

HDMI COMPANION CHIP WITH LEVEL SHIFTING BUFFER 5V LOAD SWITCH AND ESD PROTECTION

Check for Samples: TPD5S116

FEATURES

- Conforms to HDMI Control and 5VOUT Compliance Tests Without External Components
- Supports HDMI1.3 and HDMI1.4 Standard
- Auto-direction Sensing I2C Level Shifter With One-Shot Circuit to Drive Long HDMI Cable (750-pF Load)
- Back Drive Protection
- 55mA Load Switch With Short Circuit Protection
- Pb-free and RoHS Compliant (Dark Green Compliant)
- Hot Plug Detect Module With Pull Down Resistor
- Integrated Pull-up and Pull-down Resistors per HDMI Specification
- IEC61000-4-2 ±15kV Contact Rating
- IEC61000-4-2 ±15kV Air-gap Rating
- Utility Pin ESD Protection for Ethernet and Audio Return

APPLICATIONS

- Cell Phones
- eBook
- Portable Media Players
- Tablet

Pin Mapping (Top View)

DESCRIPTION/ORDERING INFORMATION

TPD5S116 is a single-chip HDMI interface device with auto-direction sensing I2C voltage level shift buffers, 5V HDMI compliant current limited load switch, hot-plug-detect, and integrated ESD protection clamps for all connector side pins. The device pin mapping can be routed to either HDMI Type D or Type C connector. An internal 3.3V node powers the CEC pin, eliminating the need for a 3.3V supply on board.

TPD5S116 integrates all external termination resistors at the HPD, CEC, SCL, and SDA lines. There are three non-inverting bi-directional translation circuits for the SDA, SCL, and CEC lines. Each has a common power rail (VCCA) on system side from 1.1 V to 3.6V. A 55mA current limiting switch regulates current sent from 5V_SYS to 5V_CON. The SCL and SDA pins meet the I2C specification and can drive up to 750 pF capacitive loads, which exceeds HDMI1.4 specifications. The HPD_CON port has a glitch filter to avoid false detection due to plug bouncing during the HDMI connector insertion.

The TPD5S116 offers reverse current block at the 5V_CON pin. In fault conditions, such as when two HDMI transmitters are connected to the same HDMI cable, TPD5S116 ensures that the system is safe from powering up through external HDMI transmitter. The SCL_CON, SDA_CON, CEC_CON pins also feature reverse-current blocking, which ensures that the system sees no leakage if an HDMI receiver is connected while the system if powered off.

The EN pin enables the hot-plug detect and load switch. The level shifters are enabled after a valid HPD signal is detected.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

TPD5S116

SLVSBP3A-DECEMBER 2012-REVISED MARCH 2013

www.ti.com

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ORDERING INFORMATION

T _A	PACKAGE ⁽¹⁾ ⁽²⁾		ORDERABLE PART NUMBER	TOP-SIDE MARKING	
–40°C to 85°C	YFF	Tape and reel	TPD5S116YFFR	RE116	

(1) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

(2) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

CIRCUIT SCHEMATIC DIAGRAM

Figure 1. Circuit Schematics

SLVSBP3A – DECEMBER 2012 – REVISED MARCH 2013

APPLICATION INFORMATION

Figure 2. Application Schematics for HDMI Controllers with one GPIO for HDMI Interface Control

HDMI Driver Chip is controlling the TPD5S116 via only one control line (EN). The DDC and CEC level shifting buffers become active after HPD_CON receives a valid high signal and EN is high.

SLVSBP3A-DECEMBER 2012-REVISED MARCH 2013

Table 1. FUNCTION TABLE – POWER SAVING OPTIONS

HPD_CON	EN	VCCA	5V_SYS	5V_CON	Dxx_SYS CEC_SYS Pull-ups	DCC_C ON Pull-ups	CEC_CON Pull-ups	CEC LDO	LOAD SW & HPD	DCC/CEC VLTs	ІССА Тур	ICC5V Typ	Comments
L	L	1.2V – 5.0V	5.0V	High-Z	Off	Off	Off	Off	Off	Off	1µA	2μΑ	Fully Disabled
L	н	1.2V – 5.0V	5.0V	5.0V	On	On	Off	Off	On	Off	1µA	30µA	Load Switch on
н	L	1.2V – 5.0V	5.0V	High-Z	Off	Off	Off	Off	Off	Off	1µA	2μΑ	Not Valid State
н	н	1.2V – 5.0V	5.0V	5.0V	On	On	On	On	On	On	24µA	125µA	Fully On
Х	Х	0V	0V	High-Z	High-Z	High-Z	High-Z	Off	Off	Off	0	0	Power Down
x	x	1.2V – 5.0V	0V	High-Z	High-Z	High-Z	High-Z	Off	Off	Off	1	0	Power Down
Х	Х	0V	5.0V	High-Z	High-Z	High-Z	High-Z	Off	Off	Off	0	1	Power Down

TEXAS INSTRUMENTS

www.ti.com

SLVSBP3A – DECEMBER 2012 – REVISED MARCH 2013

TERMINAL FUNCTIONS									
PIN NAME	YFF	PIN TYPE	DESCRIPTION						
HPD_SYS	E1	Output	HDMI system side: Hot plug detect Output referenced to VCCA. Connect to HDMI controller Hot plug detect input pin						
HPD_CON	E3	Input	HDMI connector side: Hot plug detect Input. Connect directly to HDMI Connector Hot Plug Detect pin						
CEC_SYS	A1	IO Port	HDMI system side CEC signal pin referenced to VCCA. Connect to HDMI controller.						
CEC_CON	A3	IO Port	HDMI connector side CEC signal pin referenced to internal 3.3V supply. Connect to HDMI connector CEC pin.						
SCL_SYS	B1	IO Port	HDMI system side SCL signal pin referenced to VCCA. Connect to HDMI controller.						
SCL_CON	B3	IO Port	HDMI connector side SCL signal pin referenced to 5V_CON supply. Connect to HDMI connector SCL pin.						
SDA_SYS	C1	IO Port	HDMI system side SDA signal pin referenced to VCCA. Connect to HDMI controller.						
SDA_CON	C3	IO Port	HDMI connector side SDA signal pin referenced to 5V_CON supply. Connect to HDMI connector SDA pin.						
EN	C2	Control Input	Disables the load switch and HPD when EN =L. The EN pin is referenced to VCCA						
UTI_CON	E2	IO Port	Protects the HDMI connector's utility pin						
5V_SYS	D1	Input Power	System side PCB 5V supply; input of load switch						
VCCA	A2	Input Supply	Internal PCB Low Voltage Supply (Same as the HDMI Controller Chip Supply)						
5V_CON	D3	Output Power	HDMI connector side external 5V Supply; output of load switch						
GND	B2, D2	Ground	Connect to System Ground Plane						

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	MIN	MAX	UNIT		
V _{CCA}	Supply voltage range		-0.3	6.0	V	
5V_SYS	Supply voltage range	-0.3	6.0	V		
VI	lanut veltere roome (2)	SCL_SYS, SDA_SYS, CEC_SYS, EN	-0.3	6.0	N/	
	input voltage range , /	SCL_CON, SDA_CON, CEC_CON, HPD_CON	-0.3	6.0	V	
Vo	Voltage range applied to any output in the high-	SCL_SYS, SDA_SYS, CEC_SYS, HPD_SYS	-0.3	6.0	.0 .0	
	impedance or power-off state ⁽²⁾⁽³⁾	SCL_CON, SDA_CON, CEC_CON, HPD_CON	-0.3	6.0		
Vo	Voltage range applied to any output in the high or low	SCL_SYS, SDA_SYS, CEC_SYS,HPD_SYS	-0.3	V _{CCA} + 0.5	V	
	state(2)(3)	SCL_CON, SDA_CON, CEC_CON	-0.3	5V_SYS + 0.5	V	
I _{IK}	Input clamp current	VI < 0		-50	mA	
I _{OK}	Output clamp current	VO < 0		-50	mA	
	Continuous current through 5V_SYS, or GND			±100	mA	
T _{stg}	Storage temperature range		-65	150	°C	

(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

(2) The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

(3) The package thermal impedance is calculated in accordance with JESD 51-7.

RECOMMENDED OPERATING CONDITIONS

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	2	TEST CONDITIONS	MIN	TYP MAX	UNIT
V _{CCA}	Supply Voltage			1.1	5.5	V
5V_SYS	Supply Voltage			4.5	5.5	V
		SCL_SYS, SDA_SYS,	$V_{CCA} = 1.1 V \text{ to } 5.5 V$	0.7 × V _{CCA}	V _{CCA}	V
		CEC_SYS,	V_{CCA} = 1.1 V to 5.5 V	$0.7 \times V_{CCA}$	V _{CCA}	V
V	High-level input	EN	V _{CCA} = 1.1 V to 5.5 V	1.0	V _{CCA}	V
VIH	voltage	SCL_CON, SDA_CON,	5V_ SYS = 5.5 V	0.7 × 5V_SYS	5V_SYS	V
		CEC_CON	5V_ SYS = 5.5 V	0.7 ×V _{3P3}	V _{3P3}	
		HPD_CON	5V_ SYS = 5.5 V	2.0	5V_SYS	
	Low-level input	SCL_SYS, SDA_SYS,	$V_{CCA} = 1.1 \text{ V to } 5.5 \text{ V}$	-0.5	$0.082 \times V_{CCA}$	V
		CEC_SYS,	V_{CCA} = 1.1 V to 5.5 V	-0.5	$0.082 \times V_{CCA}$	V
V		EN	V_{CCA} = 1.1 V to 5.5 V	-0.5	0.4	V
VIL	voltage	SCL_CON, SDA_CON,	5V_ SYS = 5.5 V	-0.5	0.3 × 5V_SYS	V
		CEC_CON	5V_ SYS = 5.5 V	-0.5	0.3 × V _{3P3}	V
		HPD_CON	5V_ SYS = 5.5 V	0	0.8	V
V _{ILC}	(contention) Low- level input voltage	SCL_SYS, SDA_SYS, CEC_SYS	$V_{CCA} = 1.1 \text{ V to } 5.5 \text{ V}$	-0.5	0.0524 × V _{CCA}	V
V _{OL} – V _{ILC}	Delta between VOL and VILC	SCL_SYS, SDA_SYS, CEC_SYS	V _{CCA} = 1.8 V		0.1 × V _{CCA}	mV
T _A	Operating free-air	temperature		-40 85		°C

ESD TABLE

over operating free-air temperature range (unless otherwise noted)

PARAMETER	SIGNALS	TYP	UNIT
HBM ESD	SCL_SYS, SDA_SYS, CEC_SYS, HPD_SYS, 5V_SYS, V _{CCA} , EN	±2	kV
IEC 61000-4-2 Contact Discharge	SCL_CON, SDA_CON, CEC_CON, HPD_CON, 5V_CON, UTI_CON	±15	kV
IEC 61000-4-2 Air-gap ESD	SCL_CON, SDA_CON, CEC_CON, HPD_CON, 5V_CON, UTI_CON	±15	kV

ISTRUMENTS

EXAS

ELECTRICAL CHARACTERISTICS

Max values measured across temp and VCCA=1.1V to 5.5V and 5V_SYS=5.5V. Typical values measured at VCCA=1.8V and 5V_SYS=5V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
Supply Cu	rrent						
	Disabled	5V_SYS =5V, 5V_CON =Open EN = GND, HPD_CON=GND		2	10	μΑ	
I _{CC5V}	Load Switch active	5V_SYS =5V, 5V_CON =Open EN = VCCA, HPD_CON=GND		30	50	μA	
	Active	5V_SYS =5V, 5V_CON =Open EN = VCCA, HPD_CON=5V		125	200	μΑ	
Load Swite	:h				+		
V _{REV}	Reverse voltage comparator trip point	5V_SYS=4V, 5V_CON > 5V_SYS		100		mV	
		5V_CON=0V, 5V_SYS=5V , EN=GND, HPD_CON=GND Measured at 5V_SYS pin.		1	5	μA	
	Leakage Current	5V_CON=0V, 5V_SYS=5V , EN=GND, HPD_CON=5V Measured at 5V_SYS pin		1	5	μA	
		5V_CON =5V, 5V_SYS =0V , EN=GND, HPD_CON=GND Measured at 5V_CON pin.		1	5	μA	
OFF		5V_CON =5V, 5V_SYS =0V EN=GND, HPD_CON=5V Measured at 5V_CON pin.		1	5	μA	
		5V_CON =5V, 5V_SYS =0V, EN=VCCA, HPD_CON=GND Measured at 5V_CON pin.		1	5	μA	
		5V_CON =5V, 5V_SYS =0V, EN=VCCA, HPD_CON=5V Measured at 5V_CON pin.		1	5	μA	
I _{SC}	Short circuit current at 5V_CON	5V_SYS=5V, 5V_CON = GND	110	140	170	mA	
T _{DEGLITCH}	Deglitch time against false short	5V_SYS=5V , EN=VCCA, Short 5V_CON		3		μs	
UVLO	Under voltage lockout rising	5V_SYS=0V to 5V, RL = 100 Ω , CL = 1uF		2.85		V	
UVLO_HY S	Under voltage lockout falling hysteresis	5V_SYS=5V to 0V, RL = 100 Ω , CL = 1uF		200		mV	
V _{DROP}	5V_OUT output voltage drop	5V_SYS =5V, I5V_OUT = 55 mA		38.5	55	mV	
I _{RUSH}	Inrush Current	5V_SYS=5V, RL=100 Ω , Cin=10uF, C=1uF		140		mA	
T _{ON}	Turn on Time, EN to 5V_CON	5V_SYS=5V, RL=100 Ω , Cin=10uF, C=1uF		92.3		μs	
T _{OFF}	Turn off Time, EN to 5V_CON	5V_SYS=5V, RL= 100Ω , Cin= $10uF$, C= $1uF$		5		μs	
Tour	Thermal Shutdown	Shutdown threshold, TRIP ⁽¹⁾		166		°C	
' SHUT		HYST ⁽²⁾	YST ⁽²⁾ 23			U	

(1)

The TPD5S116 turns off after the device temperature reaches the TRIP temperature. Once the thermal shut-down circuit turns off the load switch, the switch turns on again after the device junction temperature cools down (2) to a temperature equals to or less than TRIP-HYST.

Voltage Level Shifter - SCL, SDA Lines

DADA	METER	TEST CONDITIONS		v	–40°C to 85°C				
PARA	INIETER	IESI CO	NDITIONS	VCCA	MIN	TYP	MAX	UNIT	
V _{OH_SYS}		I _{OH} = −10 μA	$V_{I} = V_{IH}$		$0.8 \times V_{CCA}$		VCCA+0.0 2	V	
V _{OL_SYS}		I _{OL} = 10 μA	$V_{I}=V_{IL}$				0.17 × V _{CCA}	V	
V _{OH_CON}		I _{OH} = −10 μA	$V_{I} = V_{IH}$		0.8 x 5V_SYS		5V_SYS+ 0.02	V	
V _{OL_CON}		I _{OH} = 3 mA	$V_{I} = V_{IL}$			0.3	0.4	V	
ΔVT Hysteresis a (VT+ - VT-)	at the SDx_IN					40		mV	
ΔVT Hysteresis a (VT+ - VT-)	at the SDx_OUT					400		mV	
R _{PU} (Internal pull-up)		SCL_SYS, SDA_SYS	Pull-up connected to VCCA rail			5		kO	
		SCL_CON, SDA_CON	Pull-up connected to 5V rail			1.75		K12	
I _{PULLUPAC} Transient Boosted Pull- up Current (rise-time accelerator) SCL_CON, SDA_CON rail		Pull-up connected to 5V rail			13		mA		
S)	YS Port	$V_{CCA} = 0V$, V_{I} or $V_{O} = 0$ to 3.6 V		0 V			±5		
loff CC	ON Port	5V_CON=0V, V_1 or $V_0 = 0$ to 5.5 V		0 V			±5	μA	
ו _{oz} Sז	YS Port	$V_I = V_{CCI}$ or GND)				±5		

Voltage Level Shifter - CEC Line

DADAMETED		TEST CONDITIONS		V	–40°C to 85°C			
PA	RAMETER	TEST CO	INDITIONS	VCCA	MIN	ТҮР	MAX	UNIT
V _{OH_SYS}		I _{OH} = −10 μA	$V_{I} = V_{IH}$		$0.8 \times V_{CCA}$		VCCA+0.0 2	V
V _{OL_SYS}		I _{OL} = 10 μA	$V_{I} = V_{IL}$				0.17 × V _{CCA}	V
V _{OH_CON}		I _{OH} = −10 μA	$V_I=V_IH$		0.8 x V _{3P3}			V
V _{OL_CON}		$I_{OH} = 3 \text{ mA}$	$V_{I} = V_{IL}$			0.3	0.4	V
Δ VT Hysteresis at the CEC_SYS (VT+ - VT-)						30		mV
Δ VT Hysteresis at the CEC_CON (VT+ - VT-)						283		mV
R _{PU} (Internal pull-up)		CEC_SYS	Pull-up connected to V _{CCA} rail			5		kΩ
		CEC_CON	Pull-up connected to 3.3V rail		22	26	30	kΩ
R _{PD} (Internal pull-down)		CEC_CON	Pull-down connected connector side			10		MΩ
	SYS Port	$V_{CCA} = 0V$, V_{I} or $V_{O} = 0$ to 3.6 V		0 V			±5	
loff	CON Port	5V_CON=0V, VI	$5V_CON=0V$, V_1 or $V_0 = 0$ to 5.5 V				±1.8	μA
I _{OZ}	SYS Port	$V_{I} = V_{CCI}$ or GNE)				±5	

SLVSBP3A - DECEMBER 2012 - REVISED MARCH 2013

Voltage Level Shifter - HPD Line

DA		TEST CONDITIONS		N/	–40°C to 85°C			
PA	RAMETER			VCCA	MIN	TYP	MAX	UNIT
V _{OH_SYS}		$I_{OH} = 1 \text{ mA}$	$V_{I} = V_{IH}$	1.2 V to 5.0 V	$V_{CCA} \times 0.7$			V
V _{OH_SYS_1P1}		I _{OH} = 100 μA	$V_{I} = V_{IH}$	1.1V	$V_{CCA} \times 0.7$			V
V _{OL_SYS}		$I_{OL} = 3 \ \mu A$	$V_{I} = V_{IL}$	1.2 V to 5.0 V			0.4	V
V _{OL_SYS_1P1}		$I_{OL} = 3 \text{ mA}$	$V_{I} = V_{IL}$	1.1 V			0.68	V
ΔVT Hysteres (VT+ - VT-)	sis at the CEC_CON			1.2 V to 5.0 V		500		mV
R _{PD_IN} (Input internal pull-down resistor)			Pull-down connected to GND		60	100	140	kΩ
R _{PD_OUT} (Output internal pull- down resistor)			Pull-down connected to GND		60	100	140	kΩ
TFILT	Glitch Filter Duration	HPD_CON = 5 V Short HPD_SYS	, EN = V_{CCA} ,			10		μs

EN

	TEST CONDITIONS	V		LINIT		
FARAMETER	TEST CONDITIONS	V CCA	MIN	TYP	MAX	UNIT
R _{PD EN} (Internal pull-down resistor)	Pull-down connected to GND	1.8 V		470		kΩ

UTILITY PIN

PARAMETER	DESCRIPTION	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{RWM}	Reverse stand-off voltage				6	V
	Clamp voltage with ESD strike	$IPP = 1 \text{ A, tp} = 8/20 \mu\text{Sec, from}$ $I/O \text{ to GND}^{(1)}$		8		N
V CLAMP	Clamp voltage with ESD strike	IPP = 5 A, tp = 8/20 $\mu Sec,$, from I/O to $GND^{(1)}$		10		v
R _{DYN}	Dynamic resistance	UTI pin to GND Pin ⁽²⁾		033		Ω
C _{UTI}	Line capacitance	V _{IO} =0V, f=1GHz, I/O to GND		5.5		pF
V _{BR}	Break-down voltage	$I_{IO} = 1 \text{mA}$	7			V
I _{LEAK}	Leakage current	$V_{IO} = 3V$		1	10	nA

Non-repetitive current pulse 8/20us exponentially decaying waveform according to IEC61000-4-5
 Extraction of RDYN using least squares fit of TLP characteristics between I=10A and I=20A

SLVSBP3A-DECEMBER 2012-REVISED MARCH 2013

www.ti.com

I/O Capacitances

		TEST CONDITIONS	SUPPLY & EN	-4	40°C to 85°	°C	
P.	ARAMEIER	TEST CONDITIONS	SIGNAL	MIN	TYP	MAX	UNIT
CI	EN	V _{BIAS} = VCCA/2, f =1MHz, 30mV p- p ac signal			8	9	pF
CI	HPD_CON	V _{BIAS} = 0V- 5V, f =1MHz, 30mV p-p ac signal			7	7.5	pF
	SYS port	V _{BIAS} = 1.8 V, f =1MHz, 30mV p-p ac signal			6.5	9.5	pF
	CON port	V _{BIAS} = 2.5 V, f =1MHz, 30mV p-p ac signal			15	20	pF
Cue	SCL_CON, SDA_CON	V _{BIAS} = 2.5V, f =100KHz, 3.5V p-p ac signal	V _{CCA} = 3.6 V, 5V_SYS =5V, EN=HPD_CON=0 V		17		pF
00	CEC_CON	V _{BIAS} = 1.65 V, f =100KHz, 2.5V p- p ac signal	V _{CCA} = 3.6 V, 5V_SYS =5V, EN=HPD_CON=0 V		13		pF
	CEC_CON	V _{BIAS} = 1.65 V, f =100KHz, 2.5V p- p ac signal	V _{CCA} = 0V 5V_SYS =0V EN=HPD_CON=0 V		12		pF

Dynamic Load Characteristics

Propagation delays measured from 50% threshold to 50% threshold

Rise time measured from 30% to 70% threshold

Fall time measured from 70% to 30% threshold

PARAMETER	DESCRIPTION	TEST CONDITION	MIN	ТҮР	Max	UNIT
	Bus Load Capacitance (Connector Side)				750	~ [
UL	Bus Load Capacitance (System Side)				30	μr

Dynamic Characteristics - SCL, SDA Lines

5V_CON=5V; VCCA = 1.2V

PARAMETER	DESCRIPTION	PINS	TEST CONDITIONS	MIN	TYP MAX	UNIT
T _{PHL}	Propagation Delay	SYS to CON	DDC Channels Enabled		316	ns
		CON to SYS	DDC Channels Enabled		286	ns
T _{PLH}	Propagation Delay	SYS to CON	DDC Channels Enabled		489	ns
		CON to SYS	DDC Channels Enabled		199	ns
T _{FALL}	SYS Port Fall Time	SYS Port	DDC Channels Enabled		110	ns
T _{FALL}	CON Port Fall Time	CON Port	DDC Channels Enabled		82	ns
T _{RISE}	SYS Port Rise Time	SYS Port	DDC Channels Enabled		229	ns
T _{RISE}	CON Port Rise Time	CON Port	DDC Channels Enabled		86	ns
F _{MAX}	Maximum Switching Frequency		DDC Channels Enabled	400		kHz

Dynamic Characteristics - CEC Lines

5V_CON=5V; VCCA = 1.2V

PARAMETER	DESCRIPTION	PINS	TEST CONDITIONS	MIN TYP M	X UNIT
T _{PHL}	Propagation Delay	SYS to CON	CEC Channels Enabled	436	ns
		CON to SYS	CEC Channels Enabled	97	ns
T _{PLH}	Propagation Delay	SYS to CON	CEC Channels Enabled	13.8	μs
		CON to SYS	CEC Channels Enabled	319	ns
T _{FALL}	SYS Port Fall Time	SYS Port	CEC Channels Enabled	37	ns
T _{FALL}	CON Port Fall Time	CON Port	CEC Channels Enabled	114	ns
T _{RISE}	SYS Port Rise Time	SYS Port	CEC Channels Enabled	234	ns
T _{RISE}	CON Port Rise Time	CON Port	CEC Channels Enabled	16.6	μs

Dynamic Characteristics - HPD Lines

5V_CON=5V; VCCA = 1.2V

PARAMETER	DESCRIPTION	PINS	TEST CONDITIONS	MIN TYP M	IAX UNIT
T _{PHL}	Propagation Delay	CON to SYS	CEC Channels Enabled	10.1	μs
T _{PLH}	Propagation Delay	CON to SYS	CEC Channels Enabled	9.7	μs
T _{FALL}	SYS Port Fall Time	SYS Port	CEC Channels Enabled	14	ns
T _{RISE}	SYS Port Rise Time	SYS Port	CEC Channels Enabled	18	ns

Dynamic Characteristics - SCL, SDA Lines

5V_CON=5V; VCCA = 1.5V

PARAMETER	DESCRIPTION	PINS	TEST CONDITIONS	MIN TYP MAX	UNIT
T _{PHL}	Propagation Delay	A to B	DDC Channels Enabled	297	ns
		B to A	DDC Channels Enabled	224	ns
T _{PLH}	Propagation Delay	A to B	DDC Channels Enabled	473	ns
		B to A	DDC Channels Enabled	193	ns
T _{FALL}	A Port Fall Time	A-Port	DDC Channels Enabled	87	ns
T _{FALL}	B Port Fall Time	B-Port	DDC Channels Enabled	82	ns
T _{RISE}	A Port Rise Time	A-Port	DDC Channels Enabled	226	ns
T _{RISE}	B Port Rise Time	B-Port	DDC Channels Enabled	86	ns
F _{MAX}	Maximum Switching Frequency		DDC Channels Enabled	400	kHz

Dynamic Characteristics - CEC Lines

5V_CON=5V; VCCA = 1.5V

PARAMETER	DESCRIPTION	PINS	TEST CONDITIONS	MIN TYP MA	
T _{PHL}	Propagation Delay	A to B	CEC Channels Enabled	419	ns
		B to A	CEC Channels Enabled	102	ns
T _{PLH}	Propagation Delay	A to B	CEC Channels Enabled	13.7	μs
		B to A	CEC Channels Enabled	314	ns
T _{FALL}	A Port Fall Time	A-Port	CEC Channels Enabled	39	ns
T _{FALL}	B Port Fall Time	B-Port	CEC Channels Enabled	115	ns
T _{RISE}	A Port Rise Time	A-Port	CEC Channels Enabled	230	ns
T _{RISE}	B Port Rise Time	B-Port	CEC Channels Enabled	16.6	μs

Dynamic Characteristics - HPD Lines

5V_CON=5V; VCCA = 1.5V

PARAMETER	DESCRIPTION	PINS	TEST CONDITIONS	MIN TYP MAX	UNIT
T _{PHL}	Propagation Delay	B to A	CEC Channels Enabled	10.1	μs
T _{PLH}	Propagation Delay	B to A	CEC Channels Enabled	9.7	μs
T _{FALL}	A Port Fall Time	A-Port	CEC Channels Enabled	8	ns
T _{RISE}	A Port Rise Time	A-Port	CEC Channels Enabled	9.5	ns

Dynamic Characteristics - SCL, SDA Lines

5V_CON=5V; VCCA = 1.8V

PARAMETER	DESCRIPTION	PINS	TEST CONDITIONS	MIN TYP MAX	UNIT
T _{PHL}	Propagation Delay	A to B	DDC Channels Enabled	292	ns
		B to A	DDC Channels Enabled	192	ns
T _{PLH}	Propagation Delay	A to B	DDC Channels Enabled	466	ns
		B to A	DDC Channels Enabled	190	ns
T _{FALL}	A Port Fall Time	A-Port	DDC Channels Enabled	75	ns
T _{FALL}	B Port Fall Time	B-Port	DDC Channels Enabled	82	ns
T _{RISE}	A Port Rise Time	A-Port	DDC Channels Enabled	224	ns
T _{RISE}	B Port Rise Time	B-Port	DDC Channels Enabled	86	ns
F _{MAX}	Maximum Switching Frequency		DDC Channels Enabled	400	kHz

Dynamic Characteristics - CEC Lines

5V_CON=5V; VCCA = 1.8V

PARAMETER	DESCRIPTION	PINS	TEST CONDITIONS	MIN TYP MAX	UNIT
T _{PHL}	Propagation Delay	A to B	CEC Channels Enabled	417	ns
		B to A	CEC Channels Enabled	108	ns
T _{PLH}	Propagation Delay	A to B	CEC Channels Enabled	13.7	μs
		B to A	CEC Channels Enabled	312	ns
T _{FALL}	A Port Fall Time	A-Port	CEC Channels Enabled	41	ns
T _{FALL}	B Port Fall Time	B-Port	CEC Channels Enabled	114	ns
T _{RISE}	A Port Rise Time	A-Port	CEC Channels Enabled	228	ns
T _{RISE}	B Port Rise Time	B-Port	CEC Channels Enabled	16.6	μs

Dynamic Characteristics - HPD Lines

5V_CON=5V; VCCA = 1.8V

PARAMETER	DESCRIPTION	PINS	TEST CONDITIONS	MIN TYP MAX	UNIT
T _{PHL}	Propagation Delay	B to A	CEC Channels Enabled	10.1	μs
T _{PLH}	Propagation Delay	B to A	CEC Channels Enabled	9.7	μs
T _{FALL}	A Port Fall Time	A-Port	CEC Channels Enabled	5.5	ns
T _{RISE}	A Port Rise Time	A-Port	CEC Channels Enabled	7	ns

Dynamic Characteristics - SCL, SDA Lines

5V_CON=5V; VCCA = 2.5V

PARAMETER	DESCRIPTION	PINS	TEST CONDITIONS	MIN TYP MAX	UNIT
T _{PHL}	Propagation Delay	A to B	DDC Channels Enabled	291	ns
		B to A	DDC Channels Enabled	154	ns
T _{PLH}	Propagation Delay	A to B	DDC Channels Enabled	455	ns
		B to A	DDC Channels Enabled	186	ns
T _{FALL}	A Port Fall Time	A-Port	DDC Channels Enabled	64	ns
T _{FALL}	B Port Fall Time	B-Port	DDC Channels Enabled	82	ns
T _{RISE}	A Port Rise Time	A-Port	DDC Channels Enabled	221	ns
T _{RISE}	B Port Rise Time	B-Port	DDC Channels Enabled	86	ns
F _{MAX}	Maximum Switching Frequency		DDC Channels Enabled	400	kHz

Dynamic Characteristics - CEC Lines

5V_CON=5V; VCCA = 2.5V

PARAMETER	DESCRIPTION	PINS	TEST CONDITIONS	MIN TYP MA	X UNIT
T _{PHL}	Propagation Delay	A to B	CEC Channels Enabled	421	ns
		B to A	CEC Channels Enabled	122	ns
T _{PLH}	Propagation Delay	A to B	CEC Channels Enabled	13.7	μs
		B to A	CEC Channels Enabled	311	ns
T _{FALL}	A Port Fall Time	A-Port	CEC Channels Enabled	49	ns
T _{FALL}	B Port Fall Time	B-Port	CEC Channels Enabled	114	ns
T _{RISE}	A Port Rise Time	A-Port	CEC Channels Enabled	225	ns
T _{RISE}	B Port Rise Time	B-Port	CEC Channels Enabled	16.6	μs

Dynamic Characteristics - HPD Lines

5V_CON=5V; VCCA = 2.5V

PARAMETER	DESCRIPTION	PINS	TEST CONDITIONS	MIN TYP MAX	UNIT
T _{PHL}	Propagation Delay	B to A	CEC Channels Enabled	10.1	μs
T _{PLH}	Propagation Delay	B to A	CEC Channels Enabled	9.7	μs
T _{FALL}	A Port Fall Time	A-Port	CEC Channels Enabled	4	ns
T _{RISE}	A Port Rise Time	A-Port	CEC Channels Enabled	5	ns

Dynamic Characteristics - SCL, SDA Lines

5V_CON=5V; VCCA = 3.3V

PARAMETER	DESCRIPTION	PINS	TEST CONDITIONS	MIN TYP MAX	UNIT
T _{PHL}	Propagation Delay	A to B	DDC Channels Enabled	292	ns
		B to A	DDC Channels Enabled	133	ns
T _{PLH}	Propagation Delay	A to B	DDC Channels Enabled	449	ns
		B to A	DDC Channels Enabled	184	ns
T _{FALL}	A Port Fall Time	A-Port	DDC Channels Enabled	57	ns
T _{FALL}	B Port Fall Time	B-Port	DDC Channels Enabled	82	ns
T _{RISE}	A Port Rise Time	A-Port	DDC Channels Enabled	218	ns
T _{RISE}	B Port Rise Time	B-Port	DDC Channels Enabled	86	ns
F _{MAX}	Maximum Switching Frequency		DDC Channels Enabled	400	kHz

Dynamic Characteristics - CEC Lines

5V_CON=5V; VCCA = 3.3V

PARAMETER	DESCRIPTION	PINS	TEST CONDITIONS	MIN TYP MAX	UNIT
T _{PHL}	Propagation Delay	A to B	CEC Channels Enabled	annels Enabled 428	
		B to A	CEC Channels Enabled	138	ns
T _{PLH}	Propagation Delay	A to B	CEC Channels Enabled	13.7	μs
		B to A	CEC Channels Enabled	309	ns
T _{FALL}	A Port Fall Time	A-Port	CEC Channels Enabled	59	ns
T _{FALL}	B Port Fall Time	B-Port	CEC Channels Enabled	114	ns
T _{RISE}	A Port Rise Time	A-Port	CEC Channels Enabled	223	ns
T _{RISE}	B Port Rise Time	B-Port	CEC Channels Enabled	16.6	μs

Dynamic Characteristics - HPD Lines

5V_CON=5V; VCCA = 3.3V

PARAMETER	DESCRIPTION	PINS	TEST CONDITIONS	MIN TYP MAX	UNIT
T _{PHL}	Propagation Delay	B to A	CEC Channels Enabled	10.1	μs
T _{PLH}	Propagation Delay	B to A	CEC Channels Enabled	9.7	μs
T _{FALL}	A Port Fall Time	A-Port	CEC Channels Enabled	3	ns
T _{RISE}	A Port Rise Time	A-Port	CEC Channels Enabled	3.5	ns

Dynamic Characteristics - SCL, SDA Lines

5V_CON=5V; VCCA = 5V

PARAMETER	DESCRIPTION	PINS	TEST CONDITIONS	MIN TYP MAX	UNIT
T _{PHL}	Propagation Delay	A to B	DDC Channels Enabled	298	ns
		B to A	DDC Channels Enabled	113	ns
T _{PLH}	Propagation Delay	A to B	DDC Channels Enabled	442	ns
		B to A	DDC Channels Enabled	182	ns
T _{FALL}	A Port Fall Time	A-Port	DDC Channels Enabled	52	ns
T _{FALL}	B Port Fall Time	B-Port	DDC Channels Enabled	82	ns
T _{RISE}	A Port Rise Time	A-Port	DDC Channels Enabled	217	ns
T _{RISE}	B Port Rise Time	B-Port	DDC Channels Enabled	86	ns
F _{MAX}	Maximum Switching Frequency		DDC Channels Enabled	400	kHz

Dynamic Characteristics - CEC Lines

5V_CON=5V; VCCA = 5V

PARAMETER	DESCRIPTION	PINS	TEST CONDITIONS	MIN TYP MAX	UNIT
T _{PHL}	Propagation Delay	A to B	CEC Channels Enabled	446	ns
		B to A	CEC Channels Enabled	169	ns
T _{PLH}	Propagation Delay	A to B	CEC Channels Enabled	13.7	μs
		B to A	CEC Channels Enabled	306	ns
T _{FALL}	A Port Fall Time	A-Port	CEC Channels Enabled	82	ns
T _{FALL}	B Port Fall Time	B-Port	CEC Channels Enabled	114	ns
T _{RISE}	A Port Rise Time	A-Port	CEC Channels Enabled	221	ns
T _{RISE}	B Port Rise Time	B-Port	CEC Channels Enabled	16.6	μs

Dynamic Characteristics - HPD Lines

$5V_CON=5V$; VCCA = 5V

PARAMETER	DESCRIPTION	PINS	TEST CONDITIONS	MIN TYP MAX	UNIT
T _{PHL}	Propagation Delay	B to A	CEC Channels Enabled	10.1	μs
T _{PLH}	Propagation Delay	B to A	CEC Channels Enabled	9.7	μs
T _{FALL}	A Port Fall Time	A-Port	CEC Channels Enabled	2.5	ns
T _{RISE}	A Port Rise Time	A-Port	CEC Channels Enabled	2.5	ns

TYPICAL CHARACTERISTICS

SLVSBP3A - DECEMBER 2012 - REVISED MARCH 2013

Figure 4. Enable to Short Circuit

FEXAS ISTRUMENTS

www.ti.com

TYPICAL CHARACTERISTICS (continued)

SLVSBP3A – DECEMBER 2012 – REVISED MARCH 2013

www.ti.com

TYPICAL CHARACTERISTICS (continued)

SLVSBP3A-DECEMBER 2012-REVISED MARCH 2013

www.ti.com

APPLICATION INFORMATION

DDC/CEC LEVEL SHIFT Circuit Operation

The TPD5S116 enables DDC translation from VCCA (system side) voltage levels to 5V_CON (HDMI connector side) voltage levels without degradation of system performance. The TPD5S116 contains 2 bidirectional opendrain buffers specifically designed to support up-translation/down-translation between the low voltage, system side DDC-bus and the 5V connector side DDC-bus. The connector port I/Os are over-voltage tolerant to 5.5 V even when the device is un-powered. After power-up and with enable pin and HPD_CON pin HIGH, a LOW level on system port (below approximately VILC = 0.08 × VCCA V) turns the corresponding connector port driver (either SDA or SCL) on and drives it down to V_{OL_CON} V. When system port rises above approximately 0.10 × VCCA V, the connector port pull-down driver is turned off and the internal pull-up resistor pulls the pin HIGH. When connector port falls first and goes below 0.3 × 5V_CON, a CMOS hysteresis input buffer detects the falling edge, turns on the system port voltage goes below VILC, in which case the connector port pull-down driver is enabled until system port rises above (V_{ILC} + Δ V_{T-HYSTA}). If the connector port is not externally driven LOW, its voltage will continue to rise due to the internal pull-up resistor.

Figure 17. DDC/CEC Level Shifter Block Diagram

TEXAS INSTRUMENTS

www.ti.com

SLVSBP3A - DECEMBER 2012 - REVISED MARCH 2013

DDC/CEC Level Shifter Operational Notes for VCCA=1.8V

- The threshold of CMP1 is ~150mV +/- the 40mV of total hysteresis.
- The comparator will trip for a falling waveform at ~130mV
- The comparator will trip for a rising waveform at ~170mV
- To be recognized as a zero, the level at system port must first go below 130mV (V_{ILC} in spec) and then stay below 170mV (V_{IL_SYS} in spec)
- To be recognized as a one, the level at system port must first go above 170mV and then stay above 130mV
- V_{ILC} is set to 110mV in Electrical Characteristics Table to give some margin to the 130mV
- V_{IL_SYS} is set to 140mV in the Electrical Characteristics Table to give some margin to the 170mV
- V_{IH_SYS} is set to 70% of VCCA to be consistent with standard CMOS levels

Figure 18. DDC Level Shifter Operation (Connector to System Direction)

Rise-Time Accelerators

The HDMI cable side of the DDC lines incorporates rise-time accelerators to support the high capacitive load on the HDMI cable side. The rise time accelerator boosts the cable side DDC signal independent of which side of the bus is releasing the signal.

INSTRUMENTS

FEXAS

Normal HDMI Transmit and Recieve Sequence

Figure 19. Tx Device Connecting with Rx Device

Hot Plug Detect

Once TPD5S116 is enabled and the system's 5V source is on, TPD5S116 is ready for continual HDMI receiver detection. When a HDMI cable connects receiving and transmitting device together, the 5V on the load switch (5V_CON) flows through the receiving device's internal resistor and into HPD's input (HPD_CON). The HPD buffer's output then goes high, indicating to the transmitter that a receiving device is connected. To save power, periodic detection can be done by turning on and off the TPD5S116 before a receiving device is connected.

Noise Considerations: Ground offset between the TPD5S116 ground and the ground of devices on system port of the TPD5S116 must be avoided. The reason for this cautionary remark is that a CMOS/NMOS open-drain capable of sinking 3 mA of current at 0.4 V will have an output resistance of 133Ω or less (R = E / I). Such a driver will share enough current with the system port output pull-down of the TPD5S116 to be seen as a LOW as long as the ground offset is zero. If the ground offset is greater than 0 V, then the driver resistance must be less. Since V_{ILC} can be as low as 90 mV at cold temperatures and the low end of the current distribution, the maximum ground offset should not exceed 50 mV. Bus repeaters that use an output offset are not interoperable with the system port of the TPD5S116 as their output LOW levels will not be recognized by the TPD5S116 as a LOW. If the TPD5S116 is placed in an application where the V_{IL_SYS} does not go below V_{ILC}, it will pull connector port LOW initially when system port input transitions LOW but the connector port will return HIGH, so it will not reproduce the system port input on connector port. Such applications should be avoided. Connector port is interoperable with all I2C-bus slaves, masters and repeaters.

Resistor Pull-Up Value Selection

The system is designed to work properly with no external pull-up resistors on the DDC, CEC, and HPD lines.

INPUT CAPACITOR (OPTIONAL)

To limit the voltage drop on the input supply caused by transient in-rush currents when the switch turns on into a discharged load capacitor or short-circuit, a capacitor needs to be placed between 5V_SYS and GND. A $10-\mu$ F ceramic capacitor, C_{IN} , placed close to the pins, is usually sufficient. Higher values of CIN can be used to further reduce the voltage drop during high-current application. When switching heavy loads, it is recommended to have an input capacitor about 10 times higher than the output capacitor to avoid excessive voltage drop.

OUTPUT CAPACITOR (OPTIONAL)

Due to the integrated body diode in the NMOS switch, a C_{IN} greater than C_{LOAD} is highly recommended. A C_{LOAD} greater than C_{IN} can cause 5V_CON to exceed 5V_SYS when the system supply is removed. A C_{IN} to C_{LOAD} ratio of 10 to 1 is recommended for minimizing 5V_SYS dip caused by inrush currents during startup.

HDMI Compliance

The TPD5S116 is designed to be fully compliant to HDMI 7-13 capacitance specification. Both power on and power off capacitance measurements are done on the CEC, SDA, and SCL connector side pins using a Hioki 3522-50 meter. In power on setup, connect TPD5S116's EN and HPD_CON pins low and 5V_SYS and VCCA pins high. Use the Hioki meter to measure the test fixture with and without the TPD5S116 and subtract to obtain capacitance. In power off setup, connect TPD5S116's EN, HPD_CON, 5V_SYS, and VCCA pins low and conduct same test with the Hioki meter. Read the Cp result from the Hioki meter.

- SCL_CON, SDA_CON Test
 - Measure large signal capacitance at SCL_CON & SDA_CON pins either power-up or power down conditions:
 - VBIAS = 2.5 V
 - f = 100KHz
 - 3.5V p-p ac signal
- CEC Test
 - Measure large signal capacitance of the CEC_CON pin at both power-up and power down conditions:
 - VBIAS = 1.65 V,
 - f = 100KHz
 - 2.5V p-p ac signal

SLVSBP3A-DECEMBER 2012-REVISED MARCH 2013

REVISION HISTORY

Changes from Original (December 2012) to Revision A Changed the YFF package dimensions 1

www.ti.com

Page

11-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing		Qty	(2)		(3)		(4)	
TPD5S116YFFR	ACTIVE	DSBGA	YFF	15	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	RE116	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

Pin1 Quadrant

Q1

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

All dimensions are nominal											
Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)
TPD5S116YFFR	DSBGA	YFF	15	3000	180.0	8.4	1.46	2.28	0.71	4.0	8.0

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

23-Aug-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPD5S116YFFR	DSBGA	YFF	15	3000	182.0	182.0	17.0

YFF (R-XBGA-N15)

DIE-SIZE BALL GRID ARRAY

A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.

C. NanoFree™ package configuration.

NanoFree is a trademark of Texas Instruments

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconnectivity		

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated