1.05			
DC output voltage V _{OUT}	On and low-power mode, $V_{IN} = V_{INmin}$ to $V_{INIT} = 0$ mA	$_{Nmax}$ ($V_{INmax} = 3.6 V$),	-2.5%		3%	V	
	001 0			3.25			
				3.3			
Rated output current	On mode		320			mA	
l _{OUTmax}	Low-power mode		1			ША	
Load current limitation (short-circuit protection)	On mode, V _{OUT} = V _{OUTmin} – 100 mV			600	1000	mA	
Dropout voltage V _{DO}	ON mode, $V_{DO} = V_{IN} - V_{OUT}$, $V_{IN} = 1.4 \text{ V, } I_{OUT} = I_{OUTmax}$				350	mV	
DC load regulation	On mode, I _{OUT} = IOUTmax				17	mV	
DC line regulation	On mode, $V_{IN} = V_{INmin}$ to V_{INmax} at $I_{OUT} = I$	On mode, $V_{IN} = V_{INmin}$ to V_{INmax} at $I_{OUT} = I_{OUTmax}$			1	mV	
Transient load regulation	ON mode, $V_{IN} = V_{INmin}$ to V_{INmax} at $I_{OUT} = I_{OUTmax}$ ON mode, $V_{IN} = 1.5$ V, $V_{OUT} = 1.05$ V $I_{OUT} = 0.1 \times I_{OUTmax}$ to $0.9 \times I_{OUTmax}$ in 5 μ s and $I_{OUT} = 0.9 \times I_{OUTmax}$ to $0.1 \times I_{OUTmax}$ in 5 μ s			20		mV	
Transient line regulation	On mode, $V_{IN} = 2.7 + 0.5 \text{ V}$ to 2.7 in 30 µs and $V_{IN} = 2.7$ to 2.7 + 0.5 V in 30 µs, I_{OUT}			5		mV	
Turn on time	I _{OUT} = 0, at V _{OUT} = 0.1 V up to V _{OUTmin}		40	75	100		
Turn-on time	$I_{OUT} = 0$, at $V_{OUT} = 0.1 \text{ V up to } V_{OUTmax}$		200	300	420	μs	
Turn-on inrush current				300	600	mA	
Ripple rejection	$V_{IN} = V_{INDC} + 100 \text{ mV}_{pp} \text{ tone, } V_{INDC+} = 1.8$	f = 217 Hz		70		dB	
Tripple rejection	V, I _{OUT} = I _{OUTmax} / 2	f = 20 kHz		40		ub	
LDO2 internal resistance	LDO off			600		Ω	
	On mode, I _{OUT} = 0			63	75		
Ground current	On mode, $I_{OUT} = I_{OUTmax}$				2000	μA	
Oround Current	Low-power mode			22	20	μΑ	
	Off mode (max 85°C)				2.7		

LDO3 AND LDO4

over operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	•	MIN	TYP	MAX	UNIT	
	V _{OUT} (LDO3) = 1.8 V and V _{OUT} (LDO4) = 1.	.8 V / 1.1 V / 1 V	2.7		5.5		
Input voltage (VCC5) V _{IN}	V_{OUT} (LDO3) = 2.6 V and V_{OUT} (LDO4) = 2.	.5 V	3		5.5	V	
	V _{OUT} (LDO3) = 2.8 V		3.2		5.5		
LDO3		<u> </u>					
				1			
				1.1			
DC output voltage V _{OUT}	On and low-power mode, $V_{OUT} = 1 - 3.3 \text{ V}$, $I_{OUT} = 0 \text{ mA}$	$V_{IN} = V_{INmin}$ to V_{INmax} ,	-2.5%		3%	V	
	1001 – 0 1117			3.2			
				3.3			
Rated output current	On mode		200				
I _{OUTmax}	Low-power mode		1			mA	
Load current limitation (short-circuit protection)	On mode, V _{OUT} = V _{OUTmin} – 100 mV		330	550	650	mA	
Dropout voltage V _{DO}	On mode, $V_{OUTtyp} = 3.3 \text{ V}$, $V_{DO} = V_{IN} - V_{OUT}$, $V_{IN} = 3.3 \text{ V}$, $I_{OUT} = I_{OUTmax}$			150	270	mV	
DC load regulation	On mode, I _{OUT} = I _{OUTmax}				28	mV	
DC line regulation	On mode, $V_{IN} = V_{INmin}$ to V_{INmax} at $I_{OUT} = I_{OUTmax}$				1	mV	
Transient load regulation	On mode, $V_{IN} = 2.7 \text{ V}$, $V_{OUTtyp} = 1.8 \text{ V}$ $I_{OUT} = 0.1 \times I_{OUTmax}$ to $0.9 \times I_{OUTmax}$ in 5 µs and $I_{OUT} = 0.9 \times I_{OUTmax}$ to $0.1 \times I_{OUTmax}$ in 5 µs			15		mV	
Transient line regulation	On mode, $V_{OUTtyp} = 1.8 \text{ V}$, $I_{OUT} = I_{OUTmax}$, V_{INmin} in 30 μ s and $V_{IN} = V_{INmin}$ to $V_{INmin} + 0.5 \text{ V}$ in 30 μ s, $I_{INmin} = V_{INmin}$			0.5		mV	
T C	$I_{OUT} = 0$, at $V_{OUT} = 0.1 \text{ V up to } V_{OUTmin}$		25	50	70		
Turn-on time	$I_{OUT} = 0$, at $V_{OUT} = 0.1 \text{ V up to } V_{OUTmax}$		120	180	230	μs	
Turn-on inrush current				200	450	mA	
Diam's valuation	$V_{IN} = V_{INDC} + 100 \text{ mV}_{pp} \text{ tone, } V_{INDC+} = 3.8$	f = 217 Hz		70		10	
Ripple rejection	$V, I_{OUT} = I_{OUTmax} / 2$	f = 50 kHz		40		dB	
LDO3 internal resistance	LDO off			500		kΩ	
	On mode, I _{OUT} = 0			65	76		
0	On mode, I _{OUT} = I _{OUTmax}				2000		
Ground current	Low-power mode			14	22	μΑ	
	Off mode				1		

LDO3 AND LDO4 (continued)

over operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	3	MIN	TYP	MAX	UNIT	
LDO4					1		
				1			
				1.05			
DC output voltage V _{OUT}	On and low-power mode, $V_{IN} = V_{INmin}$ to $V_{INmax, IOUT} = 0$ mA		-2.5%		3%	V	
				3.25			
				3.3			
Rated output current	On mode		50			mA	
I _{OUTmax}	Low-power mode		1			ША	
Load current limitation (short-circuit protection)	On mode, V _{OUT} = V _{OUTmin} – 100 mV	n mode, $V_{OUT} = V_{OUTmin} - 100 \text{ mV}$		400	500	mA	
Dropout voltage V _{DO}	On mode, $V_{OUTtyp} = 3.3 \text{ V}$, $V_{DO} = V_{IN} - V_{OUT}$ $V_{IN} = 3.3 \text{ V}$, $I_{OUT} = I_{OUTmax}$			100	160	mV	
DC load regulation	On mode, I _{OUT} = I _{OUTmax}				6	mV	
DC line regulation	On mode, $V_{IN} = V_{INmin}$ to V_{INmax} at $I_{OUT} = I_{OUT}$	On mode, V _{IN} = V _{INmin} to V _{INmax} at I _{OUT} = I _{OUTmax}			1	mV	
Transient load regulation	On mode, $V_{IN} = 2.7 \text{ V}$, $V_{OUTtyp} = 1.8 \text{ V}$ $I_{OUT} = 0.1 \times I_{OUTmax}$ to $0.9 \times I_{OUTmax}$ in 5 μ s and $I_{OUT} = 0.9 \times I_{OUTmax}$ to $0.1 \times I_{OUTmax}$ in 5 μ s			6		mV	
Transient line regulation	On mode, $V_{IN} = V_{INmin} + 0.5 \text{ V to } V_{INmin} \text{ in 3}$ and $V_{IN} = V_{INmin} \text{ to } V_{INmin} + 0.5 \text{ V in 30 } \mu\text{s}$,			0.2		mV	
Turn-on time	$I_{OUT} = 0$, at $V_{OUT} = 0.1 \text{ V up to } V_{OUTmin}$		25	50	70		
rum-on time	$I_{OUT} = 0$, at $V_{OUT} = 0.1 \text{ V up to } V_{OUTmax}$		120	180	230	μs	
Pinnla raination	$V_{IN} = V_{INDC} + 100 \text{ mV}_{DD} \text{ tone}, V_{INDC+} = 3.8$	f = 217 Hz		70		dB	
Ripple rejection	V, I _{OUT} = I _{OUTmax} / 2	f = 50 kHz		40		ub	
LDO4 internal resistance	LDO Off			500		kΩ	
	On mode, I _{OUT} = 0			55	65		
Ground current	On mode, $I_{OUT} = I_{OUT_{max}}$	On mode, I _{OUT} = I _{OUTmax}			900	μA	
Ground current	Low-power mode			14	17	μ <i>Α</i> .	
	Off mode				1	i	

LDO5

over operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDIT	IONS	MIN	TYP	MAX	UNIT	
	V _{OUT} (LDO5) ≤ 1.2 V		1.7		1.9		
Input voltage (VCC4) V _{IN}	V _{OUT} (LDO5) > 1.2 V (See Dropout Volt constraints)	tage parameter for additional	1.7		5.5	V	
	V _{OUT} (LDO5) = 2.5 V		3.2		5.5		
	V_{OUT} (LDO5) = 2.8 V at I_{load} = 200 mA		3.2		5.5		
LDO5							
				1			
				1.1			
DC output voltage V _{OUT}	On and low-power mode, $V_{OUT} = 1 - 3$. $I_{OUT} = 0$ mA	-2.5%		3%	V		
	1001 = 0 111/4			3.2			
				3.3			
Rated output current	On mode		300				
I _{OUTmax}	Low-power mode		1			mA	
Load current limitation (short-circuit protection)	On mode, V _{OUT} = V _{OUTmin} – 100 mV		330	550	650	mA	
		$V_{IN} = 2.7 \text{ V}, I_{OUT} = I_{OUTmax}$			500		
		V _{IN} = 2.7 V, I _{OUT} = 250 mA			400		
Dropout voltage V _{DO}		V _{IN} = 2.7 V, I _{OUT} = 200 mA			300	.,	
	On mode, $V_{DO} = V_{IN} - V_{OUT}$	V _{IN} = 1.7 V, I _{OUT} = 180 mA			700	mV	
		V _{IN} = 1.7 V, I _{OUT} = 150 mA			500		
		V _{IN} = 1.7 V, I _{OUT} = 100 mA			300		
DC load regulation	On mode, I _{OUT} = I _{OUTmax}				16	mV	
DC line regulation	On mode, $V_{IN} = V_{INmin}$ to V_{INmax} at I_{OUT}	max			1	mV	
Transient load regulation	On mode, V_{IN} = 3.2 V, V_{OUTtyp} = 2.8 V I_{OUT} = 0.1 × I_{OUTmax} to 0.9 × I_{OUTmax} in and I_{OUT} = 0.9 × I_{OUTmax} to 0.1 × I_{OUTmax}	5 μs _{ax} in 5 μs		16		mV	
Transient line regulation	On mode, $V_{IN} = V_{INmin} + 0.5 \text{ V to } V_{INmin}$ and $V_{IN} = V_{INmin}$ to $V_{INmin} + 0.5 \text{ V in } 30$	in 30 μs μs, Ι _{ΟυΤ} = Ι _{ΟυΤmax}		4		mV	
T 2. 4:	$I_{OUT} = 0$, at $V_{OUT} = 0.1 \text{ V up to } V_{OUTmin}$		20	50	70		
Turn-on time	$I_{OUT} = 0$, at $V_{OUT} = 0.1 \text{ V up to } V_{OUTmax}$		120	180	250	μs	
Turn-on inrush current				200	450	mA	
Dinale rejection	$V_{IN} = V_{INDC} + 100 \text{ mV}_{DD} \text{ tone, } V_{INDC+} =$	f = 217 Hz		70		٩D	
Ripple rejection	$V_{IN} = V_{INDC} + 100 \text{ mV}_{pp} \text{ tone, } V_{INDC+} = 3.8 \text{ V, } I_{OUT} = I_{OUTmax} / 2$	f = 20 kHz		40		dB	
LDO5 internal resistance	LDO Off			60		Ω	
	On mode, I _{OUT} = 0			65	76	^	
Cround ourrent	On mode, I _{OUT} = I _{OUTmax}				2000		
Ground current	Low-power mode			14	22	μA	
	Off mode			1			

LDO6, LDO7

over operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDIT	IONS	MIN	TYP	MAX	UNIT
	V _{OUT} (LDO6/7) ≤ 1.2 V		1.7		1.9	
	V _{OUT} (LDO6/7) > 1.2 V (See Dropout Vo constraints)	oltage parameter for additional	1.7		5.5	
Input voltage (VCC3 for	V _{OUT} (LDO7) = 2.8 V		3.2		5.5	
LDO6 & LDO7) V _{IN}	$V_{OUT}(LDO7) = 3.3 \text{ V}$		3.6		5.5	V
	V _{OUT} (LDO7) = 2.8 V at 250 mA		3.2		5.5	
	$V_{OUT}(LDO7) = 3 V$		3.6		5.5	
	V _{OUT} (LDO7) = 3.3 V at 250 mA		3.6		5.5	
LDO6						
				1		
				1.1		
DC output voltage V _{OUT}	On and low-power mode, V _{IN} = V _{INmin} to	-2.5%		3%	V	
, 5				3.2		
				3.3		
Rated output current	On mode		300			
I _{OUTmax}	Low-power mode		1			mA
Load current limitation (short-circuit protection)	On mode, V _{OUT} = V _{OUTmin} – 100 mV		330	550	650	mA
		$V_{IN} = 2.7 \text{ V}, I_{OUT} = I_{OUTmax}$			500	
		V _{IN} = 2.7 V, I _{OUT} = 250 mA			400	
5	On mode, $V_{DO} = V_{IN} - V_{OUT}$,	V _{IN} = 2.7 V, I _{OUT} = 200 mA			300	.,
Dropout voltage V _{DO}		V _{IN} = 1.7 V, I _{OUT} = 180 mA			700	mV
		V _{IN} = 1.7 V, I _{OUT} = 150 mA			500	
		V _{IN} = 1.7 V, I _{OUT} = 100 mA			300	
DC load regulation	On mode, I _{OUT} = I _{OUTmin}				16	mV
DC line regulation	On mode, V _{IN} = V _{INmin} to V _{INmax} at I _{OUT}	= I _{OUTmax}			1	mV
Transient load regulation	On mode, $V_{IN} = 3.2 \text{ V}$, $V_{OUTtyp} = 2.8 \text{ V}$ $I_{OUT} = 0.1 \times I_{OUTmax}$ to $0.9 \times I_{OUTmax}$ in sand $I_{OUT} = 0.9 \times I_{OUTmax}$ to $0.1 \times I_{OUTmax}$	5 µs		20		mV
Transient line regulation	On mode, $V_{IN} = 2.7 \text{ V} + 0.5 \text{ V}$ to 2.7 V in and $V_{IN} = 2.7 \text{ V}$ to 2.7 V + 0.5 V in 30 μ	n 30 µs		5		mV
Turn on time	$I_{OUT} = 0$, at $V_{OUT} = 0.1 \text{ V up to } V_{OUTmin}$		20	50	70	
Turn-on time	$I_{OUT} = 0$, at $V_{OUT} = 0.1 \text{ V up to } V_{OUTmax}$		120	180	250	μs
Turn-on inrush current				200	450	mA
Ripple rejection	$V_{IN} = V_{INDC} + 100 \text{ mV}_{pp} \text{ tone}, V_{INDC+} = 3.8 \text{ V}, I_{OUT} = I_{OUTmax} / 2$	f = 217 Hz f = 20 kHz		70 40		dB
LDO6 internal resistance	LDO off	1 - 20 M 12		60		Ω
LD CO III.OIII.ai 10313tai 106	On mode, I _{OUT} = 0			65	76	34
				0.5	2000	
Ground current	Low-power mode	On mode, I _{OUT} = I _{OUTmax}		14	2000	μA
	'			14		
	Off mode				1	

LDO6, LDO7 (continued)

over operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDIT	IONS	MIN	TYP	MAX	UNIT	
LDO7					·		
				1			
				1.1			
DC output voltage V _{OUT}	On and low-power mode, $V_{IN} = V_{INmin}$ to V_{INmax} , $I_{OUT} = 0$ mA		-2.5%		3%	V	
				3.2			
				3.3			
Rated output current	On mode		300			mA	
OUTmax	Low-power mode		1			ША	
oad current limitation (short-circuit protection)	On mode, V _{OUT} = V _{OUTmin} – 100 mV	On mode, V _{OUT} = V _{OUTmin} – 100 mV		550	650	mA	
		$V_{IN} = 2.7 \text{ V}, I_{OUT} = I_{OUTmax}$			500	mV	
		V _{IN} = 2.7 V, I _{OUT} = 250 mA			400		
Dropout voltage V _{DO}	On mode W = W W	$V_{IN} = 2.7 \text{ V}, I_{OUT} = 200 \text{ mA}$			300		
Dropout voltage v _{DO}	On mode, $V_{DO} = V_{IN} - V_{OUT}$,	V _{IN} = 1.7 V, I _{OUT} = 180 mA			700		
		V _{IN} = 1.7 V, I _{OUT} = 150 mA			500		
		V _{IN} = 1.7 V, I _{OUT} = 100 mA			300		
OC load regulation	On mode, $I_{OUT} = I_{OUTmax}$				24	mV	
OC line regulation	On mode, $V_{IN} = V_{INmin}$ to V_{INmax} at I_{OUT}	= I _{OUTmax}			1	mV	
Fransient load regulation	On mode, $V_{IN} = 3.6$ V, $V_{OUTtyp} = 3.3$ V $I_{OUT} = 0.1 \times I_{OUTmax}$ to $0.9 \times I_{OUTmax}$ in and $I_{OUT} = 0.9 \times I_{OUTmax}$ to $0.1 \times I_{OUTmax}$	5 μs _x in 5 μs		16		mV	
Fransient line regulation	On mode, $I_{OUT} = I_{OUTmax} / 2$, $V_{IN} = 2.7 + $ and $V_{IN} = 2.7 V + 0.5 V in 30 \mus, I_{OUT} = $	0.5 V to 2.7 in 30 μs I _{OUTmax} / 2		5		mV	
-urn on time	$I_{OUT} = 0$, at $V_{OUT} = 0.1 \text{ V up to } V_{OUTmin}$		20	50	70		
urn-on time	$I_{OUT} = 0$, at $V_{OUT} = 0.1 \text{ V up to } V_{OUTmax}$		120	180	250	μs	
urn-on inrush current				200	450	mA	
Ripple rejection	$V_{IN} = V_{INDC} + 100 \text{ mV}_{pp} \text{ tone, } V_{INDC+} =$	f = 217 Hz		70		dB	
Rippie rejection	3.8 V, I _{OUT} = I _{OUTmax} / 2	f = 20 kHz		40		uБ	
DO7 internal resistance	LDO off			60		Ω	
	On mode, I _{OUT} = 0			65	76		
Ground current	On mode, $I_{OUT} = I_{OUTmax}$				2000	пΔ	
JIOUHU CUITEIIL	Low-power mode			14	22		
	Off mode				1		

Product Folder Links: TPS659119-Q1

LDO8

over operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIO	NS	MIN	TYP	MAX	UNIT
	V _{OUT} (VLDO8) ≤ 1.2 V		1.7		1.9	
Input voltage (VCC8) V _{IN}	V _{OUT} (VLDO8) > 1.2 V (See Dropout Volta constraints)	ge parameter for additional	1.7		5.5	V
				1		
			1.1		V	
DC output voltage V _{OUT}	On and low-power mode, $V_{IN} = V_{INmin}$ to V_{IN}	-2.5%		3%		
				3.2		
			3.3			
Rated output current	On mode		300			mΛ
I _{OUTmax}	Low-power mode		1			mA
Load current limitation (short-circuit protection)	On mode, V _{OUT} = V _{OUTmin} – 100 mV		330	550	650	mA
		V _{IN} = 3.3 V, I _{OUT} = 70 mA			100	
Dropout voltage V _{DO}		$V_{IN} = 3.3 \text{ V}, I_{OUT} = 10 \text{ mA}$			25	mV
		$V_{IN} = 2.7 \text{ V}, I_{OUT} = I_{OUTmax}$			500	
	On mode W = W W	V_{IN} = 2.7 V, I_{OUT} = 250 mA			400	
	On mode, $V_{DO} = V_{IN} - V_{OUT}$	V_{IN} = 2.7 V, I_{OUT} = 200 mA			300	
		V _{IN} = 1.7 V, I _{OUT} = 180 mA			700	
		V _{IN} = 1.7 V, I _{OUT} = 150 mA			500	
		V _{IN} = 1.7 V, I _{OUT} = 100 mA			300	
DC load regulation	On mode, $I_{OUT} = I_{OUTmax}$				26	mV
DC line regulation	On mode, $V_{IN} = V_{INmin}$ to V_{INmax} at $I_{OUT} =$	l _{OUTmax}			1	mV
Transient load regulation	On mode, V_{IN} = 1.7 V, V_{OUTtyp} = 1.2 V I_{OUT} = 10 mA to 90 mA in 5 μ s and I_{OUT} =	= 90 mA to 10 mA in 5 μs		7		mV
Transient line regulation	On mode, I_{OUT} = 100 mA, V_{IN} = 2.7 V + 0 and V_{IN} = 2.7 V to 2.7 V + 0.2 V in 30 μ s,			5		mV
Turn-on time	$I_{OUT} = 0$, at $V_{OUT} = 0.1 \text{ V up to } V_{OUTmin}$		20	50	70	116
Turr-on time	$I_{OUT} = 0$, at $V_{OUT} = 0.1 \text{ V up to } V_{OUTmax}$		120	180	250	μs
Turn-on inrush current				200	450	mA
Ripple rejection	$V_{IN} = V_{INDC} + 100 \text{ mV}_{pp} \text{ tone, } V_{INDC+} = 3.8 \text{ V, } I_{OUT} = I_{OUTmax} / 2$	f = 217 Hz		70		dB
	3.8 V, I _{OUT} = I _{OUTmax} / 2			40		45
LDO8 internal resistance	LDO off			60		Ω
	On mode, I _{OUT} = 0			65	76	
Ground current	On mode, $I_{OUT} = I_{OUTmax}$				2000	пΔ
Ciodna canolit	Low-power mode			14	22	μA
	Off mode				1	

SWITCH-ON AND SWITCH-OFF SEQUENCES AND TIMING

An example boot sequence is described in this chapter. TPS659119-Q1 supports one fixed boot sequence and one EEPROM programmable boot sequence. Boot mode selection is described in BOOT CONFIGURATION AND SWITCH-OFF SEQUENCES.

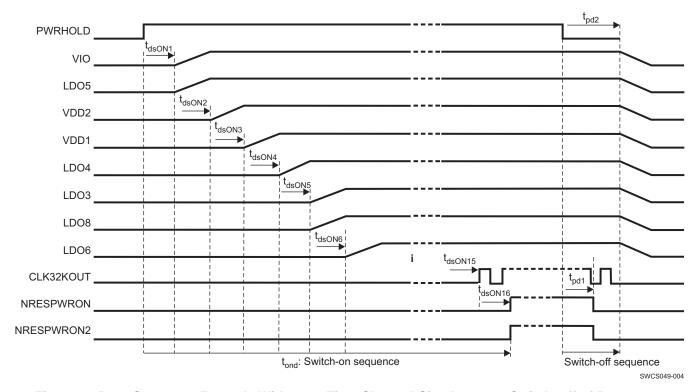
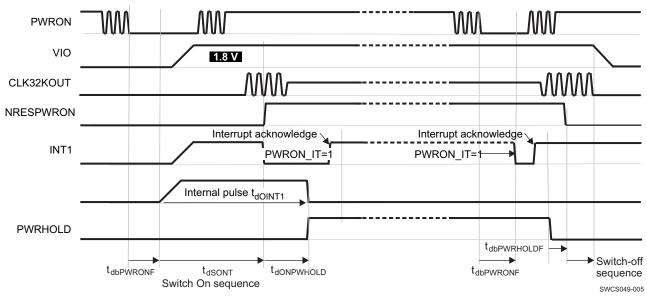


Figure 8. Boot Sequence Example With 2-ms Time Slot and Simultaneous Switch-Off of Resources

Table 1. Timing Characteristics for Boot Sequence Example


PARAMETER	TEST CONDITIONS	MIN	TYP M	λX	UNIT
t _{dsON1}	PWRHOLD rising edge to VIO, LDO5 enable delay	66	5 × t _{CK32k} = 2060		μs
t _{dsON2}	VIO to VDD2 enable delay	64	$\times t_{CK32k} = 2000$		μs
t _{dsON3}	VDD2 to VDD1 enable delay	64	$\times t_{CK32k} = 2000$		μs
t _{dsON4}	VDD1 to LDO4 enable delay	64	$\times t_{CK32k} = 2000$		μs
t _{dsON5}	LDO4 to LDO3, LDO8 enable delay	64	$\times t_{CK32k} = 2000$		μs
t _{dsON6}	LDO3 to LDO6 enable delay	64	$\times t_{CK32k} = 2000$		μs
t _{dsON7}	LDO6 to CLK32KOUT rising-edge delay	($9 \times 64 \times t_{CK32k} = 18000$		μs
t _{dsON8}	CLK32KOUT to NRESPWON, NRESPWON2 rising-edge delay	64	$\times t_{CK32k} = 2000$		μs
t _{dsONT}	Total switch-on delay		32		ms
t _{dsOFF1}	PWRHOLD falling-edge to NRESPWON, NRESPWON2 falling-edge delay	:	2 × t _{CK32k} = 62.5		μs
t _{dsOFF1B}	NRESPWON falling-edge to CLK32KOUT low delay		$3 \times t_{CK32k} = 92$		μs
t _{dsOFF2}	PWRHOLD falling-edge to supplies and reference disable delay		$5 \times t_{CK32k} = 154$		μs

POWER CONTROL TIMING

Device State Control Through PWRON Signal

Figure 9 shows the device state control through PWRON signal.

NOTE: DEV_ON or AUTODEV_ON control bits can be used instead of PWRHOLD signal to maintain supplies on after

switch-on sequence.

NOTE: Internal POWER ON enable condition pulse T_{dOINT1} keeps device active until PWRHOLD acknowledge.

Figure 9. Device State Control Through PWRON Signal

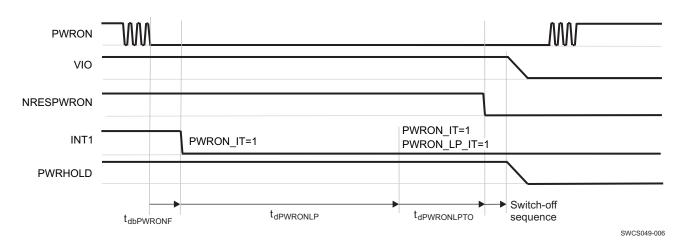


Figure 10. PWRON Long-Press Turn-Off

Table 2 lists the power control timing characteristics.

Table 2. Power Control Timing Characteristics

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{dbPWRONF}	PWRON falling-edge debouncing delay			100		μs
t _{dbPWRONR}	PWRON rising-edge debouncing delay		3	\times t _{CK32k} = 94		μs
t _{dbPWRHOLD}	PWRON rising-edge debouncing delay		2	\times t _{CK32k} = 63		μs

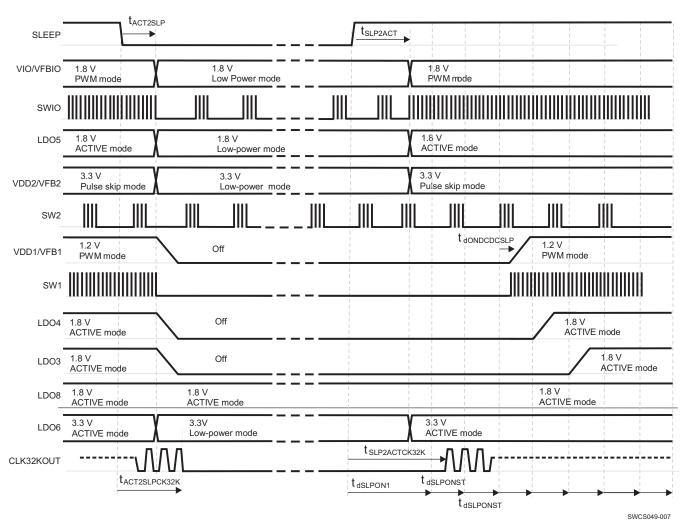

POWER CONTROL TIMING (continued)

Table 2. Power Control Timing Characteristics (continued)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{dOINT1}	INT1 (internal) power-on pulse duration after PWRON low-level (debounced) event			1		s
t _{dONPWHOLD}	delay to set high PWRHOLD signal or DEV_ON control bit after NRESPWON released to keep on the supplies		t _{dOINT1} -	- t _{DSONT} = 970 ⁽¹⁾		ms
t _{dPWRONLP}	PWRON long-press delay	PWRON falling-edge to PWRON_LP_IT		4		S
t _{dPWRONLPTO}	PWROW long-press interrupt (PWRON_LP_IT) to supplies switch-off	PWRON_LP_IT to NRESPWRON falling-edge		1		s

⁽¹⁾ $T_{dSONT} = 30$ ms, as in example boot sequence.

Device SLEEP State Control

NOTE: Registers programming: VIO_PSKIP = 0, VDD1_PSKIP = 0, VDD1_SETOFF = 1, LDO3_SETOFF = 1, LDO4_SETOFF = 1, LDO8_KEEPON = 1.

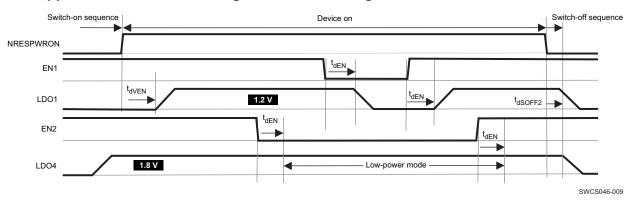
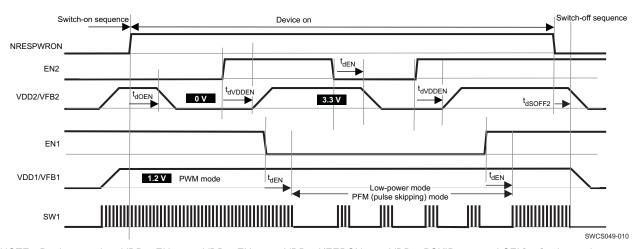

Figure 11. Device SLEEP State Control

Table 3. Device SLEEP State Control Timing Characteristics

PARAMETER	TEST CONDITION	ONS	MIN	TYP	MAX	UNIT
t _{ACT2SLP}	SLEEP falling-edge to supply n low-powersynchronization delay)	wer mode (SLEEP	2 × t _{CK32k} = 62		3 × t _{CK32k} = 94	μs
t _{ACT2SLP}	SLEEP falling-edge to CLK32KOUT lov	v	156	$t_{ACT2SLP} + 3 \times t_{CK32k}$	188	μs
t _{SLP2ACT}	SLEEP rising edge to supply in high-po	ower mode	8 × t _{CK32k} = 250		9 × t _{CK32k} = 281	μs
t _{SLP2ACTCK32K}	SLEEP rising edge to CLK32KOUT run	344	$t_{SLP2ACT} + 3 \times t_{CK32k}$	375	μs	
t _{dSLPON1}	SLEEP rising edge to time step 1 of the SLEEP state	281	$t_{SLP2ACT} + 1 \times t_{CK32k}$	312	μs	
		TSLOT_LENGTH[1:0] = 00		0		
	turn-on sequence step duration, from	TSLOT_LENGTH[1:0] = 01		200		
t _{dSLPONST}	SLEEP state	TSLOT_LENGTH[1:0] = 10		500		μs
		TSLOT_LENGTH[1:0] = 11	2000			
t _{dSLPONDCDC}	VDD1, VDD2, or VIO turn-on delay from turn-on sequence time step			2 × t _{CK32k} = 62		μs


Power Supplies State Control Through EN1 and EN2 Signals

NOTE: Register setting: LDO1_EN1 = 1, LDO4_EN2 = 1, and LDO4_KEEPON = 1.

Figure 12. LDO Type Supplies State Control Through EN1 and EN2

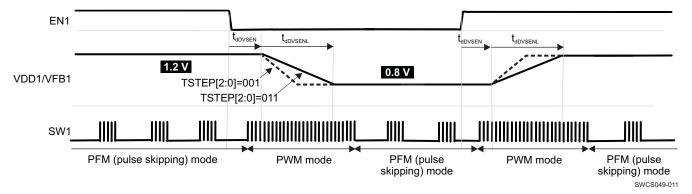

NOTE: Register setting: VDD2_EN2 = 1, VDD1_EN1 = 1, VDD1_KEEPON = 1, VDD1_PSKIP = 0, and SEL[6:0] = hex00 in VDD2_SR_REG.

Figure 13. VDD1 and VDD2 Supplies State Control Through EN1 and EN2

Table 4. Supplies State Control Through EN1 and EN2 Timing Characteristics

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{dEN}	NRESPWRON to to supply state change delay, EN1 or EN2 driven			0		ms
t _{dOEN}	EN1 or EN2 edge to supply state change delay		1 ×	t _{CK32k} = 31		μs
t _{dVDDEN}	EN1 or EN2 edge to VDD1 or VDD2 DCDC turn on delay		3 ×	$t_{CK32k} = 63$		μs

VDD1, VDD2 Voltage Control Through EN1 and EN2 Signals

NOTE: Register setting: VDD1_EN1 = 1, SEL[6:0] = hex13 in VDD1_SR_REG

Figure 14. VDD1 Supply Voltage Control Through EN1

Table 5. VDD1 Supply Voltage Control Through EN1 Timing Characteristics

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{dDVSEN}	EN1 (or EN2) edge to VDD1 (or VDD2) voltage change delay		2 ×	$t_{CK32k} = 62$		μs
		TSTEP[2:0] = 001		32		
t _{dDVSENL}	VDD1 (or VDD2) voltage settling delay	TSTEP[2:0] = 011 (default)	0.	4 / 7.5 = 53		μs
		TSTEP[2:0] = 111		160		

DEVICE INFORMATION

PIN FUNCTIONS

NAME	PIN	SUPPLIES	TYPE	I/O	DESCRIPTION	PU / PD
LDO8	1	VCC3/REFGND	Power	0	LDO regulator output	PD 5 µA
PWRHOLD	2	VRTC/DGND	Digital	I	Switch-on, switch off control signal / GPI	Programmable PD (default active)
PWRDN	3	VRTC/DGND	Analog	I	Reset input, for example, thermal reset	PD
LDO6	4, 5	VCC3/REFGND	Power	0	LDO regulator output	PD 5 µA
VCC3	6	VCC3/AGND2	Power	I	LDO6, LDO7 power Input	No
LDO7	7	VCC3/REFGND	Power	0	LDO regulator output	PD 5 µA
GPIO0	8	VCC7/DGND	Digital	I/O	GPIO, push-pull / OD as output	OD: external PU
LDO2	9, 10	VCC6/REFGND	Power	0	LDO regulator output	No
VCC6	11, 12	VCC6/AGND2	Power	I	LDO1, LDO2 power Input	No
LDO1	13, 14	VCC6/REFGND	Power	0	LDO regulator output	No
SDA_SDI	15	VDDIO/DGND	Digital	I/O	I ² C bidirectional data signal / serial peripheral interface data input (multiplexed)	External PU
SCL_SCK	16	VDDIO/DGND	Digital	I/O	I ² C bidirectional clock signal / serial peripheral interface clock input (multiplexed)	External PU
EN2	17	VDDIO/DGND	Digital	I/O	Enable for supplies / voltage scaling dedicated I ² C data	External PU
EN1	18	VDDIO/DGND	Digital	I/O	Enable for supplies / voltage scaling dedicated I ² C clock	External PU
VDDIO	19	VDDIO/DGND	Power	I	Digital IO supply	No
AGND2	20	AGND2	Power	I/O	Analog ground	No
VCCIO	21, 22	VCCIO/GNDIO	Power	I	VIO DCDC power Input	No
SWIO	23, 24	VCCIO/GNDIO	Power	0	VIO DCDC switched output	No
GNDIO	25, 26	VCCIO/GNDIO	Power	I/O	VIO DCDC power ground	No
GPIO4	27	VRTC/DGND	Digital	I/O, OD	GPIO	OD: External PU
VFBIO	28	VCC7/DGND	Analog	I	VIO feedback voltage	PD 5 µA
HDRST	29	VRTC/DGND	Digital	I	Cold reset	PD
REFGND	30	REFGND	Analog	I/O	Reference ground	No
VREF	31	VCC7/REFGND	Analog	0	Bandgap voltage	No
GPIO5	32	VRTC/DGND	Digital	I/O, OD	GPIO	OD: external PU
BOOT1	33	VRTC/DGND	Digital	I	Power-up sequence selection	No
GPIO1	34	VRTC/DGND	Digital	I/O, OD	GPIO / LED1 output	OD: External PU
OSC16MIN	35	VCC7/DGND	Analog	I	16.384-MHz crystal oscillator input	External PD if not in use
OSC16MOUT	36	VCC7/DGND	Analog	0	16.384-MHz crystal oscillator output	No
OSCEXT32K	37	VRTC/DGND	Digital	I	External 32-kHz clock input	External PD if not in use
LDO3	38	VCC5/REFGND	Power	0	LDO regulator output	PD 5 µA
VCCS	39	VCC7/DGND	Analog	I/O	VCC7 voltage sense input	No
VCC5	40	VCC5/AGND	Power	I	LDO3, LDO4 power Input	No
LDO4	41	VCC5/REFGND	Power	0	LDO regulator output	PD 5 µA
TESTV	42	VCC7/AGND	Analog	0	Analog test output (DFT)	No
GPIO3	43	VRTC/DGND	Digital	I/O, OD	GPIO / LED2 output	OD: External PU
NRESPWRON2	44	VRTC/DGND	Digital	O, OD	Second NRESPWRON output	PD active during device OFF state.External pullup when ACTIVE
VBACKUP	45	VBACKUP/AGND	Power	I	Tie to AGND	No

PIN FUNCTIONS (continued)

NAME	PIN	SUPPLIES	TYPE	I/O	DESCRIPTION	PU / PD
AGND	46	AGND	Power	I/O	Analog ground	No
VCC7	47	VCC7/REFGND	Power	1	VRTC power input and analog references supply	No
VRTC	48	VCC7/REFGND	Power	0	LDO regulator output	PD 5 µA
AGNDEX	49	AGNDEX	Power	I/O	EXTCTRL resistive divider ground	No
VSENSE	50	VOUT/AGNDEX	Analog	I	EXTCTRL resistive divider output	No
EN	51	VCC7/DGND	Digital	0	EXTCTRL enable signal for external converter	No
VOUT	52	VOUT/AGNDEX	Analog	I	EXTCTRL resistive divider input	No
DGND	53	DGND	Power	I/O	Digital ground	No
VFB1	54	VCC7/DGND	Analog	I	VDD1 feedback voltage	PD 5 µA
PWRON	55	VCC7/DGND	Digital	I	External switch-on control (ON button)	Programmable PU (default active)
GND1	56, 57	VCC1/GND1	Power	I/O	VDD1 DCDC power ground	No
SW1	58, 59	VCC1/GND1	Power	0	VDD1 DCDC switched output	No
VCC1	60, 61	VCC1/GND1	Power	I	VDD1 DCDC power Input	No
SLEEP	62	VDDIO/DGND	Digital	I	ACTIVE-SLEEP state transition control signal	Programmable PD (default active)
GPIO8	63	VRTC/DGND	Digital	I/O, OD	GPIO	OD: External PU
CLK32KOUT	64	VDDIO/DGND	Digital	0	32-kHz clock output	PD, disabled in ACTIVE or SLEEP state
GPIO6	65	VRTC/DGND	Digital	I/O, OD	GPIO	OD: External PU
NRESPWRON	66	VDDIO/DGND	Digital	0	Power off reset	PD active during device OFF state
VCC2	67, 68	VCC2/GND2	Power	1	VDD2 DCDC power input	No
SW2	69, 70	VCC2/GND2	Power	0	VDD2 DCDC switched output	No
GND2	71, 72	VCC2/GND2	Power	I/O	VDD2 DCDC power ground	No
GPIO7	73	VRTC/DGND	Digital	I/O, OD	GPIO	OD: External PU
VFB2	74	VCC7/DGND	Analog	I	VDD2 DCDC feedback voltage	PD 5 µA
INT1	75	VDDIO/DGND	Digital	0	Interrupt flag	No
GPIO2	76	VRTC/DGND	Digital	I/O, OD	GPIO / DCDC clock synchronization	OD: External PU
LDO5	77, 78	VCC4/REFGND	Power	0	LDO regulator output	PD 5 µA
VCC4	79	VCC4/AGND2	Power	I	LDO5 power input	No
VCC8	80	VCC8/AGND2	Power	I	LDO8 power input	No

Product Folder Links: TPS659119-Q1

PIN ASSIGNMENTS

LQFP PACKAGE 80-pin, 0.5 mm pitch

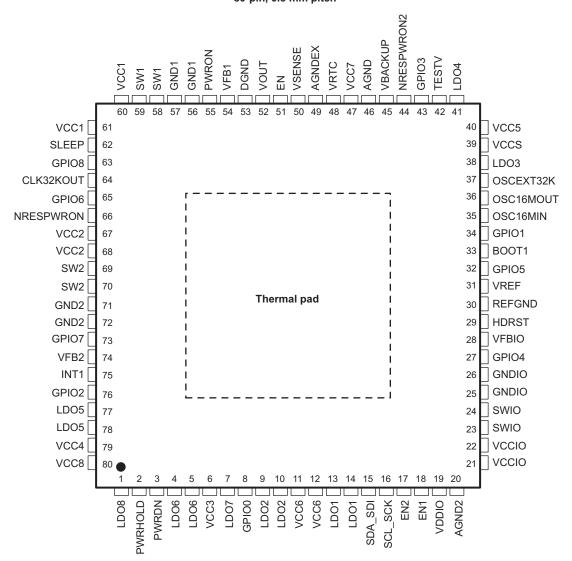


Figure 15. Pin Assignment - Top View

DETAILED DESCRIPTION

POWER REFERENCE

The bandgap voltage reference is filtered by using an external capacitor connected across the VREF output and the analog ground REFGND (see RECOMMENDED OPERATING CONDITIONS). The VREF voltage is distributed and buffered inside the device.

POWER RESOURCES

The power resources provided by the TPS659119-Q1 device include inductor based switched mode power supplies (SMPSs) and linear low-dropout voltage regulators (LDOs). These supply resources provide the required power to the external processor cores and external components, and to modules embedded in the TPS659119-Q1 device.

Two of the integrated SMPSs and the external SMPS controller (EXTCTRL) have voltage scaling capability. These SMPSs provide independent core voltage domains to the host processor. When changing the output voltage, VDD1 and VDD2 reach the new value through successive steps of 2.5 to 12.5 mV. The size of the voltage step is selected by the TSTEP bit. With a 0.8-V reference, EXTCTRL has a target slew rate of 100 mV / $20~\mu s$. New output values are reached in successive smaller steps of N × LSB, LSB = 16.7 mV, N = 1 to 4. A suitable combination of steps is calculated internally based on current and new target value for output voltage.

The VIO SMPS provides supply voltage for the host processor I/Os.

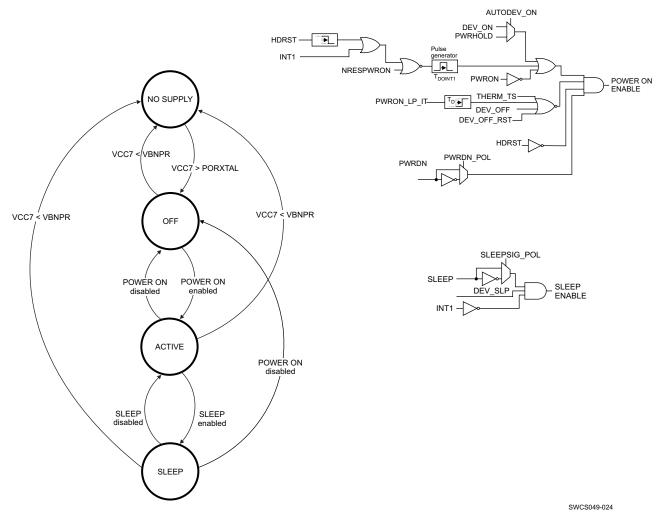
Table 6 lists the power sources provided by the TPS659119-Q1 device.

RESOURCE **TYPE VOLTAGES POWER** VIO **SMPS** 1.5, 1.8, 2.5, 3.3 V 1500 mA VDD1 **SMPS** 1500 mA 0.6 ... 1.5 V in 12.5-mV steps Programmable multiplication factor: x2, x3 VDD2 **SMPS** 0.6 ... 1.5 V in 12.5-mV steps 1500 mA Programmable multiplication factor: x2, x3 LDO1 LDO 1-3.3 V, 0.05-V step 320 mA LDO LDO2 1-3.3 V, 0.05-V step 320 mA LDO LDO3 1-3.3 V, 0.1-V step 200 mA LDO 1-3.3 V, 0.05-V step LDO4 50 mA LDO₅ LDO 1-3.3 V, 0.1-V step 300 mA LDO6 LDO 1-3.3 V, 0.1-V step 300 mA LDO7 LDO 1-3.3 V, 0.1-V step 300 mA LDO8 LDO 1-3.3 V, 0.1-V step 300 mA

Table 6. Power Sources

EMBEDDED POWER CONTROLLER

The embedded power controller (EPC) manages the state of the device and controls the power-up sequence.


STATE-MACHINE

The EPC supports the following states:

- **NO SUPPLY:** The main battery supply voltage is not high enough to power the VRTC regulator. A global reset is asserted in this case. Everything on the device is off.
- **OFF:** The main battery supply voltage is high enough to start the power-up sequence but device power on is not enabled. All power supplies are in the OFF state except VRTC.
- ACTIVE: Device POWER ON enable conditions are met and regulated power supplies are on or can be enabled with full current capability.
- SLEEP: Device SLEEP enable conditions are met and some selected regulated power supplies are in low-power mode.

Figure 16 shows the transitions for the state-machine.

NOTE: PWRHOLD enables power-on unless the pin is programmed as GPI.

Figure 16. Embedded Power Control State-Machine

Device POWER ON enable conditions:

- None of the device POWER ON disable conditions are met.
- PWRON signal low level
- Or PWRHOLD signal high level
- Or DEV ON control bit set to 1 (default inactive)
- Or interrupt flag active (default INT1 low) generates a POWER ON enable condition during a fixed delay (t_{DOINT1} pulse duration defined in POWER CONTROL TIMING). Interrupt sources expected (if enabled), when the device is off:
 - RTC alarm interrupt

Interrupt flag active generates a POWER ON enable condition pulse of length t_{DOINT1} only when the device is in the OFF state (when the NRESPWRON signal is low). The POWER ON enable condition pulse occurs only if the interrupt status bit is initially low (no previous interrupt pending in the status register). The interrupt status register must first be cleared to allow device power off during the t_{DOINT1} pulse duration.

GPIO2 cannot be used to turn on the device, even if its associated interrupt is not masked. The GPIO0, GPIO1, GPIO3, GPIO4, or GPIO5 signals can be used to turn on the device, if its associated interrupt is not masked.

Note: The watchdog interrupt is not a power-on event, but it wakes up the device from sleep mode.

Copyright © 2013, Texas Instruments Incorporated

Device POWER ON disable conditions:

- PWRON signal low level during more than the long-press delay: PWON_LP_DELAY (can be disabled though register programming). The interrupt corresponding to this condition is PWRON_LP_IT in the INT_STS_REG register.
- Or die temperature reaches the thermal shutdown threshold (THERM_TS = 1).
- Or DEV_OFF or DEV_OFF_RST control bit is set to 1 (DEV_OFF value is cleared when the device is in OFF state).

Note: If the DEV_ON bit is set to 1, after switch-off, the device switches back on. To keep the device off, DEV_ON must be cleared first.

Device SLEEP enable conditions:

- SLEEP signal low level (default, or high level depending on the programmed polarity)
- And DEV SLP control bit is set to 1.
- And interrupt flag inactive (default INT1 high): no nonmasked interrupt is pending.

The SLEEP state can be controlled by programming DEV_SLP and keeping the SLEEP signal floating, or it can be controlled through the SLEEP signal setting the DEV SLP bit to 1 once, after device turn-on.

Device reset scenarios:

The device has three reset scenarios:

- Full reset: All digital logic of device is reset.
 - Caused by POR (power on reset) when VCC7 < VBNPR
- · General reset: No impact on the RTC, backup registers, or interrupt status.
 - Caused by PWON LP RST bit set high
 - Or DEV OFF RST bit set high
 - Or HDRST input set high
- Turnoff: Power reinitialization in off or backup mode.

A mapping of digital registers to these reset scenarios is described in Table 12.

BOOT CONFIGURATION AND SWITCH-ON AND SWITCH-OFF SEQUENCES

The power sequence is the automated switch-on of the devices resources when an OFF-to-ACTIVE transition occurs. The power-on sequence has 15 sequential time slots to which resources (DCDCs, LDOs, 32-kHz clock, GPIO0, GPIO2, GPIO6, GPIO7) can be assigned. The time slot length selected can be 0.5 ms or 2 ms. If a resource is not assigned to any time slot, it is in off mode after the power-on sequence and the voltage level can be changed through the register SEL bits before enabling the resource.

Power off disables all power resources at the same time by default. By setting the PWR_OFF_SEQ control bit to 1, power off follows the power-up sequence in reverse order (the first resource powered on is the last resource powered off).

The values of VDD1, VDD2, and EXTCTRL set in the boot sequence can be selected from 16 steps. For the whole range, 100-mV steps are available: 0.6 / 0.7...1.4 / 1.5 V. From 0.8 to 1.4 V, additional values with 50-mV step resolution can be set: 0.85 / 1.05...1.35 V.

For LDO1, LDO2, and LDO4 all levels from 1 to 3.3 V are selectable in the boot sequence with 50-mV steps. For other LDOs, the level is selectable with 100-mV steps, from 1 to 3.3 V.

The device supports two boot configurations, which define the power sequence and several device control bits. The boot configuration is selectable by the device BOOT1 pin.

BOOT1	Boot Configuration	
0	Fixed boot mode	
1	EEPROM boot mode	

The BOOT1 input pad is disabled after the boot mode is read at power up, to save power.

Table 7 and Table 8 describe the power sequence and general control bits defined in the boot sequence, respectively.

Fixed boot mode is the same in all part numbers while EEPROM boot mode is different in each part number. Table 7 describes the boot configuration for power sequence control bits and Table 8 describes the boot configuration for general control bits. Refer to Table 9 to find EEPROM boot mode descriptions for specific part numbers.

Table 7. Boot Configuration: Power Sequence Control Bits

			TPS659	TPS659119-Q1		
Register	Register Bit Description		Fixed Boot	EEPROM Boot TPS659119-Q1		
VDD1_OP_REG/VDD1_SR_R EG		EXTCTRL ratio selection for boot. Levels available: 0.6 / 0.7 / 0.8 / 0.85 / 0.9 / 0.95 / / 1.35 /	1.2 V	х		
		1.4 / 1.5 V				
VDD1_REG	VGAIN_SEL	VDD1 gain selection, x1 or x2	x1	X		
EEPROM		VDD1 time slot selection	3	Х		
DCDCCTRL_REG	VDD1_PSKIP	VDD1 pulse skip mode enable	Enable skip	Х		
VDD2_OP_REG/VDD2_SR_R EG		VDD2 voltage level selection for boot. Levels available: 0.6 / 0.7 / 0.8 / 0.85 / 0.9 / 0.95 / / 1.35 / 1.4 / 1.5 V	1.5 V	x		
VDD2_REG	VGAIN_SEL	VDD2 gain selection, x1 or x3	x1	х		
EEPROM	_	VDD2 time slot selection	6	х		
DCDCCTRL_REG	VDD2_PSKIP	VDD2 pulse skip mode enable	Enable skip	x		
VIO_REG	SEL[3:2]	VIO voltage selection	1.8 V	х		
EEPROM		VIO time slot selection	4	х		
DCDCCTRL_REG	VIO_PSKIP	VIO pulse skip mode enable	Enable skip	х		
EXTCTRL_OP_REG/EXTCTR L_SR_REG		EXTCTRL voltage level selection for boot. Levels available: SEL[6:0] = 3 / 11 / 19 / 23 / 27 / / 59 / 63 / 67 Where: Ratio = 48 / (45 + SEL[6:0])	Off	х		
EEPROM		EXTCTRL time slot selection	Off	x		
LDO1_REG	SEL[7:2]	LDO1 voltage selection	1.05 V	x		
EEPROM		LDO1 time slot	Off	х		
LDO2_REG	SEL[7:2]	LDO2 voltage selection	1.2 V	х		
EEPROM		LDO2 time slot	7	х		
LDO3_REG	SEL[6:2]	LDO3 voltage selection	LDO3 voltage: 1 V	х		
EEPROM		LDO3 time slot	Off	х		
LDO4_REG	SEL[7:2]	LDO4 voltage selection	1.2 V	х		
EEPROM		LDO4 time slot	2	х		
LDO5_REG	SEL[6:2]	LDO5 voltage selection	LDO5 voltage: 1 V	х		
EEPROM		LDO5 time slot	Off	х		
LDO6_REG	SEL[6:2]	LDO6 voltage selection	LDO6 voltage: 1 V	х		
EEPROM		LDO6 time slot	Off	х		
LDO7_REG	SEL[6:2]	LDO7 voltage selection	1.2 V	х		
EEPROM		LDO7 time slot	5	х		
LDO8_REG	SEL[6:2]	LDO8 voltage selection	1 V	х		
EEPROM		LDO8 time slot	7	Х		
CLK32KOUT pin		CLK32KOUT time slot	5	х		

Table 7. Boot Configuration: Power Sequence Control Bits (continued)

			TPS659119-Q1	
Register	Bit	Description	Fixed Boot	EEPROM Boot TPS659119-Q1
NRESPWRON, NRESPWRON2 pin		NRESPWRON time slot		х
GPIO0 pin		GPIO0 time slot		х
GPIO2 pin		GPIO2 time slot		x
GPIO6 pin		GPIO6 time slot		x
GPIO7 pin		GPIO7 time slot		х

Table 8. Boot Configuration: General Control Bits

Dominton	Di4	Description	TPS659119-Q1		
Register	Bit	Description	Fixed Boot	EEPROM Boot	
VRTC_REG	VRTC_OFFMASK	0: VRTC LDO is in low-power mode during OFF state. 1: VRTC LDO is in full-power mode during	0	X	
DEVCTRL REG	CK32K CTRL	OFF state. 0: Clock source is crystal / external clock.	Crystal	×	
DEVOTRE_REG	ONOZIC_OTIVE	1: Clock source is internal RC oscillator.	Oryotai	^	
DEVCTRL_REG	DEV_ON	No impact Maintains device on, in ACTIVE or SLEEP state	0	x	
		Boot sequence time slot duration:			
DEVCTRL2_REG	TSLOTD	0: 0.5 ms	2 ms	x	
		1: 2 ms			
DEVCTRL2 REG	PWON LP OFF	0: Turn off device after PWRON long- press not allowed.	1	x	
DEVOTREZ_REG	PWON_LP_OFF	1: Turn off device after PWRON long-press.	l	*	
DEVCTRL2_REG	PWON_LP_RST	0: No impact	1	x	
DEVOTREZ_REG		1: Reset digital core when device is off	'		
DEVCTRL2_REG	IT_POL	0: INT1 signal is active-low.	0	х	
		1: INT1 signal is active-high.			
INT_MSK_REG	VMBHI_IT_MSK	0: Device automatically switches on at NO SUPPLY-to-OFF or BACKUP-to-OFF transition	1	x	
		1: Start-up reason required before switch- on			
INT MOV2 DEC		0: GPIO5 falling-edge detection interrupt not masked	1	x	
INT_MSK3_REG	GPIO5_F_IT_MSK	1: GPIO5 falling-edge detection interrupt masked	ı	X	
INT MOVE DEC	ODIOS D IT MOV	0: GPIO5 rising-edge detection interrupt not masked	0		
INT_MSK3_REG	GPIO5_R_IT_MSK	1: GPIO5 rising-edge detection interrupt masked	U	Х	
INT MOVE DEC	ODIO4 E IT MOSS	0: GPIO4 falling-edge detection interrupt not masked		_	
INT_MSK3_REG	GPIO4_F_IT_MSK	1: GPIO4 falling-edge detection interrupt masked	1	Х	
INT MOVE DEC	CDIO4 D IT MOV	0: GPIO4 rising-edge detection interrupt not masked	0		
INT_MSK3_REG	GPIO4_R_IT_MSK	1: GPIO4 rising-edge detection interrupt masked	0	Х	

Product Folder Links: TPS659119-Q1

Submit Documentation Feedback

Table 8. Boot Configuration: General Control Bits (continued)

Dominton	Dia	Decembration	TPS659119-Q1		
Register	Bit	Description	Fixed Boot	EEPROM Boot	
CDION DEC	CDIO ODEN	0: GPIO0 configured as push-pull output	Duals and		
GPIO0_REG	GPIO_ODEN	1: GPIO0 configured as open-drain output	Push-pull	Х	
		0: Watchdog disabled			
WATCHDOG_REG	WATCHDOG_EN	1: Watchdog enabled, periodic operation with 100 s	1	Х	
VAIDOU DEO	VMBBUF_BYPASS	0: Enable input buffer for external resistive divider	D: 11 1 "	х	
VMBCH_REG		1: In single-cell system, disable buffer for low lower	Disable buffer		
BOOTSEQVER_REG	BOOTSEQVER_S EL	EEPROM boot sequence version number	0x20	х	
		0: PWRHOLD pin is used as PWRHOLD feature.	4. DWDLIOLD =:=		
EEPROM AUTOL	AUTODEV_ON	1: PWRHOLD pin is GPI. After power on, DEV_ON set high internally, no processor action needed to maintain supplies.	1, PWRHOLD pin is GPI	х	
EEDDOM	DWDDN DO	0: PWRDN signal is active-low.	A ativo love		
EEPROM	PWRDN_POL	1: PWRDN signal is active-high.	Active-low	Х	

Table 9. EEPROM CONFIGURATION

BOOTSEQVER:	BOOTSEQVER_ REG = 0x24	BOOTSEQVER_ REG = 0x26	BOOTSEQVER_ REG = 0x30	BOOTSEQVER_ REG = 0x20	BOOTSEQVER_ REG = 0x28	BOOTSEQVER_ REG = 0x2A	BOOTSEQVER_ REG = 0x22
ORDERABLE PART NUMBER:	TPS659119AIPFP RQ1	TPS659119CAIPFP RQ1	TPS659119BAIPFP RQ1	TPS659119DAIPFP RQ1	TPS659119EAIPFP RQ1	TPS659119FAIPFP RQ1	TPS659119HAIPFP RQ1
TOP-SIDE MARKING:	T659119A1	T659119CA	T659119BA	T659119DA	T659119EA	T659119FA	TPS659119HA
VDD1_SLOT	Slot 15	Slot 12	Slot 11	OFF	Slot 15	Slot 15	OFF
VDD2_SLOT	Slot 8	Slot 4	Slot 12	Slot 8	Slot 8	Slot 8	Slot 8
VIO_SLOT	Slot 3	Slot 4	Slot 7	Slot 3	Slot 3	Slot 3	Slot 3
EXTCTRL_SLOT	Slot 1	Slot 3	Slot 10	Slot 1	Slot 1	Slot 1	Slot 1
VDIG1_SLOT (LDO1)	Slot 15	Slot 5	Slot 5	OFF	Slot 15	Slot 15	OFF
VDIG2_SLOT (LDO2)	Slot 6	Slot 5	Slot 4	Slot 5	Slot 6	Slot 6	Slot 6
VDAC_SLOT (LDO3)	OFF	Slot 2	Slot 6	OFF	OFF	Slot 3	OFF
VPLL_SLOT (LDO4)	OFF	Slot 5	Slot 4	Slot 1	OFF	Slot 1	Slot 1
VAUX1_SLOT (LDO5)	Slot 11	OFF	Slot 7	Slot 11	Slot 11	Slot 11	Slot 11
VMMC_SLOT (LDO6)	Slot 7	Slot 13	Slot 6	Slot 7	Slot 7	Slot 7	Slot 7
VAUX33_SLOT (LDO7)	Slot 12	Slot 6	Slot 8	Slot 12	Slot 12	Slot 12	Slot 12
VAUX2_SLOT (LDO8)	OFF	Slot 14	Slot 3	OFF	OFF	OFF	OFF
GPIO0_SLOT	Slot 5	Slot 1	Slot 9	Slot 6	Slot 5	Slot 5	Slot 5
GPIO2_SLOT	OFF	Slot 4	Slot 7	OFF	OFF	OFF	OFF
GPIO6_SLOT	OFF	Slot 10	Slot 12	OFF	OFF	OFF	Slot 15
GPIO7_SLOT	OFF	OFF	Slot 9	OFF	OFF	OFF	Slot 15
CLK32KOUT_SLOT	Slot 10	Slot 7	Slot 11	Slot 10	Slot 10	Slot 10	Slot 10
NRESPWRON_SLOT	Slot 14	Slot 10	Slot 14	Slot 14	Slot 14	Slot 14	Slot 14
VDD1_VSEL	1.05 V	1.05 V	1.2 V	1.05 V	1.05 V	1.05 V	1.05 V
VDD2_VSEL	1.5 V	1.5 V	1.2 V	1.5 V	1.5 V	1.5 V	1.5 V
VIO_VSEL	1.8 V	1.8 V	3.3 V	1.8 V	1.8 V	1.8 V	1.8 V
EXTCTRL_VSEL (Ratio)	EXTCTRL Divider Ratio = 2/3	EXTCTRL Divider Ratio = 12/19	EXTCTRL Divider Ratio = 2/3	EXTCTRL Divider Ratio = 1/2	EXTCTRL Divider Ratio = 12/19	EXTCTRL Divider Ratio = 12/19	EXTCTRL Divider Ratio = 12/19
VDIG1_VSEL (LDO1)	1.05 V	1 V	1.8 V	1.05 V	1.05 V	1.05 V	1.05 V
VDIG2_VSEL (LDO2)	1.2 V	1.2 V	1.8 V	1.2 V	1.2 V	1.2 V	1.2 V
VDAC_VSEL (LDO3)	1 V	1.2 V	3.3 V	1 V	1 V	1.8 V	1 V
VPLL_VSEL (LDO4)	0.8 V	1.8 V	1.8 V	1.25 V	0.8 V	1.2 V	1.2 V
VAUX1_VSEL (LDO5)	1 V	3.2 V	3.3 V	1 V	1 V	1 V	1 V

Table 9. EEPROM CONFIGURATION (continued)

BOOTSEQVER:	BOOTSEQVER_ REG = 0x24	BOOTSEQVER_ REG = 0x26	BOOTSEQVER_ REG = 0x30	BOOTSEQVER_ REG = 0x20	BOOTSEQVER_ REG = 0x28	BOOTSEQVER_ REG = 0x2A	BOOTSEQVER_ REG = 0x22
VMMC_VSEL (LDO6)	1.8 V	1.8 V	3.3 V	1.8 V	1.8 V	1.8 V	1.8 V
VAUX33_VSEL (LDO7)	2.8 V	2.8 V	3.3 V	2.8 V	2.8 V	2.8 V	2.8 V
VAUX2_VSEL (LDO8)	1 V	2.8 V	1.8 V	1 V	1 V	1 V	1 V
VDD1_GAINSEL	1x	1×	1x	1x	1×	1×	1×
VDD2_GAINSEL	1x	1×	1x	1x	1×	1×	1×
VDD1_PSKIP	VDD1 PFM mode enabled	VDD1 in PWM mode only	VDD1 in PWM mode only	VDD1 PFM mode enabled			
VDD2_PSKIP	VDD2 PFM mode enabled	VDD2 in PWM mode only	VDD2 in PWM mode only	VDD2 PFM mode enabled			
VIO_PSKIP	VIO PFM mode enabled	VIO in PWM mode only	VIO in PWM mode only	VIO PFM mode enabled			
TSLOTD	0.5 ms	0.5 ms	2 ms	0.5 ms	0.5 ms	0.5 ms	0.5 ms
CLK32K_CTRL	CLK32KOUT derived from XTAL oscillator	CLK32KOUT derived from XTAL oscillator	CLK32KOUT derived from XTAL oscillator				
ITPOL	INT1 output active- low	INT1 output active-low	INT1 output active- low				
PWRDN_POL	PWRDN input active-low	PWRDN input active-low	PWRDN input active-high	PWRDN input active-low	PWRDN input active-low	PWRDN input active- low	PWRDN input active-low
WATCHDOG	Watchdog disabled						
PWRON_LP_RST	Digital core reset when device is OFF						
GPIO0_ODEN	GPIO0 is push-pull						
GPIO5_R_IT_MSK	GPIO5 rising-edge interrupt enabled	GPIO5 rising-edge interrupt masked	GPIO5 rising-edge interrupt masked	GPIO5 rising-edge interrupt enabled			
GPIO5_F_IT_MSK	GPIO5 falling-edge interrupt masked						
GPIO4_R_IT_MSK	GPIO4 rising-edge interrupt enabled	GPIO4 rising-edge interrupt masked	GPIO4 rising-edge interrupt masked	GPIO4 rising-edge interrupt enabled			
GPIO4_F_IT_MSK	GPIO4 falling-edge interrupt masked						
VMBHI_IT_MSK	VCCS > VMBHI is NOT a power-on enable condition						
VMBBUF_BYPASS	VCCS buffer disabled						
AUTO_DEVON	PWRHOLD pin keeps PMIC on	PWRHOLD pin keeps PMIC on	PWRHOLD pin keeps PMIC on	PWRHOLD pin keeps PMIC on	PWRHOLD pin keeps PMIC on	PWRHOLD pin keeps PMIC on	PWRHOLD pin keeps PMIC on
PWRON_LP_OFF	PWRON long-press turnoff ENABLED	PWRON long-press turnoff DISABLED	PWRON long-press turnoff DISABLED	PWRON long-press turnoff ENABLED	PWRON long-press turnoff ENABLED	PWRON long-press turnoff ENABLED	PWRON long-press turnoff ENABLED
DEV_ON	DEV_ON bit NOT set by default						
VRTC_OFFMASK	VRTC in low-power mode during OFF state	VRTC in full-power mode during OFF state					

CONTROL SIGNALS

SLEEP

When none of the device SLEEP-disable conditions are met, a falling edge (default, or rising edge, depending on the programmed polarity) of this signal causes an ACTIVE-to-SLEEP state transition of the device. A rising edge (default, or falling edge, depending on the programmed polarity) causes a transition back to the ACTIVE state. This input signal is level-sensitive and no debouncing is applied.

While the device is in the SLEEP state, predefined resources are automatically set in their low-power mode or off. Resources can be kept in their active mode (full-load capability) by programming the SLEEP_KEEP_LDO_ON and the SLEEP_KEEP_RES_ON registers. These registers contain 1 bit per power resource. If the bit is set to 1, then that resource stays in active mode when the device is in the SLEEP state.

32KCLKOUT is also included in the SLEEP_KEEP_RES_ON register and the 32-kHz clock output is maintained in the SLEEP state if the corresponding mask bit is set.

www.ti.com

The status (low or high) of GPO0, GPO6, GPO7, and GPO8 are also controlled by the SLEEP signal, to allow enabling and disabling of external resources during sleep.

PWRHOLD

The PWRHOLD pin can be used as a PWRHOLD signal input or as a general purpose input (GPI). The mode is selected by the AUTODEV_ON bit, which is part of the boot configuration. When AUTODEV_MODE = 0, the PWRHOLD feature is selected.

Configured as PWRHOLD, when none of the device POWER ON disable conditions are met, a high level of this signal causes an OFF-to-ACTIVE state transition of the device and a low level causes a transition back to the OFF state.

This input signal is level-sensitive and no debouncing is applied. The rising and/or falling edge of PWRHOLD is highlighted through an associated interrupt if interrupt is unmasked.

When AUTODEV_ON = 1, the pin is used as a GPI. As a GPI, this input can generate a maskable interrupt from a rising or falling edge of the input. When AUTODEV_ON = 1, a rising edge of NRESPWRON also automatically sets the DEV_ON bit to 1 to maintain supplies after the switch-on sequence, thus removing the need for the processor to set the PWRHOLD signal or the DEV_ON bit.

BOOT1

This signal determines with which processor the device is working and, hence, which power-up sequence is needed. For more details, see SWITCH-ON AND SWITCH-OFF SEQUENCES AND TIMING. There is no debouncing on this input signal.

NRESPWRON, NRESPWRON2

The NRESPWRON signal is used as the reset to the processor and is in the VDDIO domain. It is held low until the ACTIVE state is reached. See SWITCH-ON AND SWITCH-OFF SEQUENCES AND TIMING to get detailed timing.

The NRESPWRON2 signal is a second reset output. It follows the state of NRESPWRON but has an open-drain output with external pullup. The supply for the external pullup must not be activated before the TPS659119-Q1 device is in control of the output state (that is, not earlier than during first power-up sequence slot). In off mode, the NRESPWRON2 output has a weak internal pulldown.

CLK32KOUT

This signal is the output of the 32-K oscillator, which can be enabled or not during the power-on sequence, depending on the boot mode. It can be enabled and disabled by register bit, during the ACTIVE state of the device. The CLK32KOUT output can also be enabled or not during the SLEEP state of the device depending on the programming of the SLEEPMASK register.

PWRON

The PWRON input is connected to an external button. If the device is in the OFF or SLEEP state, a debounced falling edge (PWRON input low for minimum of 100 µs) causes an OFF-to-ACTIVE state or a SLEEP-to-ACTIVE state transition of the device. If the device is in active mode, then a low level on this signal generates an interrupt. If the PWRON signal is low for more than the PWON_TO_OFF_DELAY delay and the corresponding interrupt is not acknowledged by the processor within 1 second, the device goes into the OFF state. See Figure 9 and Figure 10 for PWRON behavior.

INT1

The INT1 signal (default active low) warns the host processor of any event that has occurred on the TPS659119-Q1 device. The host processor can then poll the interrupt from the interrupt status register through I²C to identify the interrupt source. A low level (default setting) indicates an active interrupt, highlighted in the INT_STS_REG register. The polarity of INT1 can be set programming the IT_POL control bit. INT1 flag active is a POWER ON enable condition during a fixed delay, t_{DOINT1} (only), when the device is in the OFF state (when NRESPWRON is low).

Any of the interrupt sources can be masked programming the INT_MSK_REG register. When an interrupt is masked its corresponding interrupt status bit is still updated, but the INT1 flag is not activated. Interrupt source masking can be used to mask a device switch-on event. Because interrupt flag active is a POWER ON enable condition, during t_{DOINT1} delay, any interrupt not masked must be cleared to allow immediate turn off of the device.

For a description of interrupt sources, see Table 11.

EN2 and EN1

EN2 and EN1 are the data and clock signals of the serial control interface dedicated to voltage scaling applications.

These signals can also be programmed as enable signals of one or several supplies, when the device is on (NRESPWRON high). A resource assigned to EN2 or EN1 control automatically disables the serial control interface.

Programming EN1_LDO_ASS_REG, EN2_LDO_REG, and SLEEP_KEEP_LDO_ON_REG registers: EN1 and EN2 signals can be used to control the turn on/off or SLEEP state of any LDO-type supplies.

Programming EN1_SMPS_ASS_REG, EN2_SMPS_ASS_REG, and SLEEP_KEEP_RES_ON registers: EN1 and EN2 signals can be used to control the turn on/off or LOW-POWER state (PFM mode) of SMPS-type supplies.

The EN2 and EN1 signals can be used to set the output voltage of VDD1 and VDD2 SMPS from a roof to a floor value, preprogrammed in the VDD1_OP_REG, VDD2_OP_REG and VDD1_SR_REG, VDD2_SR_REG registers.

When a supply is controlled through the EN1 or EN2 signals, its state is no longer driven by the device SLEEP state.

GPIO0-8

GPIO0, GPIO2, and GPIO6-7 can be programmed as part of the power-up sequence and used as enable signals for external resources.

GPIO0 is a configurable I/O in the VCC7 domain. By default, its output is push-pull, driving low. GPIO0 can also be configured as an open-drain output with external pullup.

GPIO1 through GPIO8 are configurable open-drain digital I/Os in the VRTC domain. GPIO directivity, debouncing delay, and internal pullup can be programmed. By default, all are inputs with weak internal pullulown; as open-drain output an external pullup is required.

GPIO0-1 and GPIO3-5 can be used to turn on the device if the corresponding interrupt is not masked. When configured as an input, GPIO2 cannot be used to turn on the device, even if its associated interrupt is not masked. The GPIO interrupt is level sensitive. When an interrupt is detected, before clearing the interrupt, it should first be disabled by masking it.

GPIO1 and GPIO3 have a current sink capability of 10 mA, and they can also be used to drive LEDs connected to a 5-V supply.

GPIO2 can be used for synchronizing DCDCs to an external clock. Programming DCDCCKEXT = 1, VDD1, VDD2, and VIO DCDC switching can be synchronized using a 3-MHz clock set though the GPIO2 pin. VDD1 and VDD2 are in-phase and VIO is phase shifted by 180 degrees.

It is recommended not to connect noisy switching signals to GPIO4 and GPIO5.

HDRST Input

HDRST is a cold reset input for the PMIC. High level at input forces the TPS659119-Q1 into off mode, causing a general reset of device to the default settings. The default state is defined by the register reset state and boot configuration. HDRST high level keeps the device in off mode. When reset is released and HDRST input goes low, the device automatically transitions to active mode. The device is kept in active mode for the period t_{DONIT1} , after which another power-on enable reason is needed to maintain the device on.

The HDRST input is in the VRTC domain and has a weak internal pulldown, which is active by default.

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

PWRDN

The PWRDN input is a reset input with selectable polarity (PWRDN_POL). High (low) level at input forces the TPS659119-Q1 device into off mode, causing a power-off reset. Off mode is maintained until PWRDN is released and a start-up reason like PWRON button press or DEV_ON = 1 is detected. An interrupt is generated to indicate the cause for shutdown. The PWRDN input is in the VRTC domain, but can tolerate a 5-V input.

Watchdog

The watchdog has two modes of operation.

In periodic operation an interrupt is generated with a regular period defined by the WTCHDG_TIME setting. The IC initiates WTCHDOG shutdown if the interrupt is not cleared within the period. The watchdog interrupt WTCHDOG counter is reinitialized when NRESPWRON is low.

In interrupt mode the IC initiates WTCHDOG counter when interrupt is set pending and is cleared when interrupt is cleared. If no interrupt is cleared before watchdog expiration within WTCHDG_TIME, the device goes to off mode.

By default, periodic watchdog functionality is enabled with the maximum WTCHDG_TIME period.

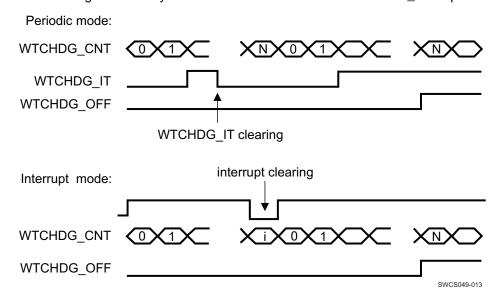


Figure 17. Watchdog Signals

Tracking LDO

LDO4 has an optional mode where its output level follows that of VDD1, from 0.6 to 1.5 V, when VDD1 is active. When VDD1 is set to off, the LDO4 output is defined by the SEL[7:2] bits in LDO4_REG, and can be set from 0.8 to 1.5 V.

Tracking mode is enabled by setting TRACK = 1 in DCDCCTRL_REG. In initial activation, VDD1 must be enabled and allowed to settle before enabling tracking mode. After initial activation, tracking mode can be kept enabled while VDD1 is turned off. The value of TRACK is set to default (0) after any turnoff event.

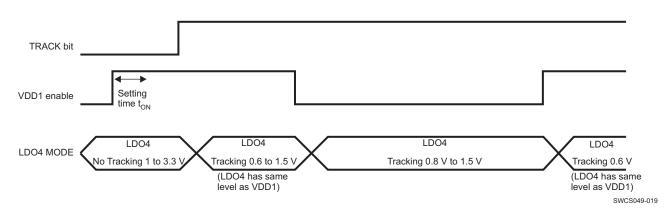


Figure 18. Tracking LDO

PWM AND LED GENERATORS

The TPS659119-Q1 device has two LED ON/OFF signal generators, LED1 and LED2. LED1 and LED2 have independently controllable periods from 125 ms to 8 s and ON time from 62.5 to 500 ms. Within the period, one or two ON pulses can be generated (control bit LED1(2)_SEQ). The user must take care to program period and ON time correctly, because no limitation on selected values is imposed. LED1 and LED2 signals can be routed to GPIO1 and GPO3 open-drain outputs, respectively. These GPIOs have a current sink capability of 10 mA.

The PWM generator frequency and duty cycle are set by the PWM_FREQ and PWM_DUTY_CYCLE bits, respectively. The PWM generator signal can be connected to the GPIO3 or GPIO8 output. The PWM generator uses the 3-MHz clock, which is not available in off mode. To enable the PWM in sleep mode, the I2CHS KEEPON bit must be set to 1.

DYNAMIC VOLTAGE FREQUENCY SCALING AND ADAPTIVE VOLTAGE SCALING OPERATION

Dynamic voltage frequency scaling (DVFS) operation: A supply voltage value corresponding to a targeted frequency of the digital core supplied is programmed in VDD1_OP_REG or VDD2_OP_REG registers.

The slew rate of the voltage supply reaching a new VDD1_OP_REG or VDD2_OP_REG programmed value is limited to 12.5 mV/ μ s, fixed value.

Adaptative voltage scaling (AVS) operation: A supply voltage value corresponding to a supply voltage adjustment is programmed in VDD1_SR_REG or VDD2_SR_REG registers. The supply voltage is then tuned by the digital core supplied, based its performance self-evaluation. The slew rate of VDD1 or VDD2 voltage supply reaching a new programmed value is programmable though the VDD1_REG or VDD2_REG register, respectively.

A serial control interface (optional mode for EN1 and EN2 pins) can be dedicated to voltage scaling applications, to give dedicated access to the VDD1_OP_REG, VDD1_SR_REG and VDD2_OP_REG, VDD2_SR_REG registers.

A general-purpose serial control interface (CTL-I²C) also gives access to these registers, if the SR_CTL_I2C_SEL control bit is set to 1 in the DEVCTRL_REG register (default inactive).

Both control interfaces are compliant with HS-I²C specification (100 Kbps, 400 Kbps, or 3.4 Mbps).

32-kHz RTC CLOCK

The TPS659119-Q1 device can provide a 32-kHz clock to the platform through the CLK32KOUT output. Selection of the default RTC clock source is controlled by the EEPROM bit CK32K_CTRL in the DEVCTRL_REG register. This clock must be present for any state of the EPC except the NO SUPPLY state. The three possible sources for this clock are listed below:

- Crystal Oscillator- To use the crystal oscillator, a 16.384-MHz crystal should be placed between the OSC16MIN and OSC16MOUT pins and the OSCEXT32K pin should be grounded. The 32-kHz clock is produced by dividing the crystal oscillator output by 500. A higher frequency crystal is used to accelerate the start-up time of the device. An essential schematic of the oscillator is shown in Figure 19.
- External Clock Source- An external 32-kHz clock source may be used by grounding the OSC16MIN pin,

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

floating the OSC16MOUT pin, and applying the clock to the OSCEXT32K pin. Once four clock edges are counted on OSCEXT32K, an internal clock selection MUX selects the external clock source rather than the crystal oscillator. A means of switching between the crystal oscillator and the external clock source is not included in the design. Either one or the other may be used in a given application, but not both.

 Internal RC Oscillator - Depending on the state of the CK32K_CTRL bit, an internal 32-kHz RC oscillator may also be used as the clock source for the RTC if an accurate time-base is not required.

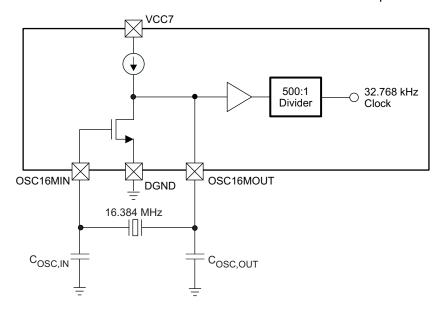


Figure 19. 16-MHz Crystal Oscillator

Real-Time Clock (RTC)

The RTC, which is driven by the 32-kHz clock, provides the alarm and timekeeping functions. The RTC is kept supplied when the device is in the OFF or the BACKUP state.

The main functions of the RTC block are:

- · Time information (seconds, minutes, hours) directly in binary-coded decimal (BCD) format
- Calendar information (day, month, year, day of the week) directly in BCD code up to year 2099
- Programmable interrupts generation: The RTC can generate two interrupts: a timer interrupt RTC_PERIOD_IT periodically (1s, 1m, 1h, 1d period) and an alarm interrupt RTC_ALARM_IT at a precise time of the day (alarm function). These interrupts are enabled using IT_ALARM and IT_TIMER control bits. Periodically interrupts can be masked during the SLEEP period to avoid host interruption and are automatically unmasked after SLEEP wakeup (using the IT_SLEEP_MASK_EN control bit).

Oscillator frequency calibration and time correction

Submit Documentation Feedback

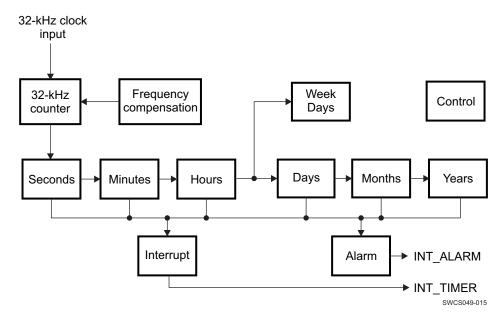


Figure 20. RTC Digital Section Block Diagram

TIME CALENDAR REGISTERS

All the time and calendar information is available in these dedicated registers, called TC registers. Values of the TC registers are written in BCD format.

- 1. Years data ranges from 00 to 99
 - Leap year = Year divisible by four (2000, 2004, 2008, 2012...)
 - Common year = other years
- 2. Months data ranges from 01 to 12
- 3. Days value ranges from:
 - 1 to 31 when months are 1, 3, 5, 7, 8, 10, 12
 - 1 to 30 when months are 4, 6, 9, 11
 - 1 to 29 when month is 2 and year is a leap year
 - 1 to 28 when month is 2 and year is a common year
- 4. Weeks value ranges from 0 to 6
- 5. Hours value ranges from 00 to 23 in 24-hour mode and ranges from 1 to 12 in AM/PM mode
- 6. Minutes value ranges from 0 to 59
- 7. Seconds value ranges from 0 to 59

To modify the current time, software writes the new time into TC registers to fix the time/calendar information. The processor can write into the TC registers without stopping the RTC. In addition, software can stop the RTC by clearing the STOP_RTC bit of the control register and check the RUN bit of the status to be sure that the RTC is frozen, then update the TC values, and then restart the RTC by setting STOP_RTC bit.

Example: Time is 10H54M36S PM (PM_AM mode set), 2008 September 5, previous register values are:

Table 10. Real-Time Clock Registers Example

Value
0x36
0x54
0x90
0x05
0x09

Submit Documentation Feedback

Table 10. Real-Time Clock Registers Example (continued)

Register	Value
YEARS_REG	0x08

The user can round to the closest minute, by setting the ROUND_30S register bit. TC values are set to the closest minute value at the next second. The ROUND_30S bit is automatically cleared when the rounding time is performed.

Example:

- If current time is 10H59M45S, a round operation changes time to 11H00M00S.
- if current time is 10H59M29S, a round operation changes time to 10H59M00S.

GENERAL REGISTERS

Software can access the RTC_STATUS_REG and RTC_CTRL_REG registers at any time (except for the RTC CTRL REG[5] bit, which must be changed only when the RTC is stopped).

COMPENSATION REGISTERS

The RTC_COMP_MSB_REG and RTC_COMP_LSB_REG registers must respect the available access period. These registers must be updated before each compensation process. For example, software can load the compensation value into these registers after each hour event, during an available access period.

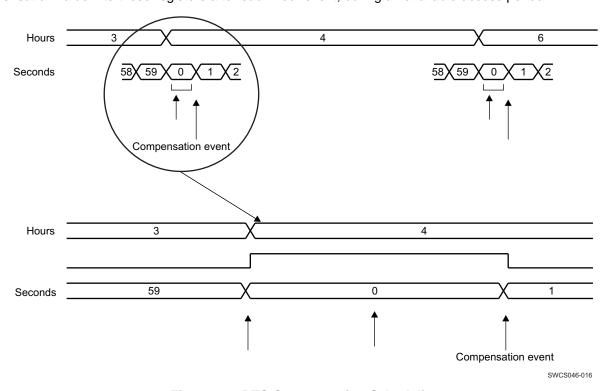


Figure 21. RTC Compensation Scheduling

This drift can be balanced to compensate for any inaccuracy of the 32-kHz oscillator. Software must calibrate the oscillator frequency, calculate the drift compensation versus 1-hour time period; and then load the compensation registers with the drift compensation value. Indeed, if the AUTO_COMP_EN bit in the RTC_CTRL_REG is enabled, the value of COMP_REG (in twos-complement) is added to the RTC 32-kHz counter at each hour and 1 second. When COMP_REG is added to the RTC 32-kHz counter, the duration of the current second becomes (32768 – COMP_REG) / 32768 s; so, the RTC can be compensated with a 1 / 32768 s/hour time unit accuracy.

NOTE

The compensation is considered once written into the registers.

BACKUP REGISTERS

As part of the RTC, the device contains five 8-bit registers that can be used for storage by the application firmware when the external host is powered down. These registers retain their content as long as the VRTC is active.

I²C INTERFACE

A general-purpose serial control interface (CTL-I²C) allows read and write access to the configuration registers of all resources of the system.

A second serial control interface (optional mode for EN1 and EN2 pins) can be dedicated to DVFS.

Both control interfaces are compliant with the HS-I²C specification.

These interfaces support the standard slave mode (100 Kbps), fast mode (400 Kbps), and high-speed mode (3.4 Mbps). The general-purpose I^2C module using one slave hard-coded address (ID1 = 2Dh). The voltage scaling dedicated I^2C module uses one slave hard-coded address (ID0 = 12h). The master mode is not supported.

Addressing:

The device supports seven-bit mode addressing.

It does not support the following features:

- 10-bit addressing
- General call

ACCESS PROTOCOLS

Access protocols or compatibility, the I²C interfaces in the TPS659119-Q1 device use the same read and write protocol as other TI power ICs, based on an internal register size of 8 bits. Supported transactions are described below.

SINGLE BYTE ACCESS

A write access is initiated by a first byte including the address of the device (7 MSBs) and a write command (LSB), a second byte provides the address (8 bits) of the internal register, and the third byte represents the data to be written in the internal register, see Figure 22.

A read access is initiated by:

- · A first byte, including the address of the device (7 MSBs) and a write command (LSB)
- A second byte, providing the address (8 bits) of the internal register
- A third byte, including again the device address (7 MSBs) and the read command (LSB)

The device replies by sending

A fourth byte, representing the content of the internal register (see Figure 23)

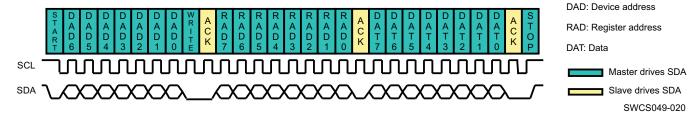


Figure 22. I²C Write Access Single Byte

Product Folder Links: TPS659119-Q1

Copyright © 2013, Texas Instruments Incorporated

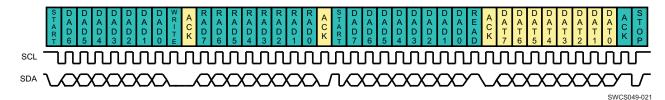


Figure 23. I²C Read Access Single Byte

Multiple Byte Access To Several Adjacent Registers

A write access is initiated by:

- A first byte, including the address of the device (7 MSBs) and a write command (LSB)
- A second byte, providing the base address (8 bits) of the internal registers

The following N bytes represent the data to be written in the internal register starting at the base address and incremented by one at each data byte (see Figure 24).

A read access is initiated by:

- A first byte, including the address of the device (7 MSBs) and a write command (LSB)
- · A second byte, providing the base address (8 bits) of the internal register
- A third byte, including again the device address (7 MSBs) and the read command (LSB)

The device replies by sending:

• A fourth byte, representing the content of the internal registers, starting at the base address and next consecutive ones (see Figure 25).



Figure 24. I²C Write Access Multiple Bytes

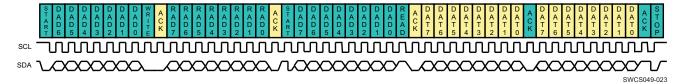


Figure 25. I²C Read Access Multiple Bytes

THERMAL MONITORING AND SHUTDOWN

A thermal protection module monitors the junction temperature of the device versus two thresholds:

- Hot-die temperature threshold
- Thermal shutdown temperature threshold

When the hot-die temperature threshold is reached, an interrupt is sent to software to close the noncritical running tasks.

When the thermal shutdown temperature threshold is reached, the TPS659119-Q1 device is set under reset and a transition to OFF state is initiated. Then the POWER ON enable conditions of the device are not considered until the die temperature has decreased below the hot-die threshold. Hysteresis is applied to the hot-die and shutdown thresholds, when detecting a falling edge of temperature, and both detections are debounced to avoid any parasitic detection.

The TPS659119-Q1 device allows programming of four hot-die temperature thresholds to increase the flexibility of the system.

By default, the thermal protection is enabled in ACTIVE state, but can be disabled through programming the THERM_REG register. The thermal protection can be enabled in SLEEP state programming the SLEEP_KEEP_RES_ON register. The thermal protection is automatically enabled during an OFF-to-ACTIVE state transition and is kept enabled in OFF state after a switch-off sequence caused by a thermal shutdown event. Transition to OFF state sequence caused by a thermal shutdown event is highlighted in the INT_STS_REG status register. Recovery from this OFF state is initiated (switch-on sequence) when the die temperature falls below the hot-die temperature threshold.

Hot-die and thermal shutdown temperature threshold detection states can be monitored or masked by reading or programming the THERM_REG register. The hot-die interrupt can be masked by programming the INT_MSK_REG register.

INTERRUPTS

Table 11. Interrupt Sources

Interrupt	Description	
DTC ALADM IT	RTC alarm event: Occurs at programmed determinate date and time	
RTC_ALARM_IT	(running in ACTIVE, OFF, and SLEEP state, default inactive)	
RTC_PERIOD_IT	RTC periodic event: Occurs at programmed regular period of time (every second or minute) (running in ACTIVE, OFF, and SLEEP state, default inactive)	
HOT_DIE_IT	The embedded thermal monitoring module detects a die temperature above the hot-die detection threshold (running in ACTIVE and SLEEP state).	
	Level sensitive interrupt.	
PWRHOLD_R_IT	PWRHOLD signal rising edge	
PWRHOLD_F_IT	PWRHOLD signal falling-edge	
PWRON_LP_IT	PWRON is low during more than the long-press delay: PWON_TO_OFF_DELAY (can be disable though register programming).	
PWRON_IT	PWRON is low while the device is on (running in ACTIVE and SLEEP state). Level-se interrupt.	
GPIO0_R_IT	GPIO_CKSYNC rising-edge detection	
GPIO0_F_IT	GPIO_CKSYNC falling-edge detection	
GPIO1_R_IT	GPIO1 rising-edge detection	
GPIO1_F_IT	GPIO1 falling-edge detection	
GPIO2_R_IT	GPIO2 rising-edge detection	
GPIO2_F_IT	GPIO2 falling-edge detection	
GPIO3_R_IT	GPIO3 rising-edge detection	
GPIO3_F_IT	GPIO3 falling-edge detection	
GPIO4_R_IT	GPIO4 rising-edge detection	
GPIO4_F_IT	GPIO4 falling-edge detection	
GPIO5_R_IT	GPIO5 rising-edge detection	
GPIO5_F_IT	GPIO5 falling-edge detection	
WTCHDG_IT	Watchdog interrupt	
PWRDN_IT	PWRDN reset interrupt	

Crystal Oscillator Power-On Reset

The crystal oscillator uses a local independent power-on reset (POR) circuit. If the crystal oscillator or external clock input are used, then VCC7 must be higher than the rising threshold of this POR circuit (3.96 V max), or else a clock is not delivered to the digital core inside the PMIC and the device does not power up.

APPENDIX A: FUNCTIONAL REGISTERS

The possible device reset domains are:

- · Full reset: All digital of device is reset.
 - Caused by Power On Reset (POR) when VCCS < VBNPR
- General reset: No impact on RTC, backup registers or interrupt status.
 - Caused by PWON_LP_RST bit set high or
 - DEV_OFF_RST bit set high or
 - HDRST input set high
- Turnoff OFF: Power reinitialization in off or backup mode.

In following register description, reset domain for each register is defined at the register table heading.

Note: The DCDCCTRL_REG and DEVCTRL2_REG have bits in two reset domains.

Note 2: The comment, Default value: See boot configuration, indicates that bit default value is set in boot configuration and not by register reset value.

TPS659119-Q1_FUNC_REG REGISTERS MAPPING SUMMARY

Table 12. TPS659119-Q1_FUNC_REG Register Summary⁽¹⁾

Deviator Name		Desister Width (Bite)		Address Offset
Register Name	Type	Register Width (Bits)	Register Reset	Address Offset
SECONDS_REG	RW	8	0x00	0x00
MINUTES_REG	RW	8	0x00	0x01
HOURS_REG	RW	8	0x00	0x02
DAYS_REG	RW	8	0x01	0x03
MONTHS_REG	RW	8	0x01	0x04
YEARS_REG	RW	8	0x00	0x05
WEEKS_REG	RW	8	0x00	0x06
ALARM_SECONDS_REG	RW	8	0x00	0x08
ALARM_MINUTES_REG	RW	8	0x00	0x09
ALARM_HOURS_REG	RW	8	0x00	0x0A
ALARM_DAYS_REG	RW	8	0x01	0x0B
ALARM_MONTHS_REG	RW	8	0x01	0x0C
ALARM_YEARS_REG	RW	8	0x00	0x0D
RTC_CTRL_REG	RW	8	0x00	0x10
RTC_STATUS_REG	RW	8	0x80	0x11
RTC_INTERRUPTS_REG	RW	8	0x00	0x12
RTC_COMP_LSB_REG	RW	8	0x00	0x13
RTC_COMP_MSB_REG	RW	8	0x00	0x14
RTC_RES_PROG_REG	RW	8	0x27	0x15
RTC_RESET_STATUS_REG	RW	8	0x00	0x16
BCK1_REG	RW	8	0x00	0x17
BCK2_REG	RW	8	0x00	0x18
BCK3_REG	RW	8	0x00	0x19
BCK4_REG	RW	8	0x00	0x1A
BCK5_REG	RW	8	0x00	0x1B
PUADEN_REG	RW	8	0x1F	0x1C
REF_REG	RO	8	0x01	0x1D
VRTC_REG	RW	8	0x01	0x1E
VIO_REG	RW	8	0x05	0x20
VDD1_REG	RW	8	0x0D	0x21
VDD1_OP_REG	RW	8	0x33	0x22
VDD1_SR_REG	RW	8	0x33	0x23
VDD2_REG	RW	8	0x0D	0x24
VDD2_OP_REG	RW	8	0x4B	0x25
VDD2_SR_REG	RW	8	0x4B	0x26
EXTCTRL_REG	RW	8	0x00	0x27
EXTCTRL_OP_REG	RW	8	0x03	0x28
EXTCTRL_SR_REG	RW	8	0x03	0x29
LDO1_REG	RW	8	0x15	0x30
LDO2_REG	RW	8	0x15	0x31
LDO5_REG	RW	8	0x00	0x32
LDO8_REG	RW	8	0x09	0x33
LDO7_REG	RW	8	0x0D	0x34
LDO6_REG	RW	8	0x21	0x35
LDO4_REG	RW	8	0x00	0x36
-DOT_I/LO	LVVV	U	UAUU	UXJU

Product Folder Links: TPS659119-Q1

Submit Documentation Feedback

⁽¹⁾ Register reset values are for fixed boot mode.

Table 12. TPS659119-Q1_FUNC_REG Register Summary⁽¹⁾ (continued)

Table 12. 11 00001	15 41	_i ONO_INEO Negistei	ounning (oonting	acu)
LD03_REG	RW	8	0x00	0x37
THERM_REG	RW	8	0x0D	0x38
BBCH_REG	RW	8	0x00	0x39
DCDCCTRL_REG	RW	8	0x39	0x3E
DEVCTRL_REG	RW	8	0x0000 0014	0x3F
DEVCTRL2_REG	RW	8	0x0000 0036	0x40
SLEEP_KEEP_LDO_ON_REG	RW	8	0x00	0x41
SLEEP_KEEP_RES_ON_REG	RW	8	0x00	0x42
SLEEP_SET_LDO_OFF_REG	RW	8	0x00	0x43
SLEEP_SET_RES_OFF_REG	RW	8	0x00	0x44
EN1_LDO_ASS_REG	RW	8	0x00	0x45
EN1_SMPS_ASS_REG	RW	8	0x00	0x46
EN2_LDO_ASS_REG	RW	8	0x00	0x47
EN2_SMPS_ASS_REG	RW	8	0x00	0x48
INT_STS_REG	RW	8	0x06	0x50
INT_MSK_REG	RW	8	0xFF	0x51
INT_STS2_REG	RW	8	0xA8	0x52
INT_MSK2_REG	RW	8	0xFF	0x53
INT_STS3_REG	RW	8	0x5A	0x54
INT_MSK3_REG	RW	8	0xFF	0x55
GPIO0_REG	RW	8	0x07	0x60
GPIO1_REG	RW	8	0x08	0x61
GPIO2_REG	RW	8	0x08	0x62
GPIO3_REG	RW	8	0x08	0x63
GPIO4_REG	RW	8	0x08	0x64
GPIO5_REG	RW	8	0x08	0x65
GPIO6_REG	RW	8	0x05	0x66
GPIO7_REG	RW	8	0x05	0x67
GPIO8_REG	RW	8	0x08	0x68
WATCHDOG_REG	RW	8	0x07	0x69
BOOTSEQVER_REG	RW	8	0x1E	0x6A
VMBCH2_REG	RW	8	0x00	0x6B
LED_CTRL1_REG	RW	8	0x00	0x6C
LED_CTRL2_REG1	RW	8	0x00	0x6D
PWM_CTRL1_REG	RW	8	0x00	0x6E
PWM_CTRL2_REG	RW	8	0x00	0x6F
SPARE_REG	RW	8	0x00	0x70
VERNUM_REG	RO	8	0x00	0x80

TPS659119-Q1_FUNC_REG REGISTER DESCRIPTIONS

Table 13. SECONDS_REG

Address Offset	0x00		
Physical Address		Instance	(RESET DOMAIN: FULL RESET)
Description	RTC register for seconds		
Туре	RW		

www.ti.com

SWCS106C - MARCH 2013-REVISED AUGUST 2013

7	6	5	4	3	2	1	0
Reserved		SEC1			SE		

Bits	Field Name	Description	Туре	Reset
7	Reserved	Reserved bit	RO R returns 0s	0
6:4	SEC1	Second digit of seconds (range is 0 up to 5)	RW	0x0
3:0	SEC0	First digit of seconds (range is 0 up to 9)	RW	0x0

Table 14. MINUTES REG

Address Offset	0x01		
Physical Address	!	Instance	(RESET DOMAIN: FULL RESET)
Description	RTC register for minutes		
Туре	RW		

7	6	5	4	3	2	1	0
Reserved		MIN1			MI	VO	

Bits	Field Name	Description	Туре	Reset
7	Reserved	Reserved bit	RO R returns 0s	0
6:4	MIN1	Second digit of minutes (range is 0 up to 5)	RW	0x0
3:0	MIN0	First digit of minutes (range is 0 up to 9)	RW	0x0

Table 15. HOURS_REG

Address Offset	0x02		
Physical Address		Instance	(RESET DOMAIN: FULL RESET)
Description	RTC register for hours		
Туре	RW		

7	6	5	4	3	2	1	0
PM_NAM	Reserved	HOU	JR1		HOU	JR0	

Bits	Field Name	Description	Туре	Reset
7	PM_NAM	Only used in PM_AM mode (otherwise it is set to 0) 0 is AM 1 is PM	RW	0
6	Reserved	Reserved bit	RO R returns 0s	0
5:4	HOUR1	Second digit of hours(range is 0 up to 2)	RW	0x0
3:0	HOUR0	First digit of hours (range is 0 up to 9)	RW	0x0

Table 16. DAYS_REG

Address Offset	0x03		
Physical Address		Instance	(RESET DOMAIN: FULL RESET)
Description	RTC register for days		
Туре	RW		

7	6	5	4	3	2	1	0
	Reserved	DA	.Y1			DAY0	
Bits	Field Name	Description				Туре	Reset
7:6	Reserved	Reserved bit				RO R returns 0s	0x0
5:4	DAY1	Second digit of d	lays (range is 0 ι	ıp to 3)		RW	0x0
3:0	DAY0	First digit of days	s (range is 0 up t	o 9)		RW	0x1
			Table 17. M	ONTHS_REG			
Address	Offset	0x04					
Physical	Address			Instance		(RESET DOMAIN:	FULL RESE
Descripti	on	RTC register for	months				
Туре		RW					
7	6	5	4	3	2	1	0
	Reserved	t	MONTH1		М	IONTH0	
Bits	Field Name	Description				Туре	Reset
7:5	Reserved	Reserved bit				RO R returns 0s	0x0
4	MONTH1	Second digit of n	nonths (range is	0 up to 1)		RW	0
3:0	MONTH0	First digit of mon	ths (range is 0 u	p to 9)		RW	0x1
			Table 18. \	EARS_REG			
Address	Offset	0x05					
Physical	Address			Instance		(RESET DOMAIN:	FULL RESE
Descripti	on	RTC register for	day of the week				
Туре		RW					
7	6	5	4	3	2	1	0
		YEAR1				YEAR0	
Bits	Field Name	Description				Туре	Reset
7:4	YEAR1	Second digit of y	rears (range is 0	up to 9)		RW	0x0
3:0	YEAR0	First digit of year	rs (range is 0 up	to 9)		RW	0x0
			Table 19. V	VEEKS_REG			
Address	Offset	0x06					
Physical				Instance		(RESET DOMAIN:	FULL RESE
Descripti	on	RTC register for	day of the week				
Туре		RW					

3

Product Folder Links: TPS659119-Q1

Reserved

WEEK

0

6

						_	
Bits	Field Name	Description				Туре	Reset
7:3	Reserved	Reserved bit				RO R returns 0s	0x00
2:0	WEEK	First digit of day of	the week (ran	ge is 0 up to 6)		RW	0
		Table	20. ALARI	M_SECONDS_RI	EG		
Address	Offset	0x08					
Physical	Address			Instance	(1	RESET DOMAIN:	FULL RESET
Descript	ion	RTC register for al	arm programm	ation for seconds			
Гуре		RW					
7	6	5	4	3	2	1	0
Reser	ved	ALARM_SEC1			ALARM.	_SEC0	
Dito	Field Name	Description				Tyma	Deset
Bits 7	Reserved	Description Reserved bit				Type RO	Reset 0
,	Reserved	Reserved bit				R returns 0s	U
6:4	ALARM_SEC1	Second digit of ala	rm programma	ation for seconds (ran	ge is 0 up to 5)	RW	0x0
3:0	ALARM_SEC0	First digit of alarm	programmatio	n for seconds (range i	s 0 up to 9)	RW	0x0
Address	Offset	0x09	e 21. ALAR	M_MINUTES_RE	i.G		
Physical	Address			Instance	(1	RESET DOMAIN:	FULL RESET
Descript	ion	RTC register for al	arm programm	ation for minutes			
Гуре		RW					
7	6	5	4	3	2	1	0
Reser	ved	ALARM_MIN1			ALARM	_MIN0	
				•			
Bits	Field Name	Description				Туре	Reset
7	Reserved	Reserved bit				RO R returns 0s	0
6:4	ALARM_MIN1	Second digit of ala	rm programma	ation for minutes (rang	ge is 0 up to 5)	RW	0x0
3:0	ALARM_MIN0	First digit of alarm	programmation	n for minutes (range is	s 0 up to 9)	RW	0x0
		Tab	le 22. ALAF	RM_HOURS_REG	3		
Address	Offset	0x0A					
Physical	Address			Instance	(1	RESET DOMAIN:	FULL RESET
Descript	ion	RTC register for al	arm programm	ation for hours			
Гуре		RW					
7	6	5	4	3	2	1	0
.RM_PM_NAM	Reserved	I ALARM_H	IOUR1		ALARM_	HOURO	
Щ,					, . <u></u> ,	1100110	

Bits	Field Name	Description	Type	Reset
7	ALARM_PM_NAM	Only used in PM_AM mode for alarm programmation (otherwise it is set to 0) 0 is AM 1 is PM	RW	0
6	Reserved	Reserved bit	RO R returns 0s	0
5:4	ALARM_HOUR1	Second digit of alarm programmation for hours(range is 0 up to 2)	RW	0x0
3:0	ALARM_HOUR0	First digit of alarm programmation for hours (range is 0 up to 9)	RW	0x0

Table 23. ALARM_DAYS_REG

Address Offset	0x0B		
Physical Address		Instance	(RESET DOMAIN: FULL RESET)
Description	RTC register for alarm progra	ammation for days	
Type	RW		

7	6	5	4	3	2	1	0
Res	erved	ALARN			ALARM	_DAY0	

Bits	Field Name	Description	Туре	Reset
7:6	Reserved	Reserved bit	RO R Special	0x0
5:4	ALARM_DAY1	Second digit of alarm programmation for days (range is 0 up to 3)	RW	0x0
3:0	ALARM_DAY0	First digit of alarm programmation for days (range is 0 up to 9)	RW	0x1

Table 24. ALARM_MONTHS_REG

Address Offset	0x0C		
Physical Address		Instance	(RESET DOMAIN: FULL RESET)
Description	RTC register for alarm pro	ogrammation for months	
Туре	RW		

7	6	5	4	3	2	1	0
	Reserved		ALARM_MONTH1		ALARM_I	MONTH0	

Bits	Field Name	Description	Type	Reset
7:5	Reserved	Reserved bit	RO R returns 0s	0x0
4	ALARM_MONTH1	Second digit of alarm programmation for months (range is 0 up to 1)	RW	0
3:0	ALARM_MONTH0	First digit of alarm programmation for months (range is 0 up to 9)	RW	0x1

Table 25. ALARM_YEARS_REG

Address Offset	0x0D		
Physical Address		Instance	(RESET DOMAIN: FULL RESET)
Description	RTC register for alarm prog	rammation for years	
Туре	RW		

7	6	5	4	3	2	1	0
	ALARM	_YEAR1			ALARM_	YEAR0	

Bits	Field Name	Description	Туре	Reset
7:4	ALARM_YEAR1	Second digit of alarm programmation for years (range is 0 up to 9)	RW	0x0
3:0	ALARM_YEAR0	First digit of alarm programmation for years (range is 0 up to 9)	RW	0x0

Table 26. RTC_CTRL_REG

Address Offset	0x10		
Physical Address		Instance	(RESET DOMAIN: FULL RESET)
Description	RTC control register: NOTES: A dummy read ROUND_30S bit value.		re each I ² C read in order to update the
Туре	RW		

7	6	5	4	3	2	1	0
RTC_V_OPT	GET_TIME	SET_32_COUNTER	TEST_MODE	MODE_12_24	AUTO_COMP	ROUND_30S	STOP_RTC

Bits	Field Name	Description	Type	Reset
7	RTC_V_OPT	RTC date/time register selection: 0: Read access directly to dynamic registers (SECONDS_REG, MINUTES_REG, HOURS_REG, DAYS_REG, MONTHS_REG, YEAR_REG, WEEKS_REG) 1: Read access to static shadowed registers: (see GET_TIME bit).	RW	0
6	GET_TIME	When writing a 1 into this register, the content of the dynamic registers (SECONDS_REG, MINUTES_REG, HOURS_REG, DAYS_REG, MONTHS_REG, YEAR_REG and WEEKS_REG) is transferred into static shadowed registers. Each update of the shadowed registers needs to be done by re-asserting GET_TIME bit to 1 (In effect: reset it to 0 and then re-write it to 1)	RW	0
5	SET_32_COUNTER	0: No action 1: set the 32-kHz counter with COMP_REG value. It must only be used when the RTC is frozen.	RW	0
4	TEST_MODE	inctional mode test mode (Auto compensation is enable when the 32-kHz counter reaches at its end)	RW	0
3	MODE_12_24	O: 24 hours mode 1: 12 hours mode (PM-AM mode) It is possible to switch between the two modes at any time without disturbed the RTC, read or write are always performed with the current mode.	RW	0
2	AUTO_COMP	No auto compensation Auto compensation enabled	RW	0
1	ROUND_30S	0: No update 1: When a one is written, the time is rounded to the closest minute. This bit is a toggle bit, the micro-controller can only write one and RTC clears it. If the micro-controller sets the ROUND_30S bit and then read it, the micro-controller reads one until the rounded to the closet.	RW	0
0	STOP_RTC	0: RTC is frozen 1: RTC is running	RW	0

Table 27. RTC_STATUS_REG

Address Offset	0x11		
Physical Address		Instance	(RESET DOMAIN: FULL RESET)
Description	RTC status register: NOTES: A dummy rea register value.	ad of this register is necessary before	e each I ² C read in order to update the status
Type	RW		

7	6	5	4	3	2	1	0
POWER_UP	ALARM	EVENT_1D	EVENT_1H	EVENT_1M	EVENT_1S	RUN	Reserved

Bits	Field Name	Description	Туре	Reset
7	POWER_UP	Indicates that a reset occurred (bit cleared to 0 by writing 1). POWER_UP is set by a reset, is cleared by writing one in this bit.	RW	1
6	ALARM	Indicates that an alarm interrupt is generated (bit clear by writing 1). The alarm interrupt keeps its low level, until the micro-controller write 1 in the ALARM bit of the RTC_STATUS_REG register. The timer interrupt is a low-level pulse (15 µs duration).	RW	0
5	EVENT_1D	One day has occurred	RO	0
4	EVENT_1H	One hour has occurred	RO	0
3	EVENT_1M	One minute has occurred	RO	0
2	EVENT_1S	One second has occurred	RO	0
1	RUN	O: RTC is frozen I: RTC is running This bit shows the real state of the RTC, indeed because of STOP_RTC signal was resynchronized on 32-kHz clock, the action of this bit is delayed.	RO	0
0	Reserved	Reserved bit	RO R returns 0s	0

Table 28. RTC_INTERRUPTS_REG

Address Offset	0x12		
Physical Address		Instance	(RESET DOMAIN: FULL RESET)
Description	RTC interrupt control register		
Туре	RW		

7	6	5	4	3	2	1	0
	Reserved		IT_SLEEP_MASK_EN	IT_ALARM	IT_TIMER	EVE	RY

Bits	Field Name	Description	Type	Reset
7:5	Reserved	Reserved bit	RO R returns 0s	0x0
4	IT_SLEEP_MASK_E N	1: Mask periodic interrupt while the TPS659119-Q1 device is in SLEEP mode. Interrupt event is back up in a register and occurred as soon as the TPS659119-Q1 device is no more in SLEEP mode. 0: Normal mode, no interrupt masked	RW	0
3	IT_ALARM	Enable one interrupt when the alarm value is reached (TC ALARM registers) by the TC registers	RW	0

Copyright © 2013, Texas Instruments Incorporated

Bits

2

1:0

SWCS106C -	-MARCH 20	113_RE\/IS	ED ALIGHS	T 2013

Description

Interrupt period 00: every second 01: every minute 10: every hour 11: every day

Enable periodic interrupt 0: interrupt disabled 1: interrupt enabled

Field Name

IT_TIMER

EVERY

	www.ti.com
Туре	Reset
RW	0
RW	0x0
	- -

Table 29. RTC_COMP_LSB_REG

Address Offset	0x13		
Physical Address		Instance	(RESET DOMAIN: FULL RESET)
Description	into RTC_COMP_MSB_REG &	ten in 2-complement. Hz oscillator period every hour, minter COMP_LSB_REG. period every hour, micro-controlle	icro-controller needs to write FFFF or needs to write 0001 into
Туре	RW		

7	6	5	4	3	2	1	0
RTC_COMP_LSB							

Bits	Field Name	Description	Type	Reset
7:0	RTC_COMP_LSB	This register contains the number of 32-kHz periods to be added into the 32-kHz counter every hour [LSB]	RW	0x00

Table 30. RTC_COMP_MSB_REG

Address Offset	0x14	
Physical Address	Instance	(RESET DOMAIN: FULL RESET)
Description	RTC compensation register (MSB) Notes: See RTC_COMP_LSB_REG Notes.	
Туре	RW	

RTC_COMP_MSB	7	6	5	4	3	2	1	0				
	RILLUDINE MASS											

Bits	Field Name	Description	Туре	Reset
7:0	RTC_COMP_MSB	This register contains the number of 32-kHz periods to be added into the 32-kHz counter every hour [MSB]	RW	0x00

Table 31. RTC_RES_PROG_REG

Address Offset	0x15	
Physical Address	Instance	(RESET DOMAIN: FULL RESET)
Description	RTC register containing oscillator resistance value	
Туре	RW	

7	6	5	4	3	2	1	0
Rese	rved			SW_RE	S_PROG		

Bits	Field Name	Description	Туре	Reset
7:6	Reserved	Reserved bit	RO	0x0
			R returns	
			0s	
5:0	SW_RES_PROG	Value of the oscillator resistance	RW	0x27

Table 32. RTC_RESET_STATUS_REG

Address Offset	0x16		
Physical Address		Instance	(RESET DOMAIN: FULL RESET)
Description	RTC register for reset status		
Туре	RW		

7	6	5	4	3	2	1	0
			Reserved				RESET_STATUS

Bits	Field Name	Description	Type	Reset
7:1	Reserved	Reserved bit	RO R returns 0s	0x0
0	RESET_STATUS	This bit can only be set to one and is cleared when a manual reset or a POR (VBAT < 2.1) occur. If this bit is reset it means that the RTC lost its configuration.	RW	0

Table 33. BCK1_REG

Address Offset	0x17				
Physical Address	Instance (RE	SET DOMAIN: FULL RESET)			
Description	tion Backup register which can be used for storage by the application firmware when the external h powered down. These registers retain their content as long as the VRTC is active.				
Туре	RW				

_												
	7	6	5	4	3	2	1	0				
	BCKUP											

Bits	Field Name	Description	Type	Reset
7:0	BCKUP	Backup bit	RW	0x00

Table 34. BCK2_REG

Address Offset		0x18					
Physical Address				Instance		(RESET DOMAIN	: FULL RESET)
Description		Backup register v powered down. T				ware when the ex	ternal host is
Туре		RW					
7	6	5	4	3	2	1	0
			BCI	KUP			

VCS1060						
Bits	Field Name	Description			Туре	Reset
7:0	BCKUP	Backup bit			RW	0x00
			Table 35. BCK3_RE	3		
ddress	Offset	0x19				
hysical	l Address		Instance		(RESET DOMAIN:	FULL RESE
escript	tion	powered down. T	which can be used for storage hese registers retain their con			ernal host is
уре		RW				
7	6	5	4 3	2	1	0
			BCKUP			
Bits	Field Name	Description			Туре	Reset
7:0	BCKUP	Backup bit			RW	0x00
		·		_		
			Table 36. BCK4_RE	3		
	Offset	0x1A				
-	l Address	5	Instance		(RESET DOMAIN:	
escript	tion	Backup register v powered down. T	vhich can be used for storage These registers retain their con	by the application fil tent as long as the \	rmware when the ext VRTC is active.	ernal host is
vpe		RW	3	Ü		
уре		RW				
ype 7	6	RW 5	4 3	2	1	0
	6		-		1	0
7		5	4 3			
	Field Name BCKUP	5 Description	4 3		1 Type RW	0 Reset 0x00
7 Bits	Field Name	5	4 3		Туре	Reset
7 Bits	Field Name	5 Description	4 3	2	Туре	Reset
7 Bits 7:0	Field Name BCKUP	5 Description	4 3 BCKUP	2	Туре	Reset
Bits 7:0	Field Name BCKUP	Description Backup bit	4 3 BCKUP	2	Туре	Reset 0x00
Bits 7:0 Address Physical	Field Name BCKUP GOffset Address	Description Backup bit 0x1B Backup register v powered down. T	4 3 BCKUP Table 37. BCK5_REG	2 3 by the application fi	Type RW (RESET DOMAIN:	Reset 0x00
Bits 7:0 Address Chysical	Field Name BCKUP GOffset Address	Description Backup bit 0x1B Backup register v	4 3 BCKUP Table 37. BCK5_REC Instance which can be used for storage	2 3 by the application fi	Type RW (RESET DOMAIN:	Reset 0x00
Bits 7:0 Address Physical	Field Name BCKUP GOffset Address tion	Description Backup bit 0x1B Backup register v powered down. T	4 3 BCKUP Table 37. BCK5_REC Instance which can be used for storage	2 3 by the application fi	Type RW (RESET DOMAIN:	Reset 0x00
Bits 7:0 Address Physical Descript	Field Name BCKUP GOffset Address Lion	Description Backup bit 0x1B Backup register value powered down. TRW	4 3 BCKUP Table 37. BCK5_REC Instance which can be used for storage hese registers retain their con	by the application filtent as long as the N	Type RW (RESET DOMAIN: rmware when the extended by the control of	Reset 0x00 FULL RESE ernal host is
Bits 7:0 Address Physical Descript Type 7	Field Name BCKUP S Offset I Address tion	Description Backup bit 0x1B Backup register v powered down. T RW	4 3 BCKUP Table 37. BCK5_REC Instance which can be used for storage these registers retain their con	by the application filtent as long as the N	Type RW (RESET DOMAIN: rmware when the extive.)	Reset 0x00 FULL RESE ernal host is
Bits 7:0 Address Physical Descript Type 7	Field Name BCKUP GOffset Address Honored Field Name	Description Backup bit 0x1B Backup register value powered down. Take RW 5 Description	4 3 BCKUP Table 37. BCK5_REC Instance which can be used for storage these registers retain their con	by the application filtent as long as the N	Type RW (RESET DOMAIN: rmware when the extive.) 1	Reset 0x00 FULL RESE ernal host is 0 Reset
Bits 7:0 Address Physical Descript	Field Name BCKUP S Offset I Address tion	Description Backup bit 0x1B Backup register v powered down. T RW	4 3 BCKUP Table 37. BCK5_REC Instance which can be used for storage these registers retain their con	by the application filtent as long as the N	Type RW (RESET DOMAIN: rmware when the extive.)	Reset 0x00 FULL RESE ernal host is
Bits 7:0 Address Physical Descript Type 7 Bits 7:0	Field Name BCKUP S Offset I Address Sion 6 Field Name BCKUP	Description Backup bit 0x1B Backup register very powered down. Telegraphic states and the second states are second states and the second states are second states and the second states are se	4 3 BCKUP Table 37. BCK5_REC Instance which can be used for storage these registers retain their con	by the application fittent as long as the V	Type RW (RESET DOMAIN: rmware when the extive.) 1	Reset 0x00 FULL RESE ernal host is 0 Reset
Bits 7:0 Address Physical Descript Type 7 Bits 7:0	Field Name BCKUP GOffset Address Honored Field Name	Description Backup bit 0x1B Backup register value powered down. Take RW 5 Description	Table 37. BCK5_RECONSTRUCTION Instance Which can be used for storage These registers retain their constant thei	by the application fittent as long as the V	Type RW (RESET DOMAIN: rmware when the extive.) 1	Reset 0x00 FULL RESE ernal host is 0 Reset
Bits 7:0 Address Physical Descript Type 7 Bits 7:0	Field Name BCKUP S Offset I Address Sion 6 Field Name BCKUP	Description Backup bit 0x1B Backup register very powered down. Telegraphic states and the second states are second states and the second states are second states and the second states are se	Table 37. BCK5_RECONSTRUCTION Instance Which can be used for storage These registers retain their constant thei	by the application fittent as long as the V	Type RW (RESET DOMAIN: rmware when the ext VRTC is active. 1 Type RW (RESET DOMAIN:	Reset 0x00 FULL RESE ernal host is 0 Reset 0x00
Bits 7:0 ddress chysical escript type 7 Bits 7:0	Field Name BCKUP 6 Offset I Address cion 6 Field Name BCKUP	Description Backup bit 0x1B Backup register very powered down. Telegraphic states and the second states are second states and the second states are second states and the second states are se	Table 37. BCK5_RECONSTRUCT Instance Which can be used for storage these registers retain their constant their	by the application fittent as long as the V	Type RW (RESET DOMAIN: rmware when the ext VRTC is active. 1 Type RW	Reset 0x00 FULL RESE ernal host is 0 Reset 0x00

7	6	5	4	3	2	1	0
Reserved	I2CCTLP	I2CSRP	PWRONP	SLEEPP	PWRHOLDP	HDRSTP	NRESPWRON2P

Bits	Field Name	Description	Туре	Reset
7	Reserved		RO	0
6	I2CCTLP	SDACTL and SCLCTL pullup control: 1: Pullup is enabled 0: Pullup is disabled	RW	0
5	I2CSRP	SDASR and SCLSR pullup control: 1: Pullup is enabled 0: Pullup is disabled	RW	0
4	PWRONP	PWRON pad pullup control: 1: Pullup is enabled 0: Pullup is disabled	RW	1
3	SLEEPP	SLEEP pad pulldown control: 1: Pulldown is enabled 0: Pulldown is disabled	RW	1
2	PWRHOLDP	PWRHOLD pad pulldown control: 1: Pulldown is enabled 0: Pulldown is disabled	RW	1
1	HDRSTP	HDRST pad pulldown control: 1: Pulldown is enabled 0: Pulldown is disabled	RW	1
0	NRESPWRON2P	NRESPWRON2 pad control: 1: Pulldown is enabled 0: Pulldown is disabled	RW	1

Table 39. REF_REG

Address Offset	0x1D	
Physical Address	Instance	(RESET DOMAIN: TURNOFF OFF RESET)
Description	Reference control register	
Туре	RO	

7	6	5	4	3	2	1	0
		Rese	erved			9	ST

Bits	Field Name	Description	Туре	Reset
7:2	Reserved	Reserved bit	RO R returns 0s	0x00
1:0	ST	Reference state: ST[1:0] = 00: Off ST[1:0] = 01: On high power (ACTIVE) ST[1:0] = 10: Reserved ST[1:0] = 11: On low power (SLEEP) (Write access available in test mode only)	RO	0x1

Table 40. VRTC_REG

Address Offset	0x1E	
Physical Address	Instance	(RESET DOMAIN: GENERAL RESET)
Description	VRTC internal regulator control register	

Table 40. VRTC_REG (continued)

Туре		RW					
7	6	5	4	3	2	1	0
	Rese	erved		VRTC_OFFMASK	Reserved	\$	ST

Bits	Field Name	Description	Type	Reset
7:4	Reserved	Reserved bit	RO R returns 0s	0x0
3	VRTC_OFFMASK	VRTC internal regulator off mask signal: when 1, the regulator keeps its full-load capability during device OFF state. when 0, the regulator enters in low-power mode during device OFF state. Note that VRTC is put in low-power mode when the device is on backup even if this bit is set to 1 (Default value: See boot configuration)	RW	0
2	Reserved	Reserved bit	RO R returns 0s	0
1:0	ST	Reference state: ST[1:0] = 00: Reserved ST[1:0] = 01: On high power (ACTIVE) ST[1:0] = 10: Reserved ST[1:0] = 11: On low power (SLEEP) (Write access available in test mode only)	RO	0x1

Table 41. VIO_REG

Address Offset	0x20		
Physical Address		Instance	(RESET DOMAIN: TURNOFF OFF RESET)
Description	VIO control register		
Туре	RW		

7	6	5	4	3	2	1	0
IL	М	Res	erved	SI	≣L	S	Т

Bits	Field Name	Description	Туре	Reset
7:6 TPS6591 19xAIPF PRQ1	ILIM	Current limit threshold selection: ILIM[1:0] = 00: 0.7 A ILIM[1:0] = 01: 1.2 A ILIM[1:0] = 10: 1.7 A ILIM[1:0] = 11: >1.7 A	RW	0x0
5:4	Reserved	Reserved bit	RO R returns 0s	0x0
3:2	SEL	Output voltage selection (EEPROM bits): SEL[1:0] = 00: 1.5 V SEL[1:0] = 01: 1.8 V SEL[1:0] = 10: 2.5 V SEL[1:0] = 11: 3.3 V (Default value: see boot configuration)	RW	0x0

Bits	Field Name	Description	Туре	Reset
1:0	ST	Supply state (EEPROM bits): ST[1:0] = 00: Off ST[1:0] = 01: On high power (ACTIVE) ST[1:0] = 10: Off ST[1:0] = 11: On low power (SLEEP)	RW	0x0

Table 42. VDD1_REG

Address Offset	0x21		
Physical Address		Instance	(RESET DOMAIN: TURNOFF OFF RESET)
Description	VDD1 control register		
Туре	RW		

7	6	5	4	3	2	1	0
VGAIN_SEL		ILMAX		TSTEP		S	T

Bits	Field Name	Description	Type	Reset
7:6	VGAIN_SEL	Select output voltage multiplication factor: G (EEPROM bits): when 00: x1 when 01: TBD when 10: x2 when 11: x3 (Default value: see boot configuration)	RW	0x0
5:4	ILMAX	Select current limit threshold: when 0: 1.2 A when 1: > 1.7 A	RW	0
3:2	TSTEP			0x3
1:0	ST	Supply state (EEPROM bits): ST[1:0] = 00: Off ST[1:0] = 01: On, high-power mode ST[1:0] = 10: Off ST[1:0] = 11: On, low-power mode	RW	0x0

Table 43. VDD1_OP_REG

Address Offset		0x22					
Physical Address				Instance	`	RESET DOMAIN ESET)	N: TURNOFF OFF
Description					oltage scaling I ² C ir	nterfaces deper	nding on
Туре		RW					
7	6	5	4	3	2	1	0
CMD				SFI			

www.ti.com

Bits	Field Name	Description	Type	Reset
7	CMD	when 0: VDD1_OP_REG voltage is applied when 1: VDD1_SR_REG voltage is applied	RW	0
6:0	SEL	Output voltage (4 EEPROM bits) selection with GAIN_SEL = 00 (G = 1, 12.5 mV per LSB): $SEL[6:0] = 1001011$ to 11111111: 1.5 V	RW	0x00
		 SEL[6:0] = 0111111: 1.35 V		
		 SEL[6:0] = 0110011: 1.2 V		
		SEL[6:0] = 0000001 to 0000011: 0.6 V SEL[6:0] = 0000000: Off (0.0 V) Note: from SEL[6:0] = 3 to 75 (dec) Vout = (SEL[6:0] × 12.5 mV + 0.5625 V) × G (Default value: See boot configuration)		

Table 44. VDD1_SR_REG

Address Offset	0x23		
Physical Address		Instance	(RESET DOMAIN: TURNOFF OFF RESET)
Description	VDD1 voltage selection This register can be ac on SR_CTL_I2C_SEL	ccessed by both control and voltage	ge scaling dedicated I ² C interfaces depending
Туре	RW		

7	6	5	4	3	2	1	0
Reserved				SEL			

Bits	Field Name	Description	Туре	Reset
7	Reserved	Reserved bit	RO R returns 0s	0
6:0	SEL	Output voltage selection with GAIN_SEL = 00 (G = 1, 12.5 mV per LSB): SEL[6:0] = 1001011 to 11111111: 1.5 V	RW	0x00
		 SEL[6:0] = 0111111: 1.35 V		
		 SEL[6:0] = 0110011: 1.2 V		
		SEL[6:0] = 0000001 to 0000011: 0.6 V SEL[6:0] = 0000000: Off (0.0 V) Note: from SEL[6:0] = 3 to 75 (dec) Vout = (SEL[6:0] × 12.5 mV + 0.5625 V) × G (Default value: See boot configuration)		

Table 45. VDD2_REG

Address Offset		0x24						
Physical Address Description		,				(RESET DOMAIN: RESET)	ESET DOMAIN: TURNOFF OFF ESET)	
		VDD2 control regis	VDD2 control register					
Туре		RW						
7	6	5	4	3	2	1	0	
VGAIN_SEL		ILMAX		TSTEP		S	Т	

Bits	Field Name	Description	Туре	Reset
7:6	VGAIN_SEL	Select output voltage multiplication factor (x1, x3 included in EEPROM bits): G when 00: x1 when 01: TBD when 10: x2 when 11: x3	RW	0x0
5:4	ILMAX	Select current limit threshold when 0: 1.2 A when 1: > 1.7 A	RW	0
3:2	TSTEP	Time step: when changing the output voltage, the new value is reached through successive 12.5 mV voltage steps (if not bypassed). The equivalent programmable slew rate of the output voltage is then:	RW	0x1
1:0	ST	Supply state (EEPROM bits): ST[1:0] = 00: Off ST[1:0] = 01: On, high-power mode ST[1:0] = 10: Off ST[1:0] = 11: On, low-power mode	RW	0x0

Table 46. VDD2_OP_REG

Address Offset	0x25		
Physical Address		Instance	(RESET DOMAIN: TURNOFF OFF RESET)
Description	VDD2 voltage selection re This register can be acce on SR_CTL_I2C_SEL reg	ssed by both control and voltag	ge scaling dedicated I ² C interfaces depending
Туре	RW		

7	6	5	4	3	2	1	0
CMD				SEL			

Bits	Field Name	Description	Туре	Reset
7	CMD	Command: when 0: VDD2_OP_REG voltage is applied when 1: VDD2_SR_REG voltage is applied	RW	0
6:0	SEL	Output voltage (4 EEPROM bits) selection with GAIN_SEL = 00 (G = 1, 12.5 mV per LSB): $SEL[6:0] = 1001011$ to 11111111: 1.5 V	RW	0x00
		 SEL[6:0] = 0111111: 1.35 V		
		SEL[6:0] = 0110011: 1.2 V		
		SEL[6:0] = 0000001 to 0000011: 0.6 V SEL[6:0] = 0000000: Off (0.0 V) Note: from SEL[6:0] = 3 to 75 (dec) Vout= (SEL[6:0] × 12.5 mV + 0.5625 V) × G		

Table 47. VDD2_SR_REG

Address Offset	0x26		
Physical Address		Instance	(RESET DOMAIN: TURNOFF OFF RESET)

Reserved

Table 47. VDD2_SR_REG (continued)

Description

VDD2 voltage selection register.
This register can be accessed by both control and voltage scaling dedicated I²C interfaces depending on SR_CTL_I2C_SEL register bit value.

Type

RW

7 6 5 4 3 2 1 0

SEL

Bits	Field Name	Description	Туре	Reset
7	Reserved	Reserved bit	RO R returns 0s	0
6:0	SEL	Output voltage (EEPROM bits) selection with GAIN_SEL = 00 (G = 1, 12.5 mV per LSB): SEL[6:0] = 1001011 to 11111111: 1.5 V	RW	0x00
		SEL[6:0] = 01111111: 1.35 V 		
		SEL[6:0] = 0110011: 1.2 V SEL[6:0] = 0000001 to 0000011: 0.6 V SEL[6:0] = 0000000: Off (0 V) Note: from SEL[6:0] = 3 to 75 (dec) Vout= (SEL[6:0] × 12.5 mV + 0.5625 V) × G		

Table 48. EXTCTRL REG

Address Offset 0x27

Physical Address Instance (RESET DOMAIN: TURNOFF OFF RESET)

Description EXTCTRL, external converter voltage controller

Type RW

7 6 5 4 3 2 1 0

Reserved ST

Bits	Field Name	Description	Туре	Reset
7:2	Reserved	Reserved bit	RO R returns 0s	0x00
1:0	ST	Supply state (EEPROM dependent): ST[1:0] = 00: Off ST[1:0] = 01: On ST[1:0] = 10: Off ST[1:0] = 11: On	RW	0x0

Table 49. EXTCTRL_OP_REG

Address Offset

Physical Address

Instance

(RESET DOMAIN: TURN OFF RESET)

Description

EXTCTRL voltage selection register.
This register can be accessed by both control and voltage scaling dedicated I²C interfaces depending on SR_CTL_I2C_SEL register bit value.

Type

RW

7	6	5	4	3	2	1	0
CMD				SEL			

Bits	Field Name	Description	Туре	Reset
7	CMD	Command: when 0: EXTCTRL_OP_REG voltage is applied when 1: EXTCTRL_SR_REG voltage is applied	RW	0
6:0	SEL	Resistive divider ratio selection (4 EEPROM bits): For SEL[6:0] = 3 to 67, Ratio = 48 / (45 + SEL[6:0]) SEL[6:0] = 67 to 127: 3/7 V/V SEL[6:0] = 66: 16/37 V/V	RW	0x00
		 SEL[6:0] = 35: 3/5 V/V		
		SEL[6:0] = 5: 24/25 V/V SEL[6:0] = 4: 48/49 V/V SEL[6:0] = 1 to 3: 1 V/V SEL[6:0] = 0 (EN signal low)		

Table 50. EXTCTRL_SR_REG

Address Offset 0x29

(RESET DOMAIN: TURN OFF RESET) **Physical Address** Instance

Description EXTCTRL voltage selection register.

This register can be accessed by both control and voltage scaling dedicated I²C interfaces depending on SR_CTL_I2C_SEL register bit value.

RW Type

7	6	5	4	3	2	1	0
Reserved				SEL			

Bits	Field Name	Description	Туре	Reset
7	Reserved		RO	0
6:0	SEL	Resistive divider ratio selection (4 EEPROM bits): For SEL[6:0] = 3 to 67, Ratio = 48 / (45 + SEL[6:0]) SEL[6:0] = 67 to 127: 3/7 V/V SEL[6:0] = 66: 16/37 V/V SEL[6:0] = 35: 3/5 V/V SEL[6:0] = 5: 24/25 V/V SEL[6:0] = 4: 48/49 V/V SEL[6:0] = 1 to 3: 1 V/V SEL[6:0] = 0 (EN signal low)	RW	0x03

Table 51. LDO1_REG

Address Offset		0x30							
Physical Address		Instance (RESET DOMAIN: TURNOFF OF RESET)							
Description		LDO1 regulator control register							
Туре		RW							
7	6	5	4	3	2	1	0		
		S	EL			S	ST.		

Bits	Field Name	Description	Туре	Reset
7:2	SEL	Supply voltage (EEPROM bits): SEL[7:2] = 00000: 000011: 1 V SEL[7:2] = 000100: 1 V SEL[7:2] = 000101: 1.05 V	RW	0x0
		SEL[7:2] = 110001: 3.25 V SEL[7:2] = 110010: 3.3 V (Default value: See boot configuration)		
1:0	ST	Supply state (EEPROM bits): ST[1:0] = 00: Off ST[1:0] = 01: On high power (ACTIVE) ST[1:0] = 10: Off ST[1:0] = 11: On low power (SLEEP)	RW	0x0

Table 52. LDO2_REG

Address Offset	0x31		
Physical Address	I	nstance	(RESET DOMAIN: TURNOFF OFF RESET)
Description	LDO2 regulator control register		
Туре	RW		

7	6	5	4	3	2	1	0
	SEL					S	ST

Bits	Field Name	Description	Туре	Reset
7:2 SEL	SEL	Supply voltage (EEPROM bits): SEL[7:2] = 00000: 000011: 1 V SEL[7:2] = 000100: 1 V SEL[7:2] = 000101: 1.05 V	RW	0x0
		SEL[7:2] = 110001: 3.25 V SEL[7:2] = 110010: 3.3 V (Default value: See boot configuration)		
1:0	ST	Supply state (EEPROM bits): ST[1:0] = 00: Off ST[1:0] = 01: On high power (ACTIVE) ST[1:0] = 10: Off ST[1:0] = 11: On low power (SLEEP)	RW	0x0

Table 53. LDO5_REG

Address Offset	0x32		
Physical Address		Instance	(RESET DOMAIN: TUROFF RESET)
Description	LDO5 regulator control register		
Туре	RW		

7	6	5	4	3	2	1	0
Reserved		SEL				S	ST

Bits	Field Name	Description	Туре	Reset
7	Reserved		RO R returns 0s	0
6:2	SEL	Supply voltage (EEPROM bits): SEL[6:2] = 00000: 1 V SEL[6:2] = 00001: 1 V SEL[6:2] = 00010: 1 V SEL[6:2] = 00011: 1.1 V SEL[6:2] = 11000: 3.2 V SEL[6:2] = 11001: 3.3 V (Default value: See boot configuration)	RW	0x00
1:0	ST	Supply state (EEPROM bits): ST[1:0] = 00: Off ST[1:0] = 01: On high power (ACTIVE) ST[1:0] = 10: Off ST[1:0] = 11: On low power (SLEEP)	RW	0x0

Table 54. LDO8_REG

Address Offset	0x33	
Physical Address	Instance	(RESET DOMAIN: TURNOFF OFF RESET)
Description	LDO8 regulator control register	
Туре	RW	

7	6	5	4	3	2	1	0
Reserved		SEL				S	T

Bits	Field Name	Description	Туре	Reset
7	Reserved		RO R returns 0s	0
6:2	SEL	Supply voltage (EEPROM bits): SEL[6:2] = 00000: 1 V SEL[6:2] = 00001: 1 V SEL[6:2] = 00010: 1 V SEL[6:2] = 00011: 1.1 V SEL[6:2] = 11000: 3.2 V SEL[6:2] = 11001: 3.3 V (Default value: See boot configuration)	RW	0x00
1:0	ST	Supply state (EEPROM bits): ST[1:0] = 00: Off ST[1:0] = 01: On high power (ACTIVE) ST[1:0] = 10: Off ST[1:0] = 11: On low power (SLEEP)	RW	0x0

Table 55. LDO7_REG

Address Offset		0x34							
Physical Address			Instance (RESET DOI RESET)				MAIN: TURNOFF OFF		
Description		LDO7 regulator	LDO7 regulator control register						
Туре		RW							
7	6	5	4	3	2	1	0		
Reserved		SEL				S	ST.		

18/18/18/		

Bits	Field Name	Description	Туре	Reset
7	Reserved		RO R returns 0s	0
6:2	SEL	Supply voltage (EEPROM bits): SEL[6:2] = 00000: 1 V SEL[6:2] = 00001: 1 V SEL[6:2] = 00010: 1 V SEL[6:2] = 00011: 1.1 V SEL[6:2] = 11000: 3.2 V SEL[6:2] = 11001: 3.3 V (Default value: See boot configuration)	RW	0x00
1:0	ST	Supply state (EEPROM bits): ST[1:0] = 00: Off ST[1:0] = 01: On high power (ACTIVE) ST[1:0] = 10: Off ST[1:0] = 11: On low power (SLEEP)	RW	0x0

Table 56. LDO6_REG

Address Offset	0x35	
Physical Address	Instance	(RESET DOMAIN: TURNOFF OFF RESET)
Description	LDO6 regulator control register	
Туре	RW	

7	6	5	4	3	2	1	0	
Reserved	SEL					ST		

Bits	Field Name	Description	Туре	Reset
7	Reserved		RO R returns 0s	0
6:2	SEL	Supply voltage (EEPROM bits): SEL[6:2] = 00000: 1 V SEL[6:2] = 00001: 1 V SEL[6:2] = 00010: 1 V SEL[6:2] = 00011: 1.1 V SEL[6:2] = 11000: 3.2 V SEL[6:2] = 11001: 3.3 V (Default value: See boot configuration)	RW	0x00
1:0	ST	Supply state (EEPROM bits): ST[1:0] = 00: Off ST[1:0] = 01: On high power (ACTIVE) ST[1:0] = 10: Off ST[1:0] = 11: On low power (SLEEP)	RW	0x0

Table 57. LDO4_REG

Address Offset		0x36						
Physical Addres	ss	Instance				(RESET DOMAIN: TURNOFF OFF RESET)		
Description		LDO4 regulator control register						
Туре		RW						
7	6	5	4	3	2	1	0	
SEL					ST			

Bits	Field Name	Description	Туре	Reset
7:2 SEL	SEL	Supply voltage (EEPROM bits): SEL[7:2] = 00000: 00000: 0.8 V SEL[7:2] = 00000: 000001: 0.85 V SEL[7:2] = 00000: 000010: 0.9 V SEL[7:2] = 000100: 1 V SEL[7:2] = 000101: 1.05 V	RW	0x00
		SEL[7:2] = 110001: 3.25 V SEL[7:2] = 110010: 3.3 V Applicable voltage selection TRACK LDO 0: 1 V to 3.3 V TRACK LDO 1: 0.8 V to 1.5 V (Default value: See boot configuration)		
1:0	ST	Supply state (EEPROM bits): ST[1:0] = 00: Off ST[1:0] = 01: On high power (ACTIVE) ST[1:0] = 10: Off ST[1:0] = 11: On low power (SLEEP)	RW	0x0

Table 58. LDO3_REG

Address Offset	0x37	
Physical Address	Instance	(RESET DOMAIN: TURNOFF OFF RESET)
Description	LDO3 regulator control register	
Туре	RW	

7	6	5	4	3	2	1	0
Reserved	SEL					S	ST

Bits	Field Name	Description	Туре	Reset
7 Reserved		RO R returns 0s	0	
6:2	SEL	Supply voltage (EEPROM bits): SEL[6:2] = 00000: 1 V SEL[6:2] = 00001: 1 V SEL[6:2] = 00010: 1 V SEL[6:2] = 00011: 1.1 V SEL[6:2] = 11000: 3.2 V SEL[6:2] = 11001: 3.3 V (Default value: See boot configuration)	RW	0x00
1:0	ST	Supply state (EEPROM bits): ST[1:0] = 00: Off ST[1:0] = 01: On high power (ACTIVE) ST[1:0] = 10: Off ST[1:0] = 11: On low power (SLEEP)	RW	0x0

Table 59. Therm_REG

Address Offset	0x38		
Physical Address	Inst	tance	(RESET DOMAIN:
Description	Thermal control register		bits[5:2]: GENERAL RESET
Туре	RW		bit[0] TURNOFF OFF RESET)

7	6	5	4	3	2	1	0
Res	eerved	THERM_HD	THERM_TS	THERM_	HDSEL	Reserved	THERM_STATE

Bits	Field Name	Description	Type	Reset
7:6	Reserved	Reserved bit	RO R returns 0s	0x0
5	THERM_HD	Hot die detector output: when 0: the hot die threshold is not reached when 1: the hot die threshold is reached	RO	0
4	THERM_TS	Thermal shutdown detector output: when 0: the thermal shutdown threshold is not reached when 1: the thermal shutdown threshold is reached	RO	0
3:2	THERM_HDSEL	Temperature selection for hot-die detector: when 00: Low temperature threshold when 11: High temperature threshold	RW	0x3
1	Reserved		RO R returns 0s	0
0	THERM_STATE	Thermal shutdown module enable signal: when 0: thermal shutdown module is disable when 1: thermal shutdown module is enable	RW	1

Table 60. BBCH_REG

Address Offset	0x39		
Physical Address		Instance	(RESET DOMAIN: GENERAL RESET)
Description	Back-up battery charger control re	gister	
Туре	RW		

	7 (6	5	4	3	2	1	0
Reserved					BBS	EL	BBCHEN	

Bits	Field Name	Description	Туре	Reset
7:3	Reserved	Reserved bit	RO R returns 0s	0x00
2:1	BBSEL	Back up battery charge voltage selection: BBSEL[1:0] = 00: 3 V BBSEL[1:0] = 01: 2.52 V BBSEL[1:0] = 10: 3.15 V BBSEL[1:0] = 11: VBAT	RW	0x0
0	BBCHEN	Back up battery charge enable	RW	0

Table 61. DCDCCTRL_REG

Address Offset	0x3E
Physical Address	Instance RESET DOMAIN: bits [7:3]: TURNOFF OFF RESET bits [2:0]: GENERAL RESET
Description	DCDC control register
Туре	RW

7	6	5	4	3	2	1	0
Reserved	TRACK	VDD2_PSKIP	VDD1_PSKIP	VIO_PSKIP	DCDCCKEXT	DCDCCKSYNC	

Bits	Field Name	Description	Type	Reset
7	Reserved	Reserved bit	RO R returns 0s	0
6	TRACK	1: Tracking mode: LDO4 output follows VDD1 setting when VDD1 active. See appendix for more information.	RW	0
		0: Normal LDO operation without tracking		
5	VDD2_PSKIP	VDD2 pulse skip mode enable (EEPROM bit) Default value: See boot configuration	RW	1
4	VDD1_PSKIP	VDD1 pulse skip mode enable (EEPROM bit) Default value: See boot configuration	RW	1
3	VIO_PSKIP	VIO pulse skip mode enable (EEPROM bit) Default value: See boot configuration	RW	1
2	DCDCCKEXT	This signal control the muxing of the GPIO2 pad: When 0: this pad is a GPIO When 1: this pad is used as input for an external clock used for the synchronisation of the DCDCs	RW	0
1:0	DCDCCKSYNC	DCDC clock configuration: DCDCCKSYNC[1:0] = 00: no synchronization of DCDC clocks DCDCCKSYNC[1:0] = 01: DCDC synchronous clock with phase shift DCDCCKSYNC[1:0] = 10: no synchronization of DCDC clocks DCDCCKSYNC[1:0] = 11: DCDC synchronous clock	RW	0x1

Table 62. DEVCTRL_REG

Address Offset	0x3F		
Physical Address		Instance	(RESET DOMAIN: GENERAL RESET)
Description	Device control register		
Туре	RW		

7	6	5	4	3	2	1	0
PWR_OFF_SEQ	RTC_PWDN	CK32K_CTRL	SR_CTL_I2C_SEL	DEV_OFF_RST	DEV_ON	DEV_SLP	DEV_OFF

Bits	Field Name	Description	Type	Reset
7	PWR_OFF_SEQ	When 1, power-off is sequential, reverse of power-on sequence (first resource to power on is the last to power off). When 0, all resources disabled at the same time	RW	0
6	RTC_PWDN	When 1, disable the RTC digital domain (clock gating and reset of RTC registers and logic). This register bit is not reset in BACKUP state.	RW	0
5	CK32K_CTRL	Internal 32-kHz clock source control bit (EEPROM bit): when 0, either the crystal oscillator or the external clock is used as the internal 32-kHz clock source when 1, the internal RC oscillator is used as the 32-kHz clock source.		0
4	SR_CTL_I2C_SEL	Voltage scaling registers access control bit: when 0: access to registers by voltage scaling I ² C when 1: access to registers by control I ² C. The voltage scaling registers are: VDD1_OP_REG, VDD1_SR_REG, VDD2_OP_REG, VDD2_SR_REG, EXTCTRL_OP_REG, and EXTCTRL_SR_REG.	RW	1

Bits	Field Name	Description	Type	Reset
3	DEV_OFF_RST	Writing 1 starts an ACTIVE-to-OFF or SLEEP-to-OFF device state transition (switch-off event) and activate reset of the digital core. This bit is cleared in OFF state.	RW	0
2	DEV_ON	Writing 1 maintains the device on (ACTIVE or SLEEP device state) (if DEV_OFF = 0 and DEV_OFF_RST = 0). EEPROM bit (Default value: See boot configuration)	RW	0
1	DEV_SLP	Writing 1 allows SLEEP device state (if DEV_OFF = 0 and DEV_OFF_RST = 0). Writing 0 starts an SLEEP-to-ACTIVE device state transition (wake-up event) (if DEV_OFF = 0 and DEV_OFF_RST = 0). This bit is cleared in OFF state.	RW	0
0	DEV_OFF	Writing 1 starts an ACTIVE-to-OFF or SLEEP-to-OFF device state transition (switch-off event). This bit is cleared in OFF state.	RW	0

Table 63. DEVCTRL2_REG

Address Offset	0x40	
Physical Address	Instance	(RESET DOMAIN: GENERAL RESET)
Description	Device control register	
Туре	RW	

7	6	5	4	3	2	1	0
Reserved	DCDC_SLEEP_LVL	TSLOT_	LENGTH	SLEEPSIG_POL	PWON_LP_OFF	PWON_LP_RST	IT_POL

Bits	Field Name	Description	Type	Reset
7	Reserved		RO R returns 0s	0
6	DCDC_SLEEP_LVL	When 1, DCDC output level in SLEEP mode is VDDx_SR_REG, to be other than 0 V. When 0, no effect	RW	0
5:4	TSLOT_LENGTH	Time slot duration programming (EEPROM bit): When 00: 0 μs When 01: 200 μs When 10: 500 μs When 11: 2 ms (Default value: See boot configuration)	RW	0x3
3	SLEEPSIG_POL	When 1, SLEEP signal active-high When 0, SLEEP signal active-low	RW	0
2	PWON_LP_OFF	When 1, allows device turn-off after a PWON Long Press (signal low) (EEPROM bits). (Default value: See boot configuration)	RW	1
1	PWON_LP_RST	When 1, allows digital core reset when the device is OFF (EEPROM bit). (Default value: See boot configuration)	RW	0
0	IT_POL	INT1 interrupt pad polarity control signal (EEPROM bit): When 0, active low When 1, active high (Default value: See boot configuration)	RW	0

Table 64. SLEEP_KEEP_LDO_ON_REG

Address Offset	0x41		
Physical Address		Instance	(RESET DOMAIN: GENERAL RESET)
Description	keeping the full load When control bit = 1, SLEEP state. When control bit = 0, then supply state car LDO regulator is off, When corresponding regulator state driver full power): - the regulator is set	capability of LDO regulator (ACTIVE LDO regulator full load capability (At the LDO regulator is set or stay in load be overwritten programming ST[1:0] control bit = 1 in EN1_ LDO_ASS result by SCLSR_EN1 signal low level (whoff if its corresponding Control bit = 0	gister (default setting): Configuration Register mode) during the SLEEP state of the device. CTIVE mode) is maintained during device ow-power mode during device SLEEP state(but I). There is no control bit value effect if the gister: Configuration Register setting the LDO men SCLSR_EN1 is high the regulator is on, or in SLEEP_KEEP_LDO_ON register (default) and control bit = 1 in SLEEP_KEEP_LDO_ON
Туре	RW		

7	6	5	4	3	2	1	0
LDO3_KEEPON	LDO4_KEEPON	LDO7_KEEPON	LDO8_KEEPON	LDO5_KEEPON	LD02_KEEPON	LDO1_KEEPON	LDO6_KEEPON

Bits	Field Name	Description	Туре	Reset
7	LDO3_KEEPON	Setting supply state during device SLEEP state or when SCLSR_EN1 is low	RW	0
6	LDO4_KEEPON	Setting supply state during device SLEEP state or when SCLSR_EN1 is low	RW	0
5	LDO7_KEEPON	Setting supply state during device SLEEP state or when SCLSR_EN1 is low	RW	0
4	LDO8_KEEPON	Setting supply state during device SLEEP state or when SCLSR_EN1 is low	RW	0
3	LDO5_KEEPON	Setting supply state during device SLEEP state or when SCLSR_EN1 is low	RW	0
2	LDO2_KEEPON	Setting supply state during device SLEEP state or when SCLSR_EN1 is low	RW	0
1	LDO1_KEEPON	Setting supply state during device SLEEP state or when SCLSR_EN1 is low	RW	0
0	LDO6_KEEPON	Setting supply state during device SLEEP state or when SCLSR_EN1 is low	RW	0

Table 65. SLEEP_KEEP_RES_ON_REG

Address Offset	0x42
Physical Address	Instance
Description	Configuration Register keeping, during the SLEEP state of the device (but then supply state can be overwritten programming ST[1:0]): - the full load capability of LDO regulator (ACTIVE mode), - The PWM mode of DCDC converter - 32-kHz clock output - Register access though I ² C interface (keeping the internal high speed clock on) - Die Thermal monitoring on There is no control bit value effect if the resource is off.
Туре	RW

7	6	5	4	3	2	1	0
THERM_KEEPON	CLKOUT32K_KEEPON	VRTC_KEEPON	I2CHS_KEEPON	Reserved	VDD2_KEEPON	VDD1_KEEPON	VIO_KEEPON

Bits	Field Name	Description	Type	Reset
7	THERM_KEEPON	When 1, thermal monitoring is maintained during device SLEEP state. When 0, thermal monitoring is turned off during device SLEEP state.	RW	0
6	CLKOUT32K_KEEPO N	When 1, CLK32KOUT output is maintained during device SLEEP state. When 0, CLK32KOUT output is set low during device SLEEP state.	RW	0
5	VRTC_KEEPON	When 1, LDO regulator full load capability (ACTIVE mode) is maintained during device SLEEP state. When 0, the LDO regulator is set or stays in low-power mode during device SLEEP state.	RW	0
4	I2CHS_KEEPON	When 1, high speed internal clock is maintained during device SLEEP state. When 0, high speed internal clock is turned off during device SLEEP state.	RW	0
3	Reserved		RO	0
2	VDD2_KEEPON	When 1, VDD2 SMPS PWM mode is maintained during device SLEEP state. No effect if VDD2 working mode is PFM. When 0, VDD2 SMPS PFM mode is set during device SLEEP state.	RW	0
1	VDD1_KEEPON	When 1, VDD1 SMPS PWM mode is maintained during device SLEEP state. No effect if VDD1 working mode is PFM. When 0, VDD1 SMPS PFM mode is set during device SLEEP state.	RW	0
0	VIO_KEEPON	When 1, VIO SMPS PWM mode is maintained during device SLEEP state. No effect if VIO working mode is PFM. When 0, VIO SMPS PFM mode is set during device SLEEP state.	RW	0

Table 66. SLEEP_SET_LDO_OFF_REG

Address Offset	0x43	
Physical Address	Instance	(RESET DOMAIN: GENERAL RESET)
Description	Configuration Register turning-off LDO regulator during the Corresponding *_KEEP_ON control bit in SLEEP_KEEP_I *_SET_OFF control bit effective	
Туре	RW	

7	6	5	4	3	2	1	0
LD03_SETOFF	LDO4_SETOFF	LDO7_SETOFF	LDO8_SETOFF	LDO5_SETOFF	LDO2_SETOFF	LDO1_SETOFF	LDO6_SETOFF

Bits	Field Name	Description	Type	Reset
7	LDO3_SETOFF	When 1, LDO regulator is turned off during device SLEEP state. When 0, No effect	RW	0
6	LDO4_SETOFF	When 1, LDO regulator is turned off during device SLEEP state. When 0, No effect	RW	0
5	LDO7_SETOFF	When 1, LDO regulator is turned off during device SLEEP state. When 0, No effect	RW	0

Bits	Field Name	Description	Туре	Reset
4	LDO8_SETOFF	When 1, LDO regulator is turned off during device SLEEP state. When 0, No effect	RW	0
3	LDO5_SETOFF	When 1, LDO regulator is turned off during device SLEEP state. When 0, No effect	RW	0
2	LDO2_SETOFF	When 1, LDO regulator is turned off during device SLEEP state. When 0, No effect	RW	0
1	LDO1_SETOFF	When 1, LDO regulator is turned off during device SLEEP state. When 0, No effect	RW	0
0	LDO6_SETOFF	When 1, LDO regulator is turned off during device SLEEP state. When 0, No effect	RW	0

Table 67. SLEEP_SET_RES_OFF_REG

Address Offset	0x44	
Physical Address	Instance	(RESET DOMAIN: GENERAL RESET)
Description	Configuration Register turning-off SMPS regulator during Corresponding *_KEEP_ON control bit in SLEEP_KEEP_*_SET_OFF control bit effective. Supplies voltage expect transition) can also be programmed.	RES_ON2 register should be 0 to make this
Туре	RW	

7	6	5	4	3	2	1	0
DEFAULT_VOLT	Rese	erved	SPARE_SETOFF	EXTCTRL_SETOFF	VDD2_SETOFF	VDD1_SETOFF	VIO_SETOFF

Bits	Field Name	Description	Type	Reset
7	DEFAULT_VOLT	When 1, default voltages (register value after switch-on) are applied to all resources during SLEEP-to-ACTIVE transition. When 0, voltages programmed before the ACTIVE-to-SLEEP state transition are used to turned-on supplies during SLEEP-to-ACTIVE state transition.	RW	0
6:5	Reserved		RO R returns 0s	0x0
4	SPARE_SETOFF	Spare bit	RW	0
3	EXTCTRL_SETOFF	When 1, SMPS is turned off during device SLEEP state. When 0, No effect.	RW	0
2	VDD2_SETOFF	When 1, SMPS is turned off during device SLEEP state. When 0, No effect.	RW	0
1	VDD1_SETOFF	When 1, SMPS is turned off during device SLEEP state. When 0, No effect.	RW	0
0	VIO_SETOFF	When 1, SMPS is turned off during device SLEEP state. When 0, No effect.	RW	0

Table 68. EN1_LDO_ASS_REG

Address Offset	0x45		
Physical Address		Instance	(RESET DOMAIN: TURNOFF RESET)

Table 68. EN1_LDO_ASS_REG (continued)

Description Configuration Register setting the LDO regulators, driven by the multiplexed SCLSR_EN1 signal.

When control bit = 1, LDO regulator state is driven by the SCLSR_EN1 control signal and is also defined though SLEEP_KEEP_LDO_ON register setting:

When SCLSR_EN1 is high the regulator is on,

When SCLSR_EN1 is low:

- the regulator is off if its corresponding Control bit = 0 in SLEEP_KEEP_LDO_ON register

- the regulator is working in low-power mode if its corresponding control bit = 1 in

SLEEP_KEEP_LDO_ON register

When control bit = 0 no effect: LDO regulator state is driven though registers programming and the

device state

Any control bit of this register set to 1 disables the I²C SR Interface functionality

Type RW

7	6	5	4	3	2	1	0
LDO3_EN1	LDO4_EN1	LDO7_EN1	LDO8_EN1	LDO5_EN1	LDO2_EN1	LDO1_EN1	LDO6_EN1

Bits	Field Name	Description	Туре	Reset
7	LDO3_EN1	Setting supply state control though SCLSR_EN1 signal	RW	0
6	LDO4_EN1	Setting supply state control though SCLSR_EN1 signal	RW	0
5	LDO7_EN1	Setting supply state control though SCLSR_EN1 signal	RW	0
4	LDO8_EN1	Setting supply state control though SCLSR_EN1 signal	RW	0
3	LDO5_EN1	Setting supply state control though SCLSR_EN1 signal	RW	0
2	LDO2_EN1	Setting supply state control though SCLSR_EN1 signal	RW	0
1	LDO1_EN1	Setting supply state control though SCLSR_EN1 signal	RW	0
0	LDO6_EN1	Setting supply state control though SCLSR_EN1 signal	RW	0

Table 69. EN1 SMPS ASS REG

Address Offset	0x46		
Physical Address		Instance	(RESET DOMAIN: TURNOFF

DescriptionConfiguration Register setting the SMPS Supplies driven by the multiplexed SCLSR_EN1 signal.
When control bit = 1. SMPS Supply state and voltage is driven by the SCLSR_EN1 control signal and

When control bit = 1, SMPS Supply state and voltage is driven by the SCLSR_EN1 control signal and is also defined though SLEEP_KEEP_RES_ON register setting.

When control bit = 0 no effect: SMPS Supply state is driven though registers programming and the device state.

Any control bit of this register set to 1 disables the I²C SR Interface functionality

Type RW

7	6	5	4	3	2	1	0
	Reserved		SPARE_EN1	EXTCTRL_EN1	VDD2_EN1	VDD1_EN1	VIO_EN1

Bits	Field Name	Description	Type	Reset
7:5	Reserved		RO R returns 0s	0x0
4	SPARE_EN1	Spare bit	RW	0
3	EXTCTRL_EN1	When control bit = 1: When EN1 is high the supply voltage is programmed though EXTCTRL_OP_REG register, and it can also be programmed off. When EN1 is low the supply voltage is programmed though EXTCTRL_SR_REG register, and it can also be programmed off. When control bit = 0: No effect: Supply state is driven though registers programming and the device state	RW	0

Bits	Field Name	Description	Type	Reset
2 VDD2_EN1		When control bit = 1: When SCLSR_EN1 is high the supply voltage is programmed though VDD2_OP_REG register, and it can also be programmed off. When SCLSR_EN1 is low the supply voltage is programmed though VDD2_SR_REG register, and it can also be programmed off. When SCLSR_EN1 is low and SLEEP_KEEP_RES_ON = 1 the SMPS is working in low-power mode, if not tuned off through VDD2_SR_REG register. When control bit = 0 No effect: Supply state is driven though registers programming and the device state	RW	0
1	VDD1_EN1	When 1: When SCLSR_EN1 is high the supply voltage is programmed though VDD1_OP_REG register, and it can also be programmed off. When SCLSR_EN1 is low the supply voltage is programmed though VDD1_SR_REG register, and it can also be programmed off. When SCLSR_EN1 is low and SLEEP_KEEP_RES_ON = 1 the SMPS is working in low-power mode, if not tuned off though VDD1_SR_REG register. When control bit = 0 no effect: supply state is driven though registers programming and the device state	RW	0
0	VIO_EN1	When control bit = 1, supply state is driven by the SCLSR_EN1 control signal and is also defined though SLEEP_KEEP_RES_ON register setting: When SCLSR_EN1 is high the supply is on, When SCLSR_EN1 is low: - the supply is off (default) or the SMPS is working in low-power mode if its corresponding control bit = 1 in SLEEP_KEEP_RES_ON register When control bit = 0 No effect: SMPS state is driven though registers programming and the device state	RW	0

Table 70. EN2_LDO_ASS_REG

Address Offset	0x47		
Physical Address		Instance	(RESET DOMAIN: TURNOFF RESET)
Description	When control bit = 1 defined though SLEE When SDASR_EN2 When SCLSR_EN2 - the regulator is off - the regulator is wor SLEEP_KEEP_LDO When control bit = 0 device state	LDO regulator state is driven by the EP_KEEP_LDO_ON register setting: is high the regulator is on, is low: f its corresponding Control bit = 0 in \$1 king in low-power mode if its corresponded.	onding control bit = $\overline{1}$ in en though registers programming and the
Туре	RW		

7	6	5	4	3	2	1	0
LDO3_EN2	LDO4_EN2	LDO7_EN2	LDO8_EN2	LDO5_EN2	LDO2_EN2	LDO1_EN2	LDO6_EN2

Bits	Field Name	Description	Type	Reset
7	LDO3_EN2	Setting supply state control though SDASR_EN2 signal	RW	0
6	LDO4_EN2	Setting supply state control though SDASR_EN2 signal	RW	0
5	LDO7_EN2	Setting supply state control though SDASR_EN2 signal	RW	0
4	LDO8_EN2	Setting supply state control though SDASR_EN2 signal	RW	0
3	LDO5_EN2	Setting supply state control though SDASR_EN2 signal	RW	0
2	LDO2_EN2	Setting supply state control though SDASR_EN2 signal	RW	0
1	LDO1_EN2	Setting supply state control though SDASR_EN2 signal	RW	0
0	LDO6_EN2	Setting supply state control though SDASR_EN2 signal	RW	0

Table 71. EN2_SMPS_ASS_REG

Address Offset	0x48					
Physical Address		Instance	(RESET DOMAIN: TURNOFF RESET)			
Description	When control bit = also defined though When control bit = device state	Configuration Register setting the SMPS Supplies driven by the multiplexed SDASR_EN2 signal. When control bit = 1, SMPS Supply state and voltage is driven by the SDASR_EN2 control signal and is also defined though SLEEP_KEEP_RES_ON register setting. When control bit = 0 no effect: SMPS Supply state is driven though registers programming and the				
Туре	RW					

7	6	5	4	3	2	1	0
	Reserved		SPARE_EN2	EXTCTRL_EN2	VDD2_EN2	VDD1_EN2	VIO_EN2

Bits	Field Name	Description	Туре	Reset
7:5	Reserved		RO R returns 0s	0x0
4	SPARE_EN2	Spare bit	RW	0
3	EXTCTRL_EN2	When control bit = 1: When EN2 is high the supply voltage is programmed though EXTCTRL_OP_REG register, and it can also be programmed off When EN2 is low the supply voltage is programmed though EXTCTRL_SR_REG register, and it can also be programmed off. When EN2 is low and EXTCTRL_KEEPON = 1 the SMPS is working in low-power mode, if not tuned off though EXTCTRL_SR_REG register. When control bit = 0 no effect: Supply state is driven though registers programming and the device state	RW	0
2	VDD2_EN2	When control bit = 1: When SDASR_EN2 is high the supply voltage is programmed though VDD2_OP_REG register, and it can also be programmed off. When SDASR_EN2 is low the supply voltage is programmed though VDD2_SR_REG register, and it can also be programmed off. When SDASR_EN2 is low and SLEEP_KEEP_RES_ON = 1 the SMPS is working in low-power mode, if not tuned off though VDD2_SR_REG register. When control bit = 0 no effect: Supply state is driven though registers programming and the device state	RW	0
1	VDD1_EN2	When control bit = 1: When SDASR_EN2 is high the supply voltage is programmed though VDD1_OP_REG register, and it can also be programmed off. When SDASR_EN2 is low the supply voltage is programmed though VDD1_SR_REG register, and it can also be programmed off. When SDASR_EN2 is low and SLEEP_KEEP_RES_ON = 1 the SMPS is working in low-power mode, if not tuned off though VDD1_SR_REG register. When control bit = 0 no effect: supply state is driven though registers programming and the device state	RW	0
0	VIO_EN2	When control bit = 1, supply state is driven by the SCLSR_EN2 control signal and is also defined though SLEEP_KEEP_RES_ON register setting: When SDASR _EN2 is high the supply is on, When SDASR _EN2 is low: - the supply is off (default) or the SMPS is working in low-power mode if its corresponding control bit = 1 in SLEEP_KEEP_RES_ON register When control bit = 0 no effect: SMPS state is driven though registers programming and the device state	RW	0

Table 72. INT_STS_REG

Address Offset	0x50		
Physical Address		Instance	(RESET DOMAIN: FULL RESET)
Description	Interrupt status register: The interrupt status bit is set cleared by writing 1.	to 1 when the associated in	terrupt event is detected. Interrupt status bit is
Type	RW/		

7	6	5	4	3	2	1	0
RTC_PERIOD_IT	RTC_ALARM_IT	HOTDIE_IT	PWRHOLD_R_IT	PWRON_LP_IT	PWRON_IT	Reserved	PWRHOLD_F_IT

Bits	Field Name	Description	Туре	Reset
7	RTC_PERIOD_IT	RTC period event interrupt status.	RW W1 to Clr	0
6	RTC_ALARM_IT	RTC alarm event interrupt status.	RW W1 to Clr	0
5	HOTDIE_IT	Hot-die event interrupt status.	RW W1 to Clr	0
4	PWRHOLD_R_IT	Rising PWRHOLD event interrupt status.	RW W1 to Clr	0
3	PWRON_LP_IT	PWRON Long Press event interrupt status.	RW W1 to Clr	0
2	PWRON_IT	PWRON event interrupt status.	RW W1 to Clr	0
1	Reserved	Reserved, always clear.	RW W1 to Clr	0
0	PWRHOLD_F_IT	Falling PWRHOLD event interrupt status.	RW W1 to Clr	0

Table 73. INT_MSK_REG

Address Offset	0x51	
Physical Address	Instance	(RESET DOMAIN: GENERAL RESET)
Description	Interrupt mask register: When *_IT_MSK is set to 1, the associated interrupt interrupt status bit is updated. When *_IT_MSK is set to 0, the associated interrupt updated.	, _
Туре	RW	

7	6	5	4	3	2	1	0
RTC_PERIOD_IT_MSK	RTC_ALARM_IT_MSK	HOTDIE_IT_MSK	PWRHOLD_R_IT_MSK	PWRON_LP_IT_MSK	PWRON_IT_MSK	Reserved	PWRHOLD_F_IT_MSK

Bits	Field Name	Description	Туре	Reset
7	RTC_PERIOD_IT_MS K	RTC period event interrupt mask.	RW	1
6	RTC_ALARM_IT_MS K	RTC alarm event interrupt mask.	RW	1
5	HOTDIE_IT_MSK	Hot die event interrupt mask.	RW	1
4	PWRHOLD_R_IT_MS K	PWRHOLD rising-edge event interrupt mask.	RW	1
3	PWRON_LP_IT_MSK	PWRON Long Press event interrupt mask.	RW	1
2	PWRON_IT_MSK	PWRON event interrupt mask.	RW	1
1	Reserved	Reserved, always masks.	RW	1
0	PWRHOLD_F_IT_MS K	PWRHOLD falling-edge event interrupt mask.	RW	1

Table 74. INT_STS2_REG

Address Offset	0x52				
Physical Address	Instance	(RESET DOMAIN: FULL RESET)			
Description	Interrupt status register: The interrupt status bit is set to 1 when the associated interrupt event is detected. Interrupt status bit is cleared by writing 1.				
Туре	RW				

7	6	5	4	3	2	1	0
GPIO3_F_IT	GPIO3_R_IT	GPIO2_F_IT	GPIO2_R_IT	GPIO1_F_IT	GPIO1_R_IT	GPIO0_F_IT	GPIO0_R_IT

Bits	Field Name	Description	Туре	Reset
7	GPIO3_F_IT	GPIO3 falling-edge detection interrupt status	RW W1 to Clr	0
6	GPIO3_R_IT	GPIO3 rising-edge detection interrupt status	RW W1 to Clr	0
5	GPIO2_F_IT	GPIO2 falling-edge detection interrupt status	RW W1 to Clr	0
4	GPIO2_R_IT	GPIO2 rising-edge detection interrupt status	RW W1 to Clr	0
3	GPIO1_F_IT	GPIO1 falling-edge detection interrupt status	RW W1 to Clr	0
2	GPIO1_R_IT	GPIO1 rising-edge detection interrupt status	RW W1 to Clr	0
1	GPIO0_F_IT	GPIO0 falling-edge detection interrupt status	RW W1 to Clr	0
0	GPIO0_R_IT	GPIO0 rising-edge detection interrupt status	RW W1 to Clr	0

Table 75. INT_MSK2_REG

Address Offset	0x53		
Physical Address		Instance	(RESET DOMAIN: GENERAL RESET)
Description	interrupt status bit is upda	ted.	sked: INT1 signal is not activated, but *_IT
Type	RW		

Submit Documentation Feedback

7	6	5	4	3	2	1	0
03_F_IT_MSK	03_R_IT_MSK	02_F_IT_MSK	02_R_IT_MSK	01_F_IT_MSK	01_R_IT_MSK	DO_F_IT_MSK	00_R_IT_MSK
GPIC							

Bits	Field Name Description		Туре	Reset
7	GPIO3_F_IT_MSK	GPIO3 falling-edge detection interrupt mask.	RW	1
6	GPIO3_R_IT_MSK	GPIO3 rising-edge detection interrupt mask.	RW	1
5	GPIO2_F_IT_MSK	GPIO2 falling-edge detection interrupt mask.	RW	1
4	GPIO2_R_IT_MSK	GPIO2 rising-edge detection interrupt mask.	RW	1
3	GPIO1_F_IT_MSK	GPIO1 falling-edge detection interrupt mask.	RW	1
2	GPIO1_R_IT_MSK	GPIO1 rising-edge detection interrupt mask.	RW	1
1	GPIO0_F_IT_MSK	GPIO0 falling-edge detection interrupt mask.	RW	1
0	GPIO0_R_IT _MSK	GPIO0 rising-edge detection interrupt mask.	RW	1

Table 76. INT_STS3_REG

Address Offset	0x54		
Physical Address		Instance	(RESET DOMAIN: FULL RESET)
Description	Interrupt status register: The interrupt status bit i cleared by writing 1.		nterrupt event is detected. Interrupt status bit is
Туре	RW		

7	6	5	4	3	2	1	0
PWRDN_IT	Reserved	Reserved	WTCHDG_IT	GPIO5_F_IT	GPIO5_R_IT	GPIO4_F_IT	GPIO4_R_IT

Bits	Field Name	Description	Туре	Reset
7	PWRDN_IT	PWRDN reset input high detected	RW W1 to Clr	0
6	Reserved	Always clear	RW W1 to Clr	0
5	Reserved	Always clear	RW W1 to Clr	0
4	WTCHDG_IT	Watchdog interrupt status	RW W1 to Clr	0
3	GPIO5_F_IT	GPIO5 falling-edge detection interrupt status	RW W1 to Clr	0
2	GPIO5_R_IT	GPIO5 rising-edge detection interrupt status	RW W1 to Clr	0
1	GPIO4_F_IT	GPIO4 falling-edge detection interrupt status	RW W1 to Clr	0
0	GPIO4_R_IT	GPIO4 rising-edge detection interrupt status	RW W1 to Clr	0

Table 77. INT_MSK3_REG

Address Offset	0x55		
Physical Address		Instance	(RESET DOMAIN: GENERAL RESET)

Table 77. INT_MSK3_REG (continued)

Description	Interrupt mask register: When *_IT_MSK is set to 1, the associated interrupt is masked: INT1 signal is not activated, but *_IT interrupt status bit is updated. When *_IT_MSK is set to 0, the associated interrupt is enabled: INT1 signal is activated, *_IT is updated.
Туре	RW

7	6	5	4	3	2	1	0
PWRDN_IT_MSK	Reserved	Reserved	WTCHDG_IT_MSK	GPIO5_F_IT_MSK	GPIO5_R_IT_MSK	GPIO4_F_IT_MSK	GPIO4_R_IT_MSK

Bits	Field Name	Description	Туре	Reset
7	PWRDN_IT_MSK	PWRDN interrupt mask	RW	1
6	Reserved	Always clear	RW	1
5	Reserved	Always clear	RW	1
4	WTCHDG_IT_MSK	Watchdog interrupt mask	RW	1
3	GPIO5_F_IT_MSK	GPIO5 falling-edge detection interrupt mask	RW	1
2	GPIO5_R_IT_MSK	GPIO5 rising-edge detection interrupt mask	RW	1
1	GPIO4_F_IT_MSK	GPIO4 falling-edge detection interrupt mask	RW	1
0	GPIO4_R_IT_MSK	GPIO4 rising-edge detection interrupt mask	RW	1

Table 78. GPIO0_REG

Address Offset	0x60		
Physical Address		Instance	(RESET DOMAIN: GENERAL RESET)
Description	GPIO0 configuration register		
Туре	RW		

7	6	5	4	3	2	1	0
GPIO_SLEEP	Reserved	GPIO_ODEN	GPIO_DEB	GPIO_PDEN	GPIO_CFG	GPIO_STS	GPIO_SET

Bits	Field Name	Description	Туре	Reset
7	GPIO_SLEEP	1: as GPO, force low 0: No impact, keep as in active mode	RW	0
6	Reserved	Reserved bit	RO R returns 0s	0
5	GPIO_ODEN	Selection of output mode, EEPROM bit 0: Push-pull output 1: Open-drain output (Default value: See boot configuration) GPIO assigned to power-up sequence, this bit is set to 1 by a TURNOFF reset	RW	0
4	GPIO_DEB	GPIO input debouncing time configuration: When 0, the debouncing is 91.5 µs using a 30.5-µs clock rate When 1, the debouncing is 150 ms using a 50-ms clock rate	RW	0
3	GPIO_PDEN	GPIO pad pulldown control: 1: Pulldown is enabled 0: Pulldown is disabled	RW	0

Bits	Field Name	Description	Type	Reset
2	GPIO_CFG	Configuration of the GPIO pad direction: When 0, the pad is configured as an input When 1, the pad is configured as an output (Default value: See boot configuration)	RW	0
1	GPIO_STS	Status of the GPIO pad	RO	1
0	GPIO_SET	Value set on the GPIO output when configured in output mode GPIO assigned to power-up sequence, this bit is in TURNOFF reset	RW	0

Table 79. GPIO1_REG

Address Offset	0x61		
Physical Address	Ir	nstance	(RESET DOMAIN: GENERAL
Description	GPIO1 configuration register		RESET)
Tyne	RW		

7	6	5	4	3	2	1	0
Reserve	ed	GPIO_SEL	GPIO_DEB	GPIO_PDEN	GPIO_CFG	GPIO_STS	GPIO_SET

Bits	Field Name	Description	Type	Reset
7:6	Reserved		RO R returns 0s	0x0
5	GPIO_SEL	Select signal to be available at GPIO when configured as output: 0: GPIO_SET 1: LED1 out	RW	0
4	GPIO_DEB	GPIO input debouncing time configuration: When 0, the debouncing is 91.5 μs using a 30.5-μs clock rate When 1, the debouncing is 150 ms using a 50-ms clock rate	RW	0
3	GPIO_PDEN	GPIO pad pulldown control: 1: Pulldown is enabled 0: Pulldown is disabled	RW	1
2	GPIO_CFG	Configuration of the GPIO pad direction: When 0, the pad is configured as an input When 1, the pad is configured as an output	RW	0
1	GPIO_STS	Status of the GPIO pad	RO	1
0	GPIO_SET	Value set on the GPIO output when configured in output mode	RW	0

Table 80. GPIO2_REG

Address Offset	0x62		
Physical Address		Instance	(RESET DOMAIN: GENERAL
			RESET)
Description	GPIO2 configuration register		
Туре	RW		

7	6	5	4	3	2	1	0
GPIO_SLEEP	Reserved		GPIO_DEB	GPIO_PDEN	GPIO_CFG	GPIO_STS	GPIO_SET

Bits	Field Name	Description	Туре	Reset
7	GPIO_SLEEP	1: as GPO, force low 0: no impact, keep as in active mode	RW	0
6:5	Reserved		RO R returns 0s	0x0

Bits	Field Name	Description	Type	Reset
4	GPIO_DEB	GPIO input debouncing time configuration: When 0, the debouncing is 91.5 µs using a 30.5-µs clock rate When 1, the debouncing is 150 ms using a 50-ms clock rate	RW	0
3	GPIO_PDEN	GPIO pad pulldown control: 1: Pulldown is enabled 0: Pulldown is disabled GPIO assigned to power-up sequence, this bit is set to 0 by a TURNOFF reset	RW	1
2	GPIO_CFG	Configuration of the GPIO pad direction: When 0, the pad is configured as an input When 1, the pad is configured as an output (Default value: See boot configuration) GPIO assigned to power-up sequence, this bit is set to 1 by a TURNOFF reset	RW	0
1	GPIO_STS	Status of the GPIO pad	RO	1
0	GPIO_SET	Value set on the GPIO output when configured in output mode GPIO assigned to power-up sequence, this bit is in TURNOFF reset	RW	0

Table 81. GPIO3_REG

Address Offset	0x63	
Physical Address	Instance	(RESET DOMAIN: GENERAL RESET)
Description	GPIO3 configuration register	
Туре	RW	

7	6	5	4	3	2	1	0
Reserved	GPIO_SEL		GPIO_DEB	GPIO_PDEN	GPIO_CFG	GPIO_STS	GPIO_SET

Bits	Field Name	Description	Type	Reset
7	Reserved		RO R returns 0s	0
6:5	GPIO_SEL	Select signal to be available at GPIO when configured as output: 00: GPIO_SET 01: LED2 out 10: PWM out	RW	0x0
4	GPIO_DEB	GPIO input debouncing time configuration: When 0, the debouncing is 91.5 µs using a 30.5-µs clock rate When 1, the debouncing is 150 ms using a 50-ms clock rate	RW	0
3	GPIO_PDEN	GPIO pad pulldown control: 1: Pulldown is enabled 0: Pulldown is disabled	RW	1
2	GPIO_CFG	Configuration of the GPIO pad direction: When 0, the pad is configured as an input When 1, the pad is configured as an output	RW	0
1	GPIO_STS	Status of the GPIO pad	RO	1
0	GPIO_SET	Value set on the GPIO output when configured in output mode	RW	0

Table 82. GPIO4_REG

Address Offset	0x64		
Physical Address		Instance	(RESET DOMAIN: GENERAL RESET)
Description	GPIO4 configuration register		
Туре	RW		

7	6	5	4	3	2	1	0
Reserved			GPIO_DEB	GPIO_PDEN	GPIO_CFG	GPIO_STS	GPIO_SET

Bits	Field Name	Description	Туре	Reset
7:5	Reserved		RO R returns 0s	0x0
4	GPIO_DEB	GPIO input debouncing time configuration: When 0, the debouncing is 91.5 µs using a 30.5-µs clock rate When 1, the debouncing is 150 ms using a 50-ms clock rate	RW	0
3	GPIO_PDEN	GPIO pad pulldown control: 1: Pulldown is enabled 0: Pulldown is disabled	RW	1
2	GPIO_CFG	Configuration of the GPIO pad direction: When 0, the pad is configured as an input When 1, the pad is configured as an output	RW	0
1	GPIO_STS	Status of the GPIO pad	RO	1
0	GPIO_SET	Value set on the GPIO output when configured in output mode	RW	0

Table 83. GPIO5_REG

Address Offset 0x65

Physical Address Instance (RESET DOMAIN: GENERAL

RESET)

Description GPIO5 configuration register

Type RW

7	6	5	4	3	2	1	0
Reserved			GPIO_DEB	GPIO_PDEN	GPIO_CFG	GPIO_STS	GPIO_SET

Bits	Field Name	Description	Туре	Reset
7:5	Reserved		RO R returns 0s	0x0
4	GPIO_DEB	GPIO input debouncing time configuration: When 0, the debouncing is 91.5 µs using a 30.5-µs clock rate When 1, the debouncing is 150 ms using a 50-ms clock rate	RW	0
3	GPIO_PDEN	GPIO pad pulldown control: 1: Pulldown is enabled 0: Pulldown is disabled	RW	1
2	GPIO_CFG	Configuration of the GPIO pad direction: When 0, the pad is configured as an input When 1, the pad is configured as an output	RW	0
1	GPIO_STS	Status of the GPIO pad	RO	1
0	GPIO_SET	Value set on the GPIO output when configured in output mode	RW	0

Table 84. GPIO6_REG

Address Offset	0x66		
Physical Address		Instance	(RESET DOMAIN: GENERAL RESET)
Description	GPIO6 configuration register		

Type RW

7	6	5	4	3	2	1	0
GPIO_SLEEP	Reserved		GPIO_DEB	GPIO_PDEN	GPIO_CFG	GPIO_STS	GPIO_SET

18/18/18/	4:	

Bits	Field Name	Description	Туре	Reset
7	GPIO_SLEEP	1: as GPO, force low 0: no impact, keep as in active mode	RW	0
6:5	Reserved		RO R returns 0s	0x0
4	GPIO_DEB	GPIO input debouncing time configuration: When 0, the debouncing is 91.5 µs using a 30.5-µs clock rate When 1, the debouncing is 150 ms using a 50-ms clock rate	RW	0
3	GPIO_PDEN	GPIO pad pulldown control: 1: Pulldown is enabled 0: Pulldown is disabled GPIO assigned to power-up sequence, this bit is set to 0 by a TURNOFF reset	RW	1
2	GPIO_CFG	Configuration of the GPIO pad direction: When 0, the pad is configured as an input When 1, the pad is configured as an output (Default value: See boot configuration) GPIO assigned to power-up sequence, this bit is set to 1 by a TURNOFF reset		0
1	GPIO_STS	Status of the GPIO pad	RO	1
0	GPIO_SET	Value set on the GPIO output when configured in output mode GPIO assigned to power-up sequence, this bit is in TURNOFF reset	RW	0

Table 85. GPIO7_REG

Address Offset	0x67		
Physical Address		Instance	(RESET DOMAIN: GENERAL RESET)
			NEGET)
Description	GPIO7 configuration register		
Туре	RW		

7	6	5	4	3	2	1	0
GPIO_SLEEP	Reserved		GPIO_DEB	GPIO_PDEN	GPIO_CFG	GPIO_STS	GPIO_SET

Bits	Field Name	Description	Туре	Reset
7	GPIO_SLEEP	1: as GPO, force low 0: no impact, keep as in active mode	RW	0
6:5	Reserved		RO R returns 0s	0x0
4	GPIO_DEB	GPIO input debouncing time configuration: When 0, the debouncing is 91.5 µs using a 30.5-µs clock rate When 1, the debouncing is 150 ms using a 50-ms clock rate	RW	0
3	GPIO_PDEN	GPIO pad pulldown control: 1: Pulldown is enabled 0: Pulldown is disabled GPIO assigned to power-up sequence, this bit is set to 0 by a TURNOFF reset	RW	1
2	GPIO_CFG	Configuration of the GPIO pad direction: When 0, the pad is configured as an input When 1, the pad is configured as an output (Default value: See boot configuration) GPIO assigned to power-up sequence, this bit is set to 1 by a TURNOFF reset		0
1	GPIO_STS	Status of the GPIO pad	RO	1
0	GPIO_SET	Value set on the GPIO output when configured in output mode GPIO assigned to power-up sequence, this bit is in TURNOFF reset	RW	0

Table 86. GPIO8_REG

Address Offset	0x68
----------------	------

(RESET DOMAIN: GENERAL **Physical Address** Instance

RESET)

Description GPIO8 configuration register

Type RW

7 6	5	4	3	2	1	0
Reserved	GPIO_SEL	GPIO_DEB	GPIO_PDEN	GPIO_CFG	GPIO_STS	GPIO_SET

Bits	Field Name	Description	Туре	Reset
7:6	Reserved		RO R returns 0s	0x0
5	GPIO_SEL	Select signal to be available at GPIO when configured as output: 0: GPIO_SET 1: LED1 out	RW	0
4	GPIO_DEB	GPIO input debouncing time configuration: When 0, the debouncing is 91.5 µs using a 30.5-µs clock rate When 1, the debouncing is 150 ms using a 50-ms clock rate	RW	0
3	GPIO_PDEN	GPIO pad pulldown control: 1: Pulldown is enabled 0: Pulldown is disabled	RW	1
2	GPIO_CFG	Configuration of the GPIO pad direction: When 0, the pad is configured as an input When 1, the pad is configured as an output	RW	0
1	GPIO_STS	Status of the GPIO pad	RO	1
0	GPIO_SET	Value set on the GPIO output when configured in output mode	RW	0

Table 87. WATCHDOG_REG

Address Offset	0x69		
Physical Address		Instance	(RESET DOMAIN: GENERAL RESET)
Description	Watchdog		
Туре	RW		

7	6	5	4	3	2	1	0
	Rese	erved		WTCHDG_MODE		WTCHDG_TIME	

Bits	Field Name	Description	Туре	Reset
7:4	Reserved		RO R returns 0s	0x0
3	WTCHDG_MODE	O: Periodic operation: A periodical interrupt is generated based on WTCHDG_TIME setting. IC generates WTCHDOG shutdown if interrupt is not cleared during the period. I: Interrupt mode: IC generates WTCHDOG shutdown if an interrupt is pending (no cleared) more than WTCHDG_TIME s.	RW	0

Product Folder Links: TPS659119-Q1

Copyright © 2013, Texas Instruments Incorporated

WCS106C	-MARCH 2013-REVISED	AUGUST 2013					www.ti.c
Bits	Field Name	Description				Туре	Reset
2:0	WTCHDG_TIME	000: Watchdog dis 001: 5 seconds 010: 10 seconds 011: 20 Seconds 100: 40 seconds 101: 60 seconds 110: 80 seconds 111: 100 seconds (Default value: Sec	(EEPROM bit)	ation)		RW	0x0
		Tak	ole 88. BOC	TSEQVER_REC	a		
Address	Offset	0x6A					
Physical Address				Instance		(RESET DOMAIN: RESET)	GENERAL
Descripti	on	Comparator contro	l register				
Туре		RW					
7	6	5	4	3	2	1	0
	Reserved		ı	BOOTSEQVER_SEL	-		Reserved
Bits	Field Name	Description				Туре	Reset
7:6	Reserved					RO R returns 0s	0x0
5:1	BOOTSEQVER_SEL	EEPROM Boot Se	quence Version	n		RW	0x00
0	Reserved					RO R returns 0s	0
			Table 89.	RESERVED			
Address	Offset	0x6B					
-	Address			Instance		(RESET DOMAIN: RESET)	GENERAL
Descripti	on	Reserved					
Туре		RW					
7	6	5	4	3	2	1	0
	Reserved			Reserved			VMBDCH2_DEB
Bits	Field Name	Description				Туре	Reset

Bits	Field Name	Description	Туре	Reset
7:6	Reserved		RO R returns 0s	0x0
5:1	Reserved		RW	0x00
0	Reserved		RW	0

Table 90. LED_CTRL1_REG

Address Offset	0x6C		
Physical Address		Instance	(RESET DOMAIN: GENERAL RESET)

Table 90. LED_CTRL1_REG (continued)

Description	LED ON/OFF control register.
Туре	RW

7	6	5	4	3	2	1	0
Reserved			LED2_PERIOD			LED1_PERIOD	

Bits	Field Name	Description	Туре	Reset
7:6	Reserved		RO R returns 0s	0x0
5:3	LED2_PERIOD	Period of LED2 signal: 000: LED2 OFF 001: 0.125 s 010: 0.25 s 	RW	0x0
		110: 4 s 111: 8 s		
2:0	LED1_PERIOD	Period of LED1 signal: 000: LED1 OFF 001: 0.125 s 010: 0.25 s	RW	0x0
		 10: 2 s 110: 4 s		
		111: 8 s		

Table 91. LED_CTRL2_REG1

Address Offset	0x6D		
Physical Address		Instance	(RESET DOMAIN: GENERAL RESET)

Description LED ON/OFF control register.

Type RW

7	6	5	4	3	2	1	0
Reserved		LED2_SEQ	LED1_SEQ	LED2_O	LED2_ON_TIME		N_TIME

Bits	Field Name	Description	Type	Reset
7:6	Reserved		RO R returns 0s	0x0
5	LED2_SEQ	When 1, LED2 repeats 2 pulse sequence: ON (ON_TIME) - OFF (ON TIME) - ON (ON TIME) - OFF remainder of the period When 0, LED2 generates 1 pulse: ON (ON_TIME) - OFF (ON TIME))	RW	0
4	LED1_SEQ	When 1, LED1 repeats 2 pulse sequence: ON (ON_TIME) - OFF (ON TIME) - ON (ON TIME) - OFF remainder of the period. When 0, LED1 generates 1 pulse: ON (ON_TIME) - OFF (ON TIME))	RW	0
3:2	LED2_ON_TIME	LED2 ON time: 00: 62.5 ms 01: 125 ms 10: 250 ms 11: 500 ms	RW	0x0
1:0	LED1_ON_TIME	LED1 ON time: 00: 62.5 ms 01: 125 ms 10: 250 ms 11: 500 ms	RW	0x0

SWCS106C	C-MARCH 2013-REVISED	AUGUST 2013					www.ti.co	
		Table	92. P	WM_CTRL1_REG				
Address	Offset	0x6E						
Physical Address Description		Instance			(RESET DOMAIN: RESET)	GENERAL		
		PWM frequency						
Гуре		RW						
7	6	5	4	3	2	1	0	
		Reserved				PWM_	FREQ	
Bits	Field Name	Description				Туре	Reset	
7:2	Reserved	Reserved bit				RO	0x00	
						R returns 0s		
1:0	PWM_FREQ	Frequency of PWM:				RW	0x0	
		00: 500 Hz 01: 250 Hz						
		10: 125 Hz						
		11: 62.5 Hz						
		Table	93. P	WM_CTRL2_REG				
Address		0x6F						
-	Address			Instance		(RESET DOMAIN: RESET)	GENERAL	
Descripti	ion	PWM duty cycle.						
Гуре		RW						
7	6	5	4	3	2	1	0	
			FREQ_	_DUTY_CYCLE				
Bits	Field Name	Description				Туре	Reset	
7:0	FREQ_DUTY_CYCLE					RW	0x00	
7.0	11.EQ_D011_010EE	00000000: 0/256				1777	0,000	
		 11111111: 255/256						
		-						
A .1 .1	0111		ible 94	I. SPARE_REG				
Address		0x70		Instance		(DECET DOMAIN)	CULL DECET	
-	Address	On one formational newist		instance		(RESET DOMAIN:	FULL RESET	
Descripti	ion	Spare functional regist	lei					
Гуре		RW						
7	6	5	4	3	2	1	0	
				SPARE				
Bits	Field Name	Description				Туре	Reset	
7:0	SPARE	Spare bits				RW	0x00	
		Tak	ole 95.	VERNUM_REG				
Address	Offset	0x80						
Physical	Address			Instance		(RESET DOMAIN:	FULL RESET	
Descripti		Silicon version numbe	r					
Туре		RW						
7 F								

Submit Documentation Feedback

7	6	5	4	3	2	1	0
READ_BOOT	Reserved				VER	NUM	

Bits	Field Name	Description	Туре	Reset
7	READ_BOOT	To enable the read of the BOOT mode if you want to enter JTAG mode, this be must set to 1.	RW	0
6:4	Reserved	Reserved bit	RO R returns 0s	0x0
3:0	VERNUM	Value depending on silicon version number 0000 - Revision 1.0	RO	0x0

GLOSSARY

ACRONYMS, ABBREVIATIONS, AND DEFINITIONS

ACRONYM	DEFINITION
DDR	Dual-Data Rate (memory)
ES	Engineering Sample
ESD	Electrostatic Discharge
FET	Field Effect Transistor
EPC	Embedded Power Controller
FSM	Finite State Machine
GND	Ground
GPIO	General-Purpose I/O
НВМ	Human Body Model
HD	Hot-Die
HS-I ² C	High-Speed I ² C
I ² C	Inter-Integrated Circuit
IC	Integrated Circuit
ID	Identification
IDDQ	Quiescent Supply Current
IEEE	Institute of Electrical and Electronics Engineers
IR	Instruction Register
I/O	Input/Output
JEDEC	Joint Electron Device Engineering Council
JTAG	Joint Test Action Group
LBC7	Lin Bi-CMOS 7 (360 nm)
LDO	Low Drop Output Voltage Linear Regulator
LP	Low-Power Application Mode
LSB	Least Significant Bit
MMC	Multimedia Card
MOSFET	Metal Oxide Semiconductor Field Effect Transistor
NVM	Nonvolatile Memory
OD	Open Drain
ОМАР™	Open Multimedia Application Platform™
RTC	Real-Time Clock
SMPS	Switched Mode Power Supply
SPI	Serial Peripheral Interface
POR	Power-On Reset

REVISION HISTORY

Changes from Revision A (April 2013) to Revision B	Page
Changed 0x20 to 0x22 for TPS659119HAIPFPRQ1 column in EEPROM Configuration table	39
Changes from Revision B (April 2013) to Revision C	Page
Added Storage Temperature range to ABSOLUTE MAXIMUM RATINGS table	3

1-Jul-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	_	Pins	_	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)		(3)		(4/5)	
TPS659119AIPFPRQ1	ACTIVE	HTQFP	PFP	80	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	T659119A1	Samples
TPS659119BAIPFPRQ1	ACTIVE	HTQFP	PFP	80	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	T659119BA	Samples
TPS659119CAIPFPRQ1	ACTIVE	HTQFP	PFP	80	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	T659119CA	Samples
TPS659119DAIPFPRQ1	ACTIVE	HTQFP	PFP	80	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	T659119DA	Samples
TPS659119EAIPFPRQ1	ACTIVE	HTQFP	PFP	80	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	T659119EA	Samples
TPS659119FAIPFPRQ1	ACTIVE	HTQFP	PFP	80	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	T659119FA	Samples
TPS659119HAIPFPRQ1	ACTIVE	HTQFP	PFP	80	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	T659119HA	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

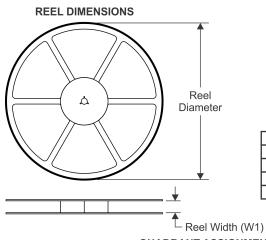
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

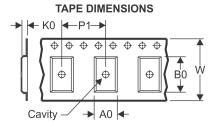
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

PACKAGE OPTION ADDENDUM

1-Jul-2013

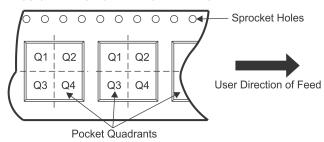
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

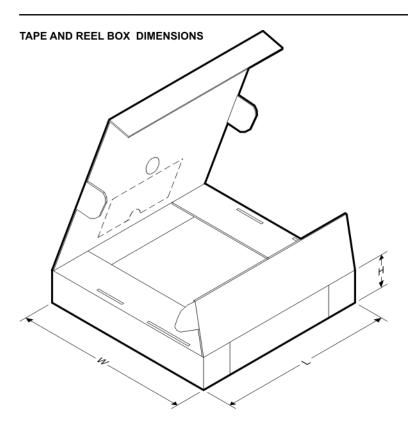

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 1-Jul-2013


TAPE AND REEL INFORMATION

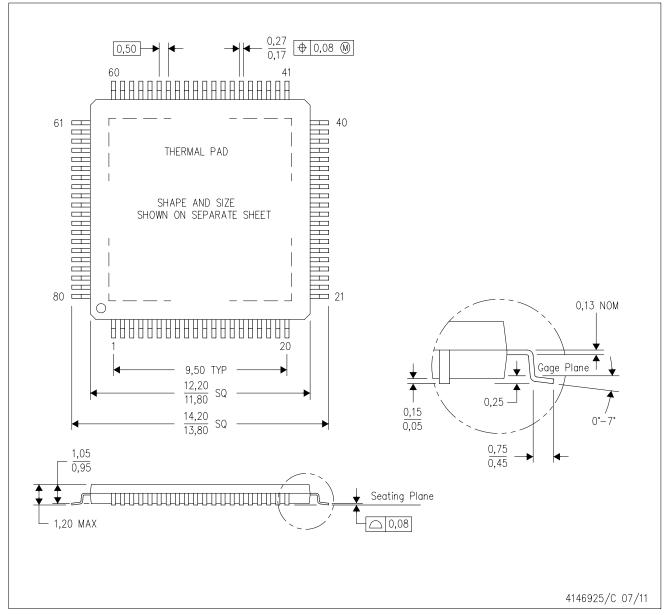
Α0	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

All differsions are norminal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS659119AIPFPRQ1	HTQFP	PFP	80	1000	330.0	24.4	15.0	15.0	1.5	20.0	24.0	Q2
TPS659119BAIPFPRQ1	HTQFP	PFP	80	1000	330.0	24.4	15.0	15.0	1.5	20.0	24.0	Q2
TPS659119CAIPFPRQ1	HTQFP	PFP	80	1000	330.0	24.4	15.0	15.0	1.5	20.0	24.0	Q2
TPS659119DAIPFPRQ1	HTQFP	PFP	80	1000	330.0	24.4	15.0	15.0	1.5	20.0	24.0	Q2
TPS659119EAIPFPRQ1	HTQFP	PFP	80	1000	330.0	24.4	15.0	15.0	1.5	20.0	24.0	Q2
TPS659119FAIPFPRQ1	HTQFP	PFP	80	1000	330.0	24.4	15.0	15.0	1.5	20.0	24.0	Q2
TPS659119HAIPFPRQ1	HTQFP	PFP	80	1000	330.0	24.4	15.0	15.0	1.5	20.0	24.0	Q2

www.ti.com 1-Jul-2013



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS659119AIPFPRQ1	HTQFP	PFP	80	1000	367.0	367.0	55.0
TPS659119BAIPFPRQ1	HTQFP	PFP	80	1000	367.0	367.0	55.0
TPS659119CAIPFPRQ1	HTQFP	PFP	80	1000	367.0	367.0	55.0
TPS659119DAIPFPRQ1	HTQFP	PFP	80	1000	367.0	367.0	55.0
TPS659119EAIPFPRQ1	HTQFP	PFP	80	1000	367.0	367.0	55.0
TPS659119FAIPFPRQ1	HTQFP	PFP	80	1000	367.0	367.0	55.0
TPS659119HAIPFPRQ1	HTQFP	PFP	80	1000	367.0	367.0	55.0

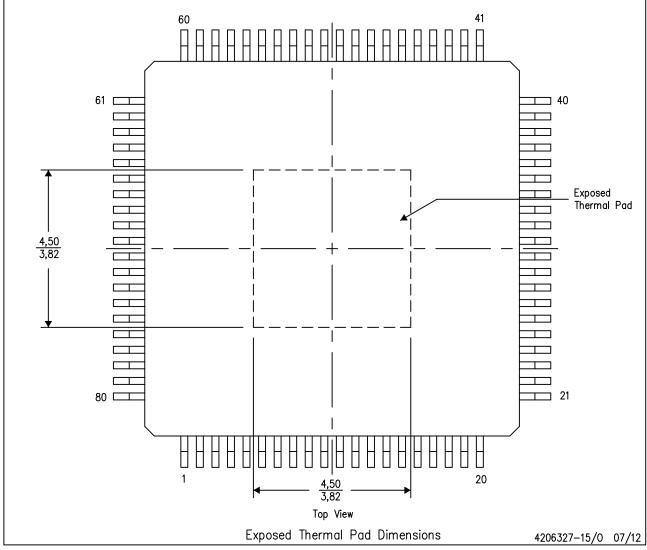
PFP (S-PQFP-G80)

PowerPAD™ PLASTIC QUAD FLATPACK

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com www.ti.com.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- F. Falls within JEDEC MS-026

PowerPAD is a trademark of Texas Instruments.



THERMAL INFORMATION

This PowerPAD package incorporates an exposed thermal pad that is designed to be attached to a printed circuit board (PCB). The thermal pad must be soldered directly to the PCB. After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: A. All linear dimensions are in millimeters

PowerPAD is a trademark of Texas Instruments

PFP (S-PQFP-G80)

PowerPAD™ PLASTIC QUAD FLATPACK

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002, SLMA004, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com https://www.ti.com. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
- F. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PowerPAD is a trademark of Texas Instruments.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>