

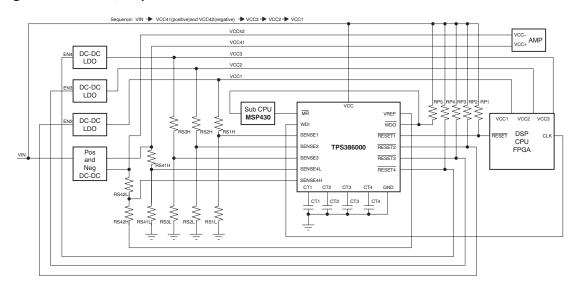
SBVS149A-SEPTEMBER 2010-REVISED OCTOBER 2013

Quad Supply Voltage Supervisors With Programmable Delay and Watchdog Timer

Check for Samples: TPS386000-Q1

FEATURES

- Qualified for Automotive Applications
- AEC Q100 Test Guidance With the Following Results:
 - Device Temperature Grade 1: –40°C to 125°C Ambient Operating Temperature Range
 - Device HBM ESD Classification Level H2
 - Device CDM ESD Classification Level C4B
- 4 Complete SVS Modules on 1 Silicon Platform
- Programmable Delay Time: 1.4ms to 10s
- Very Low Quiescent Current: 12µA typ
- Threshold Accuracy: 0.25% typ
- SVS-1: Manual Reset (MR) Input
- SVS-1,2,3: Adjustable Threshold Down to 0.4V
- SVS-4: Adjustable Threshold at Any Positive/Negative Voltage with VREF (1.2V)
- SVS-4: Window Comparator
- Watchdog Timer with Dedicated Output
- Well-Controlled RESETn Output During Power-Up
- Open-Drain RESETn and WDO
- Package: 4mm x 4mm, 20-pin QFN


DESCRIPTION

The TPS386000-Q1 family of voltage supervisors can monitor four power rails that are greater than 0.4V and one power rail less than 0.4V (including negative voltage) with a 0.25% (typical) threshold accuracy. <u>Each of the four supervisory circuits (SVS-n) assert a</u> <u>RESETn</u> or <u>RESETn</u> output signal when the <u>SENSEm input voltage drops below the programmed</u> threshold. With external resistors, the threshold of each SVS-n can be programmed (where n = 1, 2, 3, 4 and m = 1, 2, 3, 4L, 4H).

Each SV<u>S-n has</u> a programmable delay before releasing RESETn or RESETn, and the delay time can be set from 1.4ms to 10s through the CTn pin connection. Only SVS-1 has an active-low manual <u>reset (MR)</u> input; a logic-low input to MR asserts RESET1 or RESET1.

SVS-4 monitors the threshold window using two comparators. The extra comparator can be configured as a fifth SVS to monitor negative voltage with voltage reference output VREF.

The TPS386000-Q1 has a very low quiescent current of $12\mu A$ (typical) and is available in a small, 4mm x 4mm, QFN-20 package.

Figure 1. TPS386000-Q1 Typical Application Circuit

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

www.ti.com

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Over operating junction temperature range, unless otherwise noted.

		TPS386	TPS386000-Q1	
		MIN	МАХ	UNIT
Input voltage range, V _{VCC}			7	V
CT pin voltage range, V _{CT1} , V ₀	CT2, V _{CT3} , V _{CT4}	-0.3	V_{VCC} + 0.3	V
Other voltage ranges: V _{RESET1} , V _{RESET2} , V _{RESET3} , V _{RESET4} , V _{MR} , V _{SENSE1} , V _{SENSE2} , V _{SENSE3} , V _{SENSE4L} , V _{SENSE4H} , V _{WDI} , V _{WDO}		-0.3	7	V
RESETn , RESETn, WDO, WDO, VREF pin current			5	mA
Continuous total power dissipa	Continuous total power dissipation See Thermal Inform		mal Informati	on Table
Operating virtual junction temperature range, T _J ⁽²⁾		-40	150	°C
Operating ambient temperature range		-40	125	°C
Storage temperature range, T _{STG}		-65	150	°C
Electrostatic discharge rating	Human-body model (HBM) AEC-Q100 classification level H2		2	kV
	Charged-device model (CDM) AEC-Q100 classification level C4B		750	V

(1) Stresses beyond those listed under the Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under the recommended operating conditions is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

(2) As a result of the low dissipated power in this device, it is assumed that $T_J = T_A$.

THERMAL INFORMATION

		TPS386000-Q1	
	THERMAL METRIC ⁽¹⁾	RGP PACKAGE	UNITS
		20 PINS	
θ_{JA}	Junction-to-ambient thermal resistance	50.8	
θ _{JCtop}	Junction-to-case (top) thermal resistance	1.5	
θ_{JB}	Junction-to-board thermal resistance	21.0	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	42.8	C/VV
Ψ _{JB}	Junction-to-board characterization parameter	8.8	
θ_{JCbot}	Junction-to-case (bottom) thermal resistance	21.2	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

www.ti.com

ELECTRICAL CHARACTERISTICS

Over the operating temperature range of $T_J = -40^{\circ}$ C to +125°C, 1.8V < V_{VCC} < 6.5V, R_{RESETn} (n = 1, 2, 3, 4) = 100k Ω to V_{VCC} , C_{RESETn} (n = 1, 2, 3, 4L, 4H) = 50pF to GND, R_{WDO} = 100k Ω to V_{VCC} , C_{WDO} = 50pF to GND, V_{MR} = 100k Ω to V_{VCC} , WDI = GND, and CTn (n = 1, 2, 3, 4) = open, unless otherwise noted. Typical values are at T_J = +25°C.

PARAMETER			TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{VCC}	Input supply range			1.8		6.5	V
			V_{VCC} = 3.3V, RESETn or RESETn not asserted, WDI toggling ⁽¹⁾ , no output load, and VREF open		11	19	μA
Ivcc	Supply current (curre	ant into vee pin)	$V_{VCC} = 6.5V$, RESETn or RESETn not asserted, WDI toggling ⁽¹⁾ , no output load, and VREF open		13	22	μA
	Power-up reset volta	ge ⁽²⁾⁽³⁾	V_{OL} (max) = 0.2V, I_{RESETn} = 15µA			0.9	V
V _{ITN}	Negative-going input	threshold voltage	SENSE1, SENSE2, SENSE3, SENSE4L	396	400	404	mV
V _{ITP}	Positive-going input t	hreshold voltage	SENSE4H	396	400	404	mV
V _{HYSN}	Hysteresis (positive-	going) on V _{ITN}	SENSE1, SENSE2, SENSE3, SENSE4L		3.5	10	mV
V _{HYSP}	Hysteresis (negative-	-going) on V _{ITP}	SENSE4H		3.5	10	mV
I _{SENSE}	Input current at SEN	SEm pin	V _{SENSEm} = 0.42V	-25	±1	+25	nA
	CTn pin charging	CT1	$C_{CT1} > 220 pF, V_{CT1} = 0.5 V^{(4)}$	245	300	355	nA
I _{CT}	current	CT2, CT3, CT4	$C_{CTn} > 220 pF, V_{CTn} = 0.5 V^{(4)}$	235	300	365	nA
V _{TH(CTn)}	CTn pin threshold		C _{CTn} > 220pF	1.180	1.238	1.299	V
VIL	MR and WDI logic low input			0		$0.3V_{VCC}$	V
V _{IH}	MR and WDI logic high input			$0.7V_{VCC}$			V
			I _{OL} = 1mA			0.4	V
V _{OL}	Low-level RESETn o voltage		$ \begin{array}{l} {\sf SENSEn} = 0{\sf V}, \ 1.3{\sf V} < {\sf V}_{\sf VCC} < 1.8{\sf V}, \\ {\sf I}_{\sf OL} = 0.4{\sf m}{\sf A}^{(2)} \end{array} $			0.3	V
	Low-level WDO outp	ut voltage	I _{OL} = 1mA			0.4	V
I _{LKG}	RESETn, RESETn, Villeakage current	WDO, and WDO	$V_{RESETn} = 6.5V, \overline{RESETn}, RESETn, \overline{WDO},$ and WDO are logic high	-300		300	nA
V _{REF}	Reference voltage ou	utput	$1\mu A < I_{VREF} < 0.2mA$ (source only, no sink)	1.18	1.20	1.22	V
C _{IN}	Input pin capacitance	9	CTn: 0V to V_{VCC} , other pins: 0V to 6.5V		5		pF
tw	Input pulse width to SENSEm an		SENSEm: 1.05V $_{ITN} \rightarrow 0.95V_{ITN}$ or $0.95V_{ITP} \rightarrow 1.05V_{ITP}$		4		μs
	pins		$\overline{\text{MR}}$: 0.7V _{CC} \rightarrow 0.3V _{VCC}		1		ns
		deless time e	CTn = open	14	20	24	ms
t _D	RESETn or RESETn	delay time	CTn = V _{VCC}	225	300	375	ms
t _{WDT}	Watchdog timer time	out period	Start from RESET1 or RESET1 release or last WDI transition	450	600	750	ms

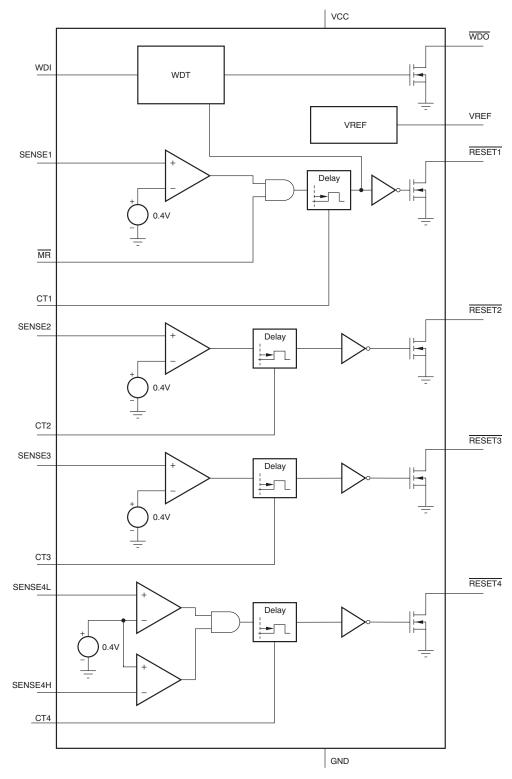
 Toggling WDI for a period less than t_{WDT} negatively affects I_{VCC}.
These specifications are beyond the recommended V_{VCC} range, and only define RESETn or RESETn output performance during VCC ramp up.

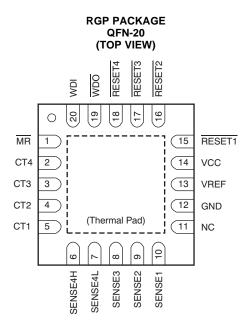
(3)

The lowest supply voltage (V_{VCC}) at which RESETn or RESETn becomes active; $t_{RISE}(VCC) \ge 15\mu s/V$. CTn (where n = 1, 2, 3, or 4) are constant current charging sources working from a range of 0V to $V_{TH(CTn)}$, and the device is tested at (4) $V_{CTn} = 0.5V$. For I_{CT} performance between 0V and $V_{TH(CTn)}$, see Figure 23.

www.ti.com

FUNCTIONAL BLOCK DIAGRAM




Figure 2. TPS386000

TEXAS INSTRUMENTS

www.ti.com

SBVS149A-SEPTEMBER 2010-REVISED OCTOBER 2013

PIN CONFIGURATIONS

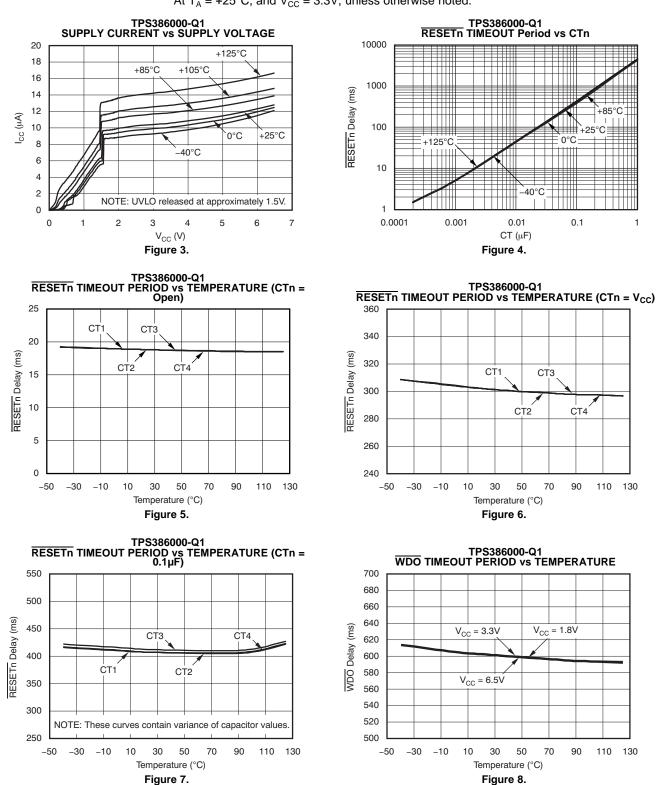
PIN ASSIGNMENTS

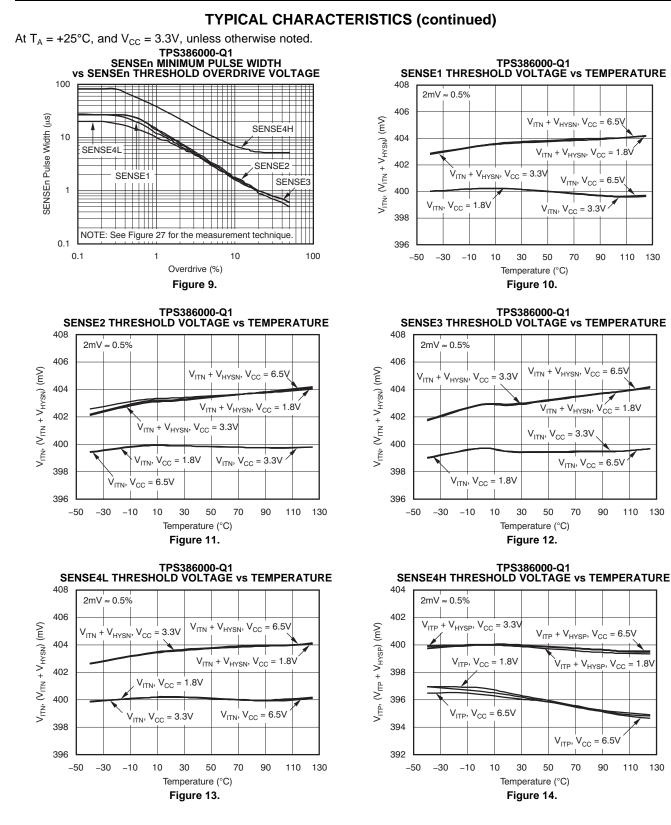
PI	N				
NAME	NO.	DESCRIPTION			
VCC	14	Supply voltage. Connecting a 0.1µF ceramic capa	citor close to this pin is recommended.		
GND	12	Ground			
SENSE1	10	Monitor voltage input to SVS-1	When the voltage at this terminal drops below the threshold voltage (V _{ITN}), $\overline{\text{RESET1}}$ is asserted.		
SENSE2	9	Monitor voltage input to SVS-2	When the voltage at this terminal drops below the threshold voltage (V_{ITN}), RESET2 is asserted.		
SENSE3	8	Monitor voltage input to SVS-3	When the voltage at this terminal drops below the threshold voltage (V_{ITN}), RESET3 is asserted.		
SENSE4L	7	Falling monitor voltage input to SVS-4. When the voltage (V_{ITN}), RESET4 or RESET4 is asserted.	voltage at this terminal drops below the threshold		
SENSE4H	6		roltage at this terminal exceeds the threshold voltage an also be used to monitor the negative voltage rail		
CT1	5	Reset delay programming pin for SVS-1	Connecting this pin to VCC through a $40k\Omega$ to		
CT2	4	Reset delay programming pin for SVS-2	200k Ω resistor, or leaving it open, selects a fixed delay time (see the Electrical Characteristics).		
CT3	3	Reset delay programming pin for SVS-3	Connecting a capacitor > 220pF between this pin		
CT4	2	Reset delay programming pin for SVS-4	and GND selects the programmable delay time (see the Reset Delay Time section).		
VREF	13	rail, SENSE4H can monitor the negative power rai	r network between this pin and the negative power I. This pin is intended to only source current into not connect resistor(s) to a higher voltage than this		
MR	1	Manual reset input for SVS-1. Logic low level of th	is pin asserts RESET1 or RESET1.		
WDI	20	Watchdog timer (WDT) trigger input. Inputting eith prevents WDT time out at the WDO or WDO pin. RESET1.	er a positive or negative logic edge <u>every 610ms</u> (typ) Fimer starts from releasing event of RESET1 or		
NC	11	Not connected. It is recommended to connect this	pin to the GND pin (pin 12), which is next to this pin.		
(Thermal Pad)	(PAD)	This is the IC substrate. This pad must be connected only to GND or to the floating thermal pattern on the printed circuit board (PCB).			

www.ti.com

PIN ASSIGNMENTS (continued)

PI	N		
NAME	NO.		DESCRIPTION
RESET1	15	Active low reset output of SVS-1	RESETn is an open-drain output pin. When
RESET2	16	Active low reset output of SVS-2	RESETn is asserted, this pin remains in a low- impedance state. When RESETn is released, this
RESET3	17	Active low reset output of SVS-3	pin goes to a high-impedance state after the delay
RESET4	18	Active low reset output of SVS-4	time programmed by CTn.
WDO	19		ain output pin. When WDT times out, this pin goes to a low- DT timeout, this pin stays in a high-impedance state.





SBVS149A-SEPTEMBER 2010-REVISED OCTOBER 2013

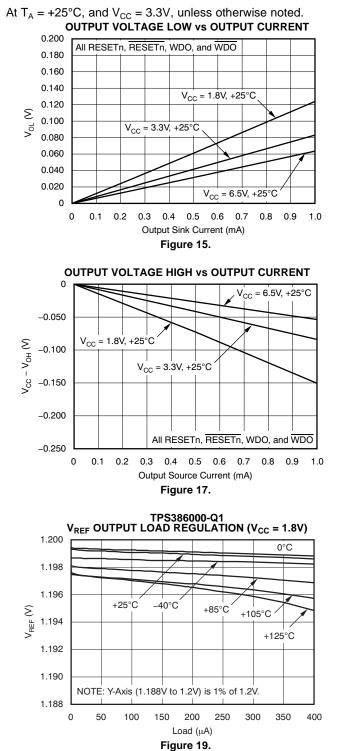
TYPICAL CHARACTERISTICS

At $T_A = +25^{\circ}C$, and $V_{CC} = 3.3V$, unless otherwise noted.

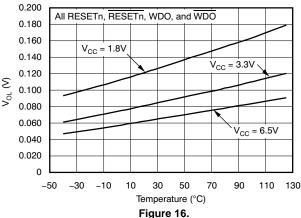
www.ti.com

8

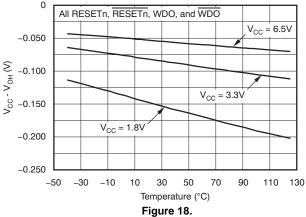
TPS386000-Q1

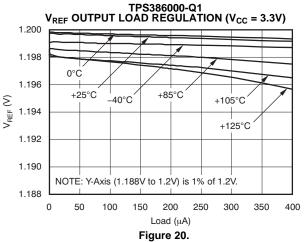


SBVS149A-SEPTEMBER 2010-REVISED OCTOBER 2013



TYPICAL CHARACTERISTICS (continued)


S



OUTPUT VOLTAGE LOW AT 1mA vs TEMPERATURE

OUTPUT VOLTAGE HIGH AT 1mA vs TEMPERATURE

SBVS149A-SEPTEMBER 2010-REVISED OCTOBER 2013

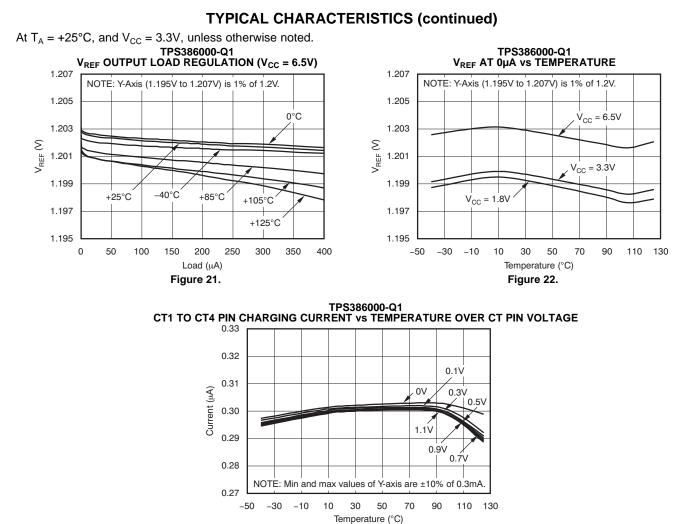


Figure 23.

Copyright © 2010–2013, Texas Instruments Incorporated

SBVS149A-SEPTEMBER 2010-REVISED OCTOBER 2013

PARAMETRIC MEASUREMENT INFORMATION

TEST CIRCUIT

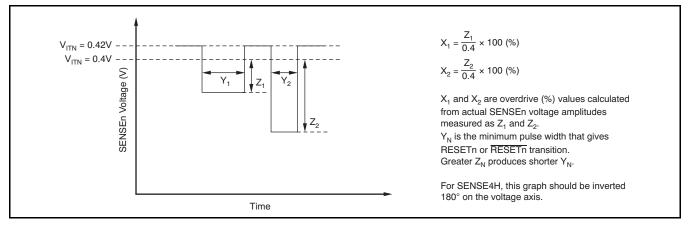


Figure 24.

GENERAL DESCRIPTION

The TPS386000-Q1 multi-channel supervisory device family combines four complete SVS function sets into one IC. The design of each SVS channel is based on the single-channel supervisory device series, <u>TPS3808</u>. The TPS386000-Q1 is designed to assert RESETn or RESETn signals, as shown in <u>Table 1</u>, <u>Table 2</u>, <u>Table 3</u>, and <u>Table 4</u>. The RESETn or RESETn outputs remain asserted during a user-configurable delay time after the event of reset release (see the Reset Delay Time section). Each SENSEm (m = 1, 2, 3, 4L) pin can be set to any voltage threshold above 0.4V using an external resistor divider. The SENSE4H pin can be used for any overvoltage detection greater than 0.4V, or for negative voltage detection using an external resistor divider (see the Sensing Voltage Less Than 0.4V section). A broad range of voltage threshold and reset delay time adjustments can be supported, allowing these devices to be used in a wide array of applications.

Table	1.	SVS-1	Truth	Table
-------	----	-------	-------	-------

		OUTPUT	
CON	DITION	TPS386000-Q1	STATUS
MR = Low	SENSE1 < V _{ITN}	RESET1 = Low	Reset asserted
MR = Low	SENSE1 > V _{ITN}	RESET1 = Low	Reset asserted
MR = High	SENSE1 < V _{ITN}	RESET1 = Low	Reset asserted
MR = High	SENSE1 > V _{ITN}	RESET1 = High	Reset released after delay

Table 2. SVS-2 Truth Table

	OUTPUT	
CONDITION	TPS386000-Q1	STATUS
SENSE2 < V _{ITN}	RESET2 = Low	Reset asserted
SENSE2 > V _{ITN}	RESET2 = High	Reset released after delay

STRUMENTS

ÈXAS

Table 3. SVS-3 Truth Table

	OUTPUT	
CONDITION	TPS386000-Q1	STATUS
SENSE3 < V _{ITN}	RESET3 = Low	Reset asserted
SENSE3 > V _{ITN}	RESET3 = High	Reset released after delay

Table 4. SVS-4 Truth Table

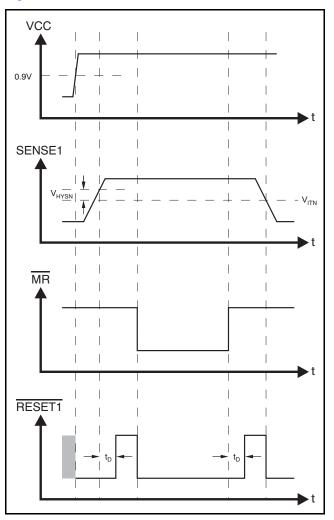
		OUTPUT	
CONE	DITION	TPS386000-Q1	STATUS
SENSE4L < V _{ITN}	SENSE4H > V _{ITP}	RESET4 = Low	Reset asserted
SENSE4L < V _{ITN}	SENSE4H < V _{ITP}	RESET4 = Low	Reset asserted
SENSE4L > V _{ITN}	SENSE4H > V _{ITP}	RESET4 = Low	Reset asserted
SENSE4L > V _{ITN}	SENSE4H < V _{ITP}	RESET4 = High	Reset released after delay

Table 5. Watchdog Timer (WDT) Truth Table

	CONDITION				
WDO	WDO	RESET1 OR RESET1	WDI PULSE INPUT	TPS386000-Q1	STATUS
Low	High	Asserted	Toggling	$\overline{\text{WDO}} = \text{low}$	Remains in WDT timeout
Low	High	Asserted	610ms after last WDI↑ or WDI↓	$\overline{\text{WDO}} = \text{low}$	Remains in WDT timeout
Low	High	Released	Toggling	$\overline{\text{WDO}} = \text{low}$	Remains in WDT timeout
Low	High	Released	610ms after last WDI↑ or WDI↓	$\overline{\text{WDO}} = \text{low}$	Remains in WDT timeout
High	Low	Asserted	Toggling	$\overline{\text{WDO}}$ = high	Normal operation
High	Low	Asserted	610ms after last WDI↑ or WDI↓	$\overline{\text{WDO}}$ = high	Normal operation
High	Low	Released	Toggling	$\overline{\text{WDO}}$ = high	Normal operation
High	Low	Released	610ms after last WDI↑ or WDI↓	$\overline{\text{WDO}} = \text{low}$	Enters WDT timeout

www.ti.com

RESET OUTPUT

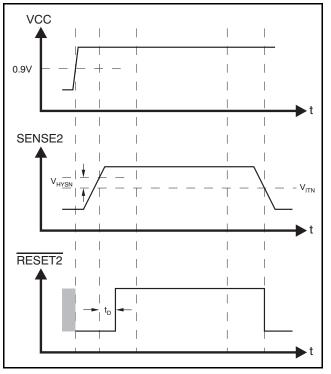

In a typical TPS386000-Q1 application, RESETn or RESETn outputs are connected to the reset input of a processor (DSP, CPU, FPGA, ASIC, etc.), or connected to the enable input of a voltage regulator (DC-DC, LDO, etc.)

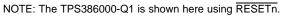
The TPS386000-Q1 provides open-drain reset outputs. Pull-up resistors must be used to hold these lines high when RESETn is not asserted, or when RESETn is asserted. By connecting pull-up resistors to the proper voltage rails (up to 6.5V), RESETn or RESETn output nodes can be connected to the other devices at the correct interface voltage levels. The pull-up resistor should be no smaller than 10kΩ because of the safe operation of the output transistors. By using wired-OR logic, any combination of RESETn can be merged into one logic signal.

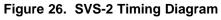
The TPS386000-Q1 provides push-pull reset outputs. The logic high level of the outputs is determined by the VCC voltage. With this configuration, pull-up resistors are not required and some board area can be saved. However, all the interface logic levels should be examined. All RESETn or RESETn connections must be compatible with the VCC logic level.

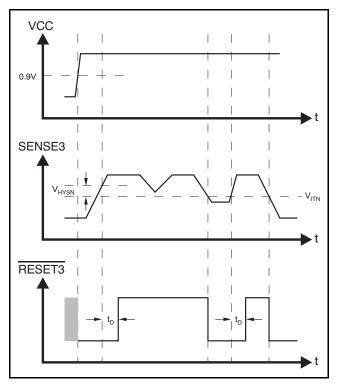
The RESETn or RESETn outputs are defined for VCC voltage higher than 0.9V. To ensure that the target processor(s) are properly reset, the VCC supply input should be fed by the available power rail as early as possible in application circuits. Table 1, Table 2, Table 3, and Table 4 are truth tables that describe how the outputs are asserted or released. Figure 25, Figure 26, Figure 27, and Figure 28 show the SVS-n timing diagrams. When the condition(s) are met, the device changes the state of SVS-n from asserted to released after a user-configurable delay time. However, the transitions from released-state to asserted-state are performed almost immediately with

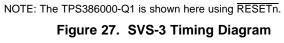
minimal propagation delay. Figure 27 describes relationship between threshold voltages (V_{ITN} and V_{HYSN}) and SENSEm voltage; and all SVS-1, SVS-2, SVS-3, and SVS-4 have the same behavior of Figure 27.

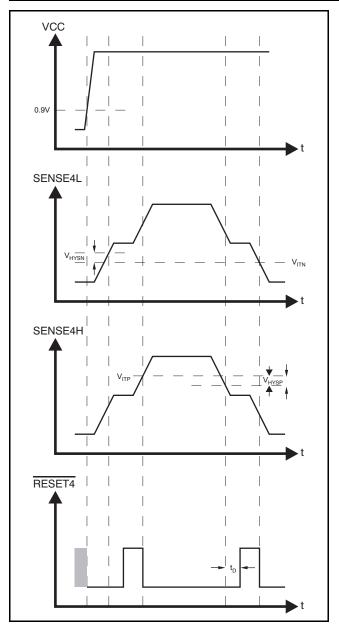


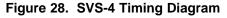

NOTE: The TPS386000-Q1 is shown here using RESETn.

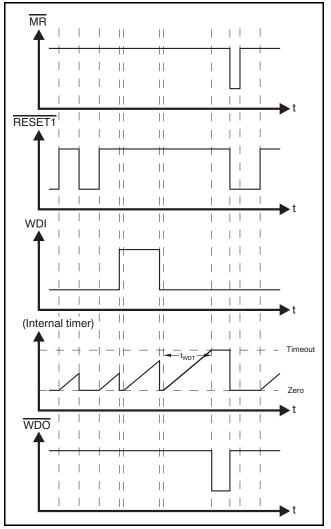

Figure 25. SVS-1 Timing Diagram

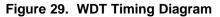



SBVS149A-SEPTEMBER 2010-REVISED OCTOBER 2013








NOTE: The TPS386000-Q1 is shown here using $\overline{\text{RESETn}}.$

NOTE: The TPS386000-Q1 is shown here using $\overline{\text{RESETn}}$ and $\overline{\text{WDO}}.$

www.ti.com

SENSE INPUT

The SENSEm inputs are pins that allow any system voltages to be monitored. If the voltage at the SENSE1, SENSE2, SENSE3, or SENSE4L pins drops below V_{ITN}, then the corresponding reset outputs are asserted. If the voltage at the SENSE4H pin exceeds V_{ITP} , then RESET4 or RESET4 is asserted. The comparators have a built-in hysteresis to ensure smooth reset output assertions and deassertions. Although not required in most cases, for extremely noise applications, it is good analog design practice to place a 1nF to 10nF bypass capacitor at the SENSEm input in order to reduce sensitivity to transients, layout parasitics, and interference between power rails monitored by this device. A typical connection of resistor dividers are shown in Figure 30. All the SENSEm pins can be used to monitor voltage rails down to 0.4V. Threshold voltages can be calculated by following equations:

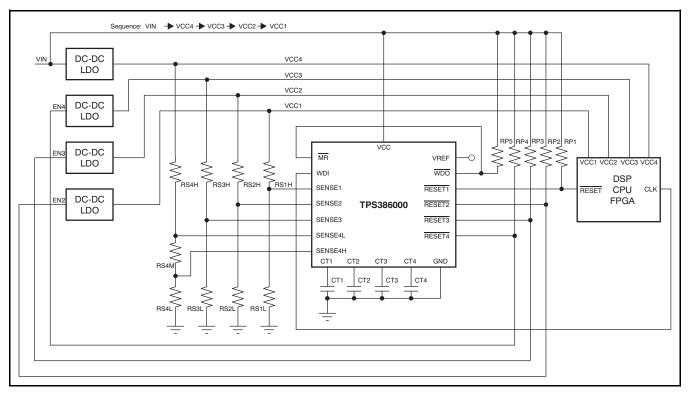
- VCC1_target = $(1 + R_{S1H}/R_{S1L}) \times 0.4$ (V) (1)
- VCC2_target = $(1 + R_{S2H}/R_{S2L}) \times 0.4$ (V) (2)

VCC3_target = $(1 + R_{S3H}/R_{S3L}) \times 0.4$ (V)

VCC4_target1 = {1+ $R_{S4H} / \Re_{S4M} + R_{S4L}$ } × 0.4 (V) (4)

$$VCC4_target2 = \{1 + \Re_{S4H} + R_{S4M}\} \times 0.4 (V)$$
(5)

Where VCC4_target1 is the undervoltage threshold, and VCC4_target2 is the overvoltage threshold.


WINDOW COMPARATOR

The comparator at the SENSE4H pin has the opposite comparison polarity to the other SENSEm pins. In the configuration shown in Figure 30, this comparator monitors overvoltage of the VCC4 node; combined with the comparator at SENSE4L, SVS-4 forms a window comparator.

SENSING VOLTAGE LESS THAN 0.4V

By using voltage reference output VREF, the SVS-4 comparator can monitor negative voltage or positive voltage lower than 0.4V. Figure 1 shows this usage in an application circuit. SVS-4 monitors the positive and negative voltage power rail (for example, +15V and -15V supply to an op amp) and the RESET4 or RESET4 output status continues to be as described in Table 4. Note that R_{S42H} is located at higher voltage position than R_{S42L} . The threshold voltage calculations are shown in the following equations:

VCC41_target = $(1 + R_{S41H}/R_{S41L}) \times 0.4$ (V)	(6)
VCC42_target = $(1 + R_{S42L}/R_{S42H}) \times 0.4 - R_{S42L}/R_{S42H} \times$	
V _{REF}	(7)
$= 0.4 - R_{S42L}/R_{S42H} \times 0.8$ (V)	(8)

(3)

Figure 30. Typical Application Circuit (SVS-4: Window Comparator)

RESET DELAY TIME

Each of the SVS-n channels can be configured independently in one of three modes. Table 6 describes the delay time settings.

Table 6. Delay Timing Selection

CTn CONNECTION	DELAY TIME
Pull-up to VCC	300ms (typ)
Open	20 ms (typ)
Capacitor to GND	Programmable

To select the 300ms fixed delay time, the CTn pin should be pulled up to VCC using a resistor from $40k\Omega$ to $200k\Omega$. Note that there is a pulldown transistor from CTn to GND that turns on every time the device powers on to determine and confirm CTn pin status; therefore, a direct connection of CTn to VCC causes a large current flow. To select the 20ms fixed delay time, the CTn pin should be left open. To program a user-defined adjustable delay time, an external capacitor must be connected between CTn and GND. The adjustable delay time can be calculated by the following equation:

 $C_{CT} (nF) = [t_{DELAY} (ms) - 0.5(ms)] \times 0.242$ (9)

Using this equation, a delay time can be set to between 1.4ms to 10s. The external capacitor should be greater than 220pF (nominal) so that the TPS386000-Q1 can distinguish it from an open CT pin. The reset delay time is determined by the time it takes an on-chip, precision 300nA current source to charge the external capacitor to 1.24V. When the RESETn or RESETn outputs are asserted, the corresponding capacitors are discharged. When the condition to release RESETn or RESETn occurs, the internal current sources are enabled and begin to charge the external capacitors. When the CTn voltage on a capacitor reaches 1.24V, the corresponding RESETn or RESETn pins are released. Note that a low leakage type capacitor (such as ceramic) should be used, and that stray capacitance around this pin may cause errors in the reset delay time.

MANUAL RESET

The manual reset (MR) input allows external logic signal from other processors, logic circuits, and/or discrete sensors to initiate a device reset. Because MR is connected to SVS-1, the RESET1 or RESET1 pin is intended to be connected to processor(s) as a primary reset source. A logic low at MR causes RESET1 or RESET1 to assert. After MR returns to a logic high and SENSE1 is above its reset threshold,

RESET1 or RESET1 is released after the userconfigured reset delay time. Note that unlike the TPS3808 series, the TPS386000-Q1 does not integrate an internal pull-up resistor between MR and VCC.

To control the $\overline{\text{MR}}$ function from more than one logic signal, the logic signals can be combined by wired-OR into the $\overline{\text{MR}}$ pin using multiple NMOS transistors and one pull-up resistor.

WATCHDOG TIMER

The TPS386000-Q1 provides a watchdog timer with a dedicated watchdog error output, WDO or WDO. The WDO or WDO output enables application board designers to easily detect and resolve the hang-up status of a processor. As with MR, the watchdog timer function of the device is also tied to SVS-1. Figure 29 shows the timing diagram of the WDT function. Once RESET1 or RESET1 is released, the internal watchdog timer starts its countdown. Inputting a logic level transition at WDI resets the internal timer count and the timer restarts the countdown. If the TPS386000-Q1 fails to receive any WDI rising or falling edge within the WDT period, the WDT times out and asserts WDO or WDO. After WDO or WDO is asserted, the device holds the status with the internal latch circuit. To clear this timeout status, a reset assertion of RESET1 or RESET is required. That is, a negative pulse to \overline{MR} , a SENSE1 voltage less than V_{ITN}, or a VCC power-down is required.

To reset the processor by WDT timeout, \overline{WDO} can be combined with RESET1 by using the wired-OR with the TPS386000-Q1 option.

For legacy applications where the watchdog timer timeout causes RESET1 to assert, connect WDO to MR; see Figure 30 for the connections and see Figure 31 and Figure 32 for the timing diagram. This legacy support configuration is available with the TPS386000-Q1.

IMMUNITY TO SENSEN VOLTAGE TRANSIENTS

The TPS386000-Q1 is relatively immune to short negative transients on the SENSEn pin. Sensitivity to transients depends on threshold overdrive, as shown in the typical performance graph *TPS386000-Q1 SENSEn Minimum Pulse Width vs SENSEn Threshold Overdrive Voltage* (Figure 9).

Copyright © 2010–2013, Texas Instruments Incorporated

TPS386000-Q1

TEXAS INSTRUMENTS

SBVS149A-SEPTEMBER 2010-REVISED OCTOBER 2013

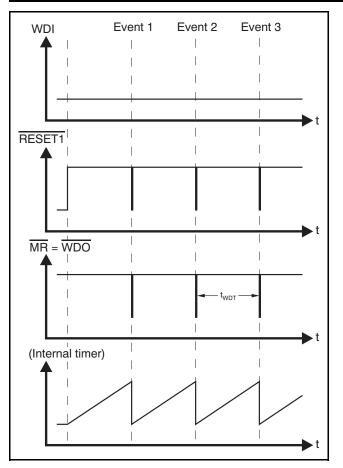


Figure 31. Legacy WDT Configuration Timing Diagram

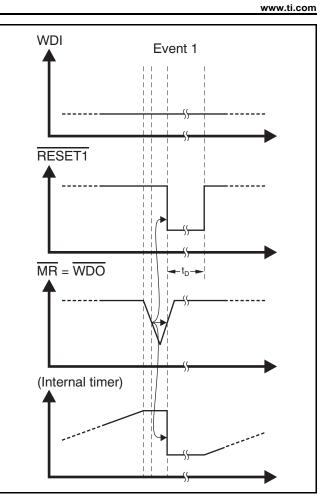


Figure 32. Enlarged View of Event 1 from Figure 31

SBVS149A-SEPTEMBER 2010-REVISED OCTOBER 2013

REVISION HISTORY

Cł	Changes from Original (September 2010) to Revision A Page Page Page Page Page Page Page Page							
•	Added AEC Q100 text to features which includes ambient operating temperature range, HBM and CDM classification levesl	. 1						
•	Deleted Latch-up performance text from ABSOLUTE MAXIMUM RATINGS table	. 2						
•	Added ESD ratings for HBM and CDM to ABSOLUTE MAXIMUM RATINGS table	. 2						

26-Sep-2013

PACKAGING INFORMATION

Orderable Devi	ice S	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
		(1)		Drawing		Qty	(2)		(3)		(4/5)	
TPS386000QRGP	PRQ1 AC	CTIVE	QFN	RGP	20	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 125	TPS 386000Q	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

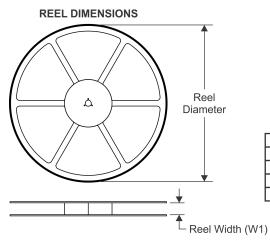
OTHER QUALIFIED VERSIONS OF TPS386000-Q1 :

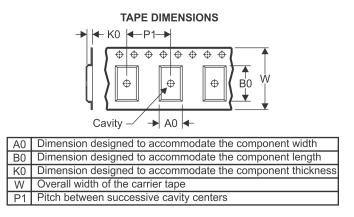
PACKAGE OPTION ADDENDUM

26-Sep-2013

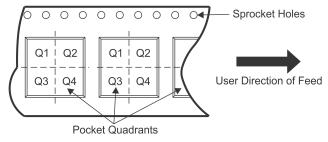
• Catalog: TPS386000

NOTE: Qualified Version Definitions:


Catalog - TI's standard catalog product

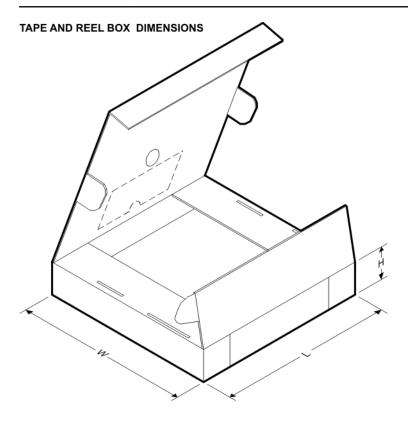

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

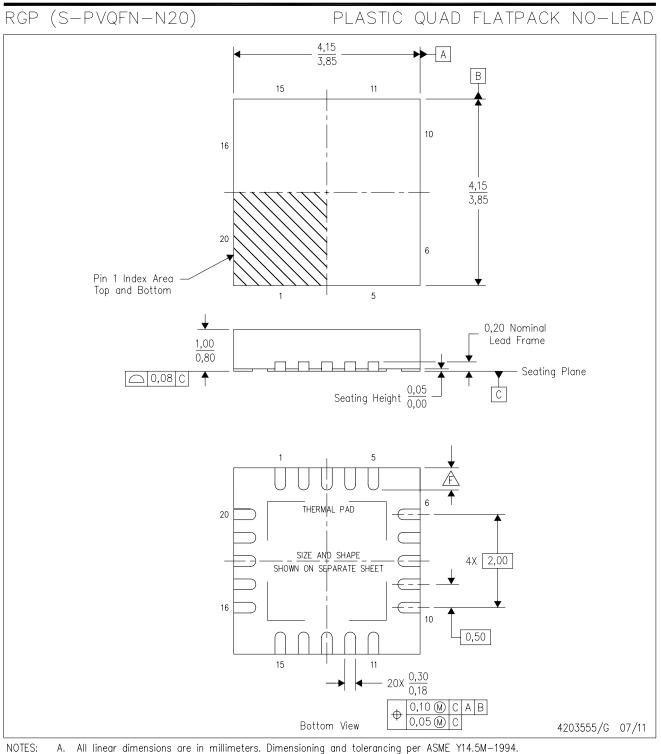
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


1	*All dimensions are nominal												
	Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
	TPS386000QRGPRQ1	QFN	RGP	20	3000	330.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION


26-Sep-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS386000QRGPRQ1	QFN	RGP	20	3000	367.0	367.0	35.0

MECHANICAL DATA

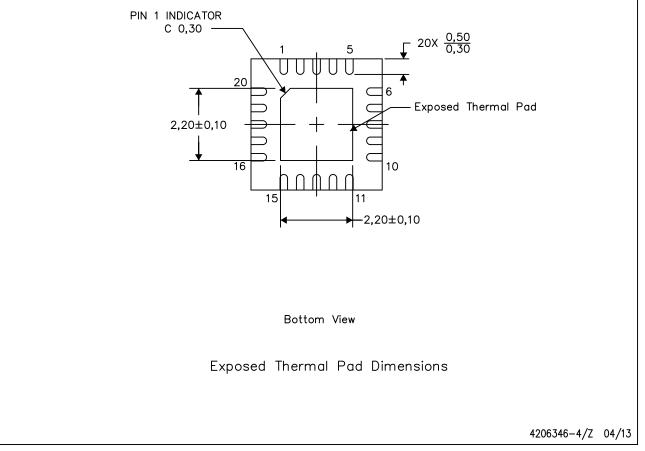
All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. Α.

- Β. This drawing is subject to change without notice.
- C. QFN (Quad Flatpack No-Lead) package configuration.

D. The package thermal pad must be soldered to the board for thermal and mechanical performance.

- See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions. E.
- 🖄 Check thermal pad mechanical drawing in the product datasheet for nominal lead length dimensions.

RGP (S-PVQFN-N20)


PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).


For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTES: A. All linear dimensions are in millimeters

- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Publication IPC-7351 is recommended for alternate designs.
 - D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <http://www.ti.com>.
 - E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
 - F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in the thermal pad.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated