

Extended Temperature Serial Interface CODEC/Filter COMBO Family

Check for Samples: TP3054-X, TP3057-X

FEATURES

- -40°C to +85°C Operation
- Complete CODEC and Filtering System (COMBO) Including:
 - Transmit High-Pass and Low-Pass Filtering
 - Receive Low-Pass Filter with Sin x/x Correction
 - Active RC Noise Filters
 - µ-Law or A-Law Compatible COder and DECoder
 - Internal Precision Voltage Reference
 - Serial I/O Interface
 - Internal Auto-Zero Circuitry
- μ-Law, 16-Pin TP3054
- A-Law, 16-Pin TP3057
- Designed for D3/D4 and CCITT Spplications
- ±5V Operation
- Low Operating Power Typically 50 mW
- Power-Down Standby Mode Typically 3 mW
- Automatic Power-Down
- TTL or CMOS Compatible Digital Interfaces
- Maximizes Line Interface Card Circuit Density
- Dual-In-Line or PCC Surface Mount Packages
- See also AN-370, "Techniques for Designing with CODEC/Filter COMBO Circuits" (SNLA136)

DESCRIPTION

The TP3054, TP3057 family consists of μ -law and A-law monolithic PCM CODEC/filters utilizing the A/D and D/A conversion architecture shown in Figure 3, and a serial PCM interface. The devices are fabricated using TI's advanced double-poly CMOS process (microCMOS).

The encode portion of each device consists of an input gain adjust amplifier, an active RC pre-filter which eliminates very high frequency noise prior to entering a switched-capacitor band-pass filter that rejects signals below 200 Hz and above 3400 Hz. Also included are auto-zero circuitry and a companding coder which samples the filtered signal and encodes it in the companded µ-law or A-law PCM format. The decode portion of each device consists of an expanding decoder, which reconstructs the analog signal from the companded µ-law or A-law code, a low-pass filter which corrects for the sin x/x response of the decoder output and rejects signals above 3400 Hz followed by a single-ended power amplifier capable of driving low impedance loads. The devices require two 1.536 MHz, 1.544 MHz or 2.048 MHz transmit and receive master clocks, which may be asynchronous; transmit and receive bit clocks, which may vary from 64 kHz to 2.048 MHz; and transmit and receive frame sync pulses. The timing of the frame sync pulses and PCM data is compatible with both industry standard formats.

Connection Diagram

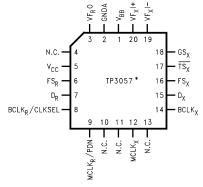


Figure 1. Plastic Chip Carriers (Top View)
Package Number FN0020A

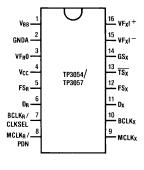


Figure 2. Dual-In-Line Package (Top View)
Package Number NFG001E & DW0016B

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.

Block Diagram

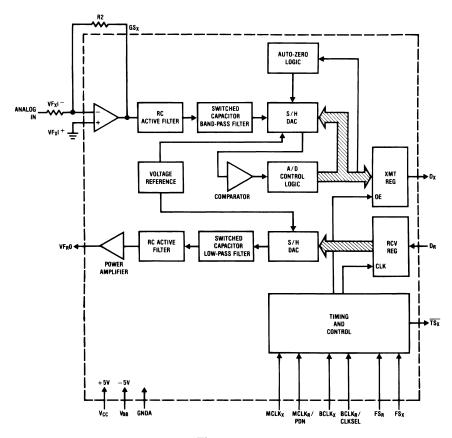


Figure 3.

PIN DESCRIPTIONS

Symbol	Function
V _{BB}	Negative power supply pin.
	$V_{BB} = -5V \pm 5\%$.
GNDA	Analog ground. All signals are referenced to this pin.
VF _R O	Analog output of the receive power amplifier.
V _{CC}	Positive power supply pin.
	$V_{CC} = +5V \pm 5\%$.
FS _R	Receive frame sync pulse which enables $BCLK_R$ to shift PCM data into D_R . FS_R is an 8 kHz pulse train. See Figure 4 and Figure 5 for timing details.
D_R	Receive data input. PCM data is shifted into D _R following the FS _R leading edge.
BCLK _R /CLKSEL	The bit clock which shifts data into D_R after the FS _R leading edge. May vary from 64 kHz to 2.048 MHz. Alternatively, may be a logic input which selects either 1.536 MHz/1.544 MHz or 2.048 MHz for master clock in synchronous mode and BCLK _X is used for both transmit and receive directions (see Table 1).
MCLK _R /PDN	Receive master clock. Must be 1.536 MHz, 1.544 MHz or 2.048 MHz. May be asynchronous with MCLK $_{\rm X}$, but should be synchronous with MCLK $_{\rm X}$ for best performance. When MCLK $_{\rm R}$ is connected continuously low, MCLK $_{\rm X}$ is selected for all internal timing. When MCLK $_{\rm R}$ is connected continuously high, the device is powered down.
MCLK _X	Transmit master clock. Must be 1.536 MHz, 1.544 MHz or 2.048 MHz. May be asynchronous with MCLK _R . Best performance is realized from synchronous operation.
FS _X	Transmit frame sync pulse input which enables $BCLK_X$ to shift out the PCM data on D_X . FS_X is an 8 kHz pulse train, see Figure 4 and Figure 5 for timing details.
BCLK _X	The bit clock which shifts out the PCM data on D_X . May vary from 64 kHz to 2.048 MHz, but must be synchronous with MCLK _X .

Submit Documentation Feedback

Copyright © 2005–2013, Texas Instruments Incorporated

PIN DESCRIPTIONS (continued)

Symbol	Function				
D _X	The TRI-STATE PCM data output which is enabled by FS _X .				
$\overline{TS^X}$ Open drain output which pulses low during the encoder time slot.					
GS _X	Analog output of the transmit input amplifier. Used to externally set gain.				
VF _X I ⁻	Inverting input of the transmit input amplifier.				
VF _X I ⁺	Non-inverting input of the transmit input amplifier.				

Functional Description

POWER-UP

When power is first applied, power-on reset circuitry initializes the COMBO and places it into a power-down state. All non-essential circuits are deactivated and the D_X and VF_RO outputs are put in high impedance states. To power-up the device, a logical low level or clock must be applied to the $MCLK_R/PDN$ pin and FS_X and/or FS_R pulses must be present. Thus, 2 power-down control modes are available. The first is to pull the $MCLK_R/PDN$ pin high; the alternative is to hold both FS_X and FS_R inputs continuously low—the device will power-down approximately 1 ms after the last FS_X or FS_R pulse. Power-up will occur on the first FS_X or FS_R pulse. The TRI-STATE PCM data output, D_X , will remain in the high impedance state until the second FS_X pulse.

SYNCHRONOUS OPERATION

For synchronous operation, the same master clock and bit clock should be used for both the transmit and receive directions. In this mode, a clock must be applied to $MCLK_X$ and the $MCLK_R/PDN$ pin can be used as a power-down control. A low level on $MCLK_R/PDN$ powers up the device and a high level powers down the device. In either case, $MCLK_X$ will be selected as the master clock for both the transmit and receive circuits. A bit clock must also be applied to $BCLK_X$ and the $BCLK_R/CLKSEL$ can be used to select the proper internal divider for a master clock of 1.536 MHz, 1.544 MHz or 2.048 MHz. For 1.544 MHz operation, the device automatically compensates for the 193rd clock pulse each frame.

With a fixed level on the BCLK_R/CLKSEL pin, BCLK_X will be selected as the bit clock for both the transmit and receive directions. Table 1 indicates the frequencies of operation which can be selected, depending on the state of BCLK_R/CLKSEL. In this synchronous mode, the bit clock, BCLK_X, may be from 64 kHz to 2.048 MHz, but must be synchronous with MCLK_X.

Each FS_X pulse begins the encoding cycle and the PCM data from the previous encode cycle is shifted out of the enabled D_X output on the positive edge of $BCLK_X$. After 8 bit clock periods, the TRI-STATE D_X output is returned to a high impedance state. With an FS_R pulse, PCM data is latched via the D_R input on the negative edge of $BCLK_X$ (or $BCLK_R$ if running). FS_X and FS_R must be synchronous with $MCLK_{X/R}$.

Table 1. Selection of Master Clock Frequencies

	Master Clock						
BCLK _R /CLKSEL	Frequency Selected						
	TP3057	TP3054					
Clocked	2.048 MHz	1.536 MHz or 1.544 MHz					
0	1.536 MHz or 1.544 MHz	2.048 MHz					
1	2.048 MHz	1.536 MHz or 1.544 MHz					

ASYNCHRONOUS OPERATION

For asynchronous operation, separate transmit and receive clocks may be applied. $MCLK_X$ and $MCLK_R$ must be 2.048 MHz for the TP3057, or 1.536 MHz, 1.544 MHz for the TP3054, and need not be synchronous. For best transmission performance, however, $MCLK_R$ should be synchronous with $MCLK_X$, which is easily achieved by applying only static logic levels to the $MCLK_R$ /PDN pin. This will automatically connect $MCLK_X$ to all internal $MCLK_R$ functions (see Pin Description above). For 1.544 MHz operation, the device automatically compensates for the 193rd clock pulse each frame. FS_X starts each encoding cycle and must be synchronous with $MCLK_X$ and $BCLK_X$. FS_R starts each decoding cycle and must be synchronous with $BCLK_R$. $BCLK_R$ must be a clock, the logic levels shown in Table 1 are not valid in asynchronous mode. $BCLK_X$ and $BCLK_R$ may operate from 64 kHz to 2.048 MHz.

SHORT FRAME SYNC OPERATION

The COMBO can utilize either a short frame sync pulse or a long frame sync pulse. Upon power initialization, the device assumes a short frame mode. In this mode, both frame sync pulses, FS_X and FS_R , must be one bit clock period long, with timing relationships specified in Figure 4. With FS_X high during a falling edge of $BCLK_X$, the next rising edge of $BCLK_X$ enables the D_X TRI-STATE output buffer, which will output the sign bit. The following seven rising edges clock out the remaining seven bits, and the next falling edge disables the D_X output. With FS_R high during a falling edge of $BCLK_R$ ($BCLK_X$ in synchronous mode), the next falling edge of $BCLK_R$ latches in the sign bit. The following seven falling edges latch in the seven remaining bits. All four devices may utilize the short frame sync pulse in synchronous or asynchronous operating mode.

LONG FRAME SYNC OPERATION

To use the long frame mode, both the frame sync pulses, FS_X and FS_R , must be three or more bit clock periods long, with timing relationships specified in Figure 5. Based on the transmit frame sync, FS_X , the COMBO will sense whether short or long frame sync pulses are being used. For 64 kHz operation, the frame sync pulse must be kept low for a minimum of 160 ns. The D_X TRI-STATE output buffer is enabled with the rising edge of FS_X or the rising edge of FS_X , whichever comes later, and the first bit clocked out is the sign bit. The following seven FS_X rising edges clock out the remaining seven bits. The FS_X output is disabled by the falling FS_X edge following the eighth rising edge, or by FS_X going low, whichever comes later. A rising edge on the receive frame sync pulse, FS_X , will cause the FS_X do be latched in on the next eight falling edges of FS_X in synchronous mode). All four devices may utilize the long frame sync pulse in synchronous or asynchronous mode.

In applications where the LSB bit is used for signalling, with FS_R two bit clock periods long, the decoder will interpret the lost LSB as " $\frac{1}{2}$ " to minimize noise and distortion.

TRANSMIT SECTION

The transmit section input is an operational amplifier with provision for gain adjustment using two external resistors, see Figure 8. The low noise and wide bandwidth allow gains in excess of 20 dB across the audio passband to be realized. The op amp drives a unity-gain filter consisting of RC active pre-filter, followed by an eighth order switched-capacitor bandpass filter clocked at 256 kHz. The output of this filter directly drives the encoder sample-and-hold circuit. The A/D is of companding type according to μ -law (TP3054) or A-law (TP3057) coding conventions. A precision voltage reference is trimmed in manufacturing to provide an input overload (t_{MAX}) of nominally 2.5V peak (see Transmission Characteristics). The FS $_X$ frame sync pulse controls the sampling of the filter output, and then the successive-approximation encoding cycle begins. The 8-bit code is then loaded into a buffer and shifted out through D $_X$ at the next FS $_X$ pulse. The total encoding delay will be approximately 165 μ s (due to the transmit filter) plus 125 μ s (due to encoding delay), which totals 290 μ s. Any offset voltage due to the filters or comparator is cancelled by sign bit integration.

RECEIVE SECTION

The receive section consists of an expanding DAC which drives a fifth order switched-capacitor low pass filter clocked at 256 kHz. The decoder is A-law (TP3057) or μ -law (TP3054) and the 5th order low pass filter corrects for the sin x/x attenuation due to the 8 kHz sample/hold. The filter is then followed by a 2nd order RC active post-filter/power amplifier capable of driving a 600 Ω load to a level of 7.2 dBm. The receive section is unity-gain. Upon the occurrence of FS_R, the data at the D_R input is clocked in on the falling edge of the next eight BCLK_R (BCLK_X) periods. At the end of the decoder time slot, the decoding cycle begins, and 10 μ s later the decoder DAC output is updated. The total decoder delay is ~10 μ s (decoder update) plus 110 μ s (filter delay) plus 62.5 μ s (½ frame), which gives approximately 180 μ s.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings (1)(2)

V _{CC} to GNDA	7V	
V _{BB} to GNDA	-7V	
Voltage at any Analog Input or Output		V_{CC} +0.3V to V_{BB} -0.3V
Voltage at any Digital Input or Output		V _{CC} +0.3V to GNDA-0.3V
Operating Temperature Range		−55°C to + 125°C
Storage Temperature Range		−65°C to +150°C
Lead Temperature	(Soldering, 10 sec.)	300°C

^{(1) &}quot;Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits.

Electrical Characteristics

Unless otherwise noted, limits printed in **BOLD** characters are ensured for V_{CC} = +5.0V ±5%, V_{BB} = -5.0V ±5%; T_A = -40°C to +85°C by correlation with 100% electrical testing at T_A = 25°C. All other limits are assured by correlation with other production tests and/or product design and characterization. All signals referenced to GNDA. Typicals specified at V_{CC} = +5.0V, V_{BB} = -5.0V, T_A = 25°C.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
DIGITAL II	NTERFACE		•		•	
V _{IL}	Input Low Voltage				0.6	V
V _{IH}	Input High Voltage		2.2			V
V _{OL}		D _X , I _L =3.2 mA			0.4	V
	Output Low Voltage	SIG _R , I _L =1.0 mA			0.4	V
		\overline{TS}_{X}^{-} , I _L =3.2 mA, Open Drain			0.4	V
V _{OH}	Ordered I Path Valle are	D _X , I _H =-3.2 mA	2.4			V
	Output High Voltage	SIG _R , I _H =-1.0 mA	2.4			V
I _{IL}	Input Low Current	GNDA≤V _{IN} ≤V _{IL} , All Digital Inputs	-10		10	μΑ
I _{IH}	Input High Current	V _{IH} ≤V _{IN} ≤V _{CC}	-10		10	μΑ
I_{OZ}	Output Current in High Impedance State (TRI-STATE)	D _X , GNDA≤V _O ≤V _{CC}	-10		10	μΑ
ANALOG	NTERFACE WITH TRANSMIT INPUT AMP	LIFIER (ALL DEVICES)	•			
I _I XA	Input Leakage Current	-2.5V≤V≤+2.5V, VF _X I ⁺ or VF _X I ⁻	-200		200	nA
R _I XA	Input Resistance	-2.5V≤V≤+2.5V, VF _X I ⁺ or VF _X I ⁻	10			ΜΩ
R _O XA	Output Resistance	Closed Loop, Unity Gain		1	3	Ω
R _L XA	Load Resistance	GS _X	10			kΩ
C _L XA	Load Capacitance	GS _X			50	pF
V _O XA	Output Dynamic Range	GS _X , R _L ≥ 10 kΩ	-2.8		2.8	V
A _V XA	Voltage Gain	VF _X I ⁺ to GS _X	5000			V/V

⁽²⁾ If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.

Electrical Characteristics (continued)

Unless otherwise noted, limits printed in **BOLD** characters are ensured for V_{CC} = +5.0V ±5%, V_{BB} = -5.0V ±5%; T_A = -40°C to +85°C by correlation with 100% electrical testing at T_A = 25°C. All other limits are assured by correlation with other production tests and/or product design and characterization. All signals referenced to GNDA. Typicals specified at V_{CC} = +5.0V, V_{BB} = -5.0V, T_A = 25°C.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
F _U XA	Unity Gain Bandwidth		1	2		MHz
V _{OS} XA	Offset Voltage		-20		20	mV
V _{CM} XA	Common-Mode Voltage	CMRRXA > 60 dB	-2.5		2.5	V
CMRRXA	Common-Mode Rejection Ratio	DC Test	60			dB
PSRRXA	Power Supply Rejection Ratio	DC Test	60			dB
ANALOG I	NTERFACE WITH RECEIVE FILTER (ALL DEVICES)	1			
R _O RF	Output Resistance	Pin VF _R O		1	3	Ω
R _L RF	Load Resistance	VF _R O=±2.5V	600			Ω
C _L RF	Load Capacitance				500	pF
VOS _R O	Output DC Offset Voltage		-200		200	mV
POWER DI	SSIPATION (ALL DEVICES)		1			
I _{CC} 0	Power-Down Current	No Load ⁽¹⁾		0.65	2.0	mA
I _{BB} 0	Power-Down Current	No Load ⁽¹⁾		0.01	0.33	mA
I _{CC} 1	Power-Up (Active) Current	No Load		5.0	11.0	mA
I _{BB} 1	Power-Up (Active) Current	No Load		5.0	11.0	mA

⁽¹⁾ I_{CC0} and I_{BB0} are measured after first achieving a power-up state.

Submit Documentation Feedback

Timing Specifications

Unless otherwise noted, limits printed in **BOLD** characters are ensured for V_{CC} = +5.0V ±5%, V_{BB} = -5.0V ±5%; T_A = -40°C to +85°C by correlation with 100% electrical testing at T_A = 25°C. All other limits are assured by correlation with other production tests and/or product design and characterization. All signals referenced to GNDA. Typicals specified at V_{CC} = +5.0V, V_{BB} = -5.0V, V_{AB} = 25°C. All timing parameters are assured at V_{CC} = 2.0V and V_{CL} = 0.7V. See Definitions and Timing Conventions section for test methods information.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
1/t _{PM}		Depends on the Device Used and the		1.536		MHz
	Frequency of Master Clocks	BCLK _R /CLKSEL Pin.		1.544		MHz
		MCLK _X and MCLK _R		2.048		MHz
t _{RM}	Rise Time of Master Clock	MCLK _X and MCLK _R			50	ns
t _{FM}	Fall Time of Master Clock	MCLK _X and MCLK _R			50	ns
t _{PB}	Period of Bit Clock		485	488	15725	ns
t _{RB}	Rise Time of Bit Clock	BCLK _X and BCLK _R			50	ns
t _{FB}	Fall Time of Bit Clock	BCLK _X and BCLK _R			50	ns
t _{WMH}	Width of Master Clock High	MCLK _X and MCLK _R	160			ns
t _{WML}	Width of Master Clock Low	MCLK _X and MCLK _R	160			ns
t _{SBFM}	Set-Up Time from BCLK _X High	First Bit Clock after the Leading Edge of Short Frame	100			ns
	to MCLK _X Falling Edge	FS _X Long Frame	125			
t _{SFFM}	Setup Time from FS _X High to MCLK _X Falling Edge	Long Frame Only	100			ns
t _{WBH}	Width of Bit Clock High	V _{IH} =2.2V	160			ns
t _{WBL}	Width of Bit Clock Low	V _{IL} =0.6V	160			ns
t _{HBFL}	Holding Time from Bit Clock Low to Frame Sync	Long Frame Only	0			ns
t _{HBFS}	Holding Time from Bit Clock High to Frame Sync	Short Frame Only	0			ns
t _{SFB}	Set-Up Time from Frame Sync to Bit Clock Low	Long Frame Only	115			ns
t _{DBD}	Delay Time from BCLK _X High to Data Valid	Load=150 pF plus 2 LSTTL Loads	0		140	ns
t _{DBTS}	Delay Time to $\overline{TS_X}$ Low	Load=150 pF plus 2 LSTTL Loads			140	ns
t _{DZC}	Delay Time from BCLK _X Low to Data Output Disabled	C _L =0 pF to 150 pF	50		165	ns
t _{DZF}	Delay Time to Valid Data from FS _X or BCLK _X , Whichever Comes Later	C _L =0 pF to 150 pF	20		165	ns
t _{SDB}	Set-Up Time from D _R Valid to BCLK _{R/X} Low		50			ns
t _{HBD}	Hold Time from BCLK _{R/X} Low to D _R Invalid		50			ns
t _{SF}	Set-Up Time from FS _{X/R} to BCLK _{X/R} Low	Short Frame Sync Pulse (1 Bit Clock Period Long)	50			ns
t _{HF}	Hold Time from BCLK _{X/R} Low to FS _{X/R} Low	Short Frame Sync Pulse (1 Bit Clock Period Long)	100			ns
t _{HBFI}	Hold Time from 3rd Period of Bit Clock Low to Frame Sync (FS _X or FS _R)	Long Frame Sync Pulse (from 3 to 8 Bit Clock Periods Long)	100			ns
t _{WFL}	Minimum Width of the Frame Sync Pulse (Low Level)	64k Bit/s Operating Mode	160			ns

Timing Diagrams

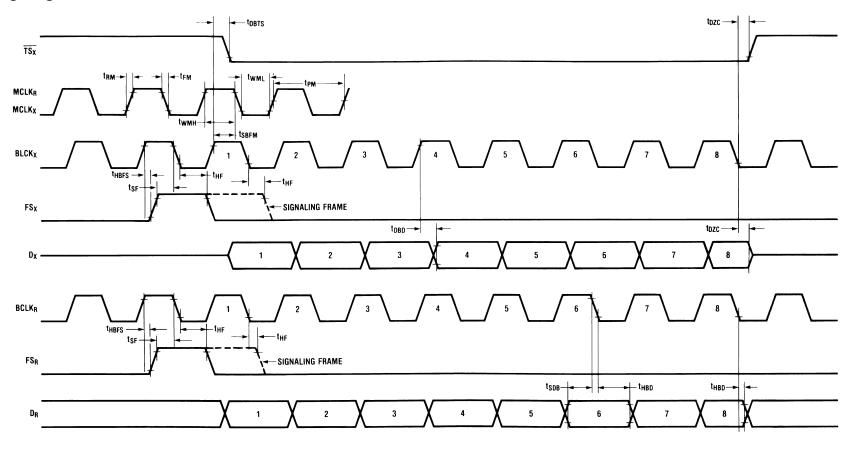


Figure 4. Short Frame Sync Timing

Submit Documentation Feedback

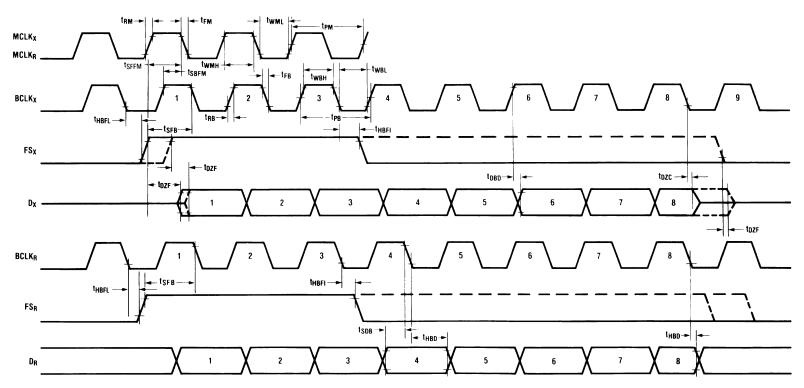


Figure 5. Long Frame Sync Timing

Transmission Characteristics

Unless otherwise noted, limits printed in **BOLD** characters are ensured for V_{CC} = +5.0V ±5%, V_{BB} = -5.0V ±5%; T_A = -40°C to +85°C by correlation with 100% electrical testing at T_A = 25°C. All other limits are assured by correlation with other production tests and/or product design and characterization. GNDA = 0V, f = 1.02 kHz, V_{IN} = 0 dBm0, transmit input amplifier connected for unity gain non inverting. Typicals are specified at V_{CC} = +5.0V, V_{BB} = -5.0V, V_{AB} = 25°C.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
AMPLITU	DE RESPONSE		*			
	Absolute Levels (Definition of nominal gain)	Nominal 0 dBm0 Level is 4 dBm (600Ω) 0 dBm0		1.2276		Vrms
t _{MAX}		Max Overload Level				
		TP3054 (3.17 dBm0)		2.501		V_{PK}
		TP3057 (3.14 dBm0)		2.492		V_{PK}
G _{XA}	Transmit Gain, Absolute	T _A =25°C, V _{CC} =5V, V _{BB} =-5V Input at GS _x =0 dBm0 at 1020 Hz	-0.15		0.15	dB
G_XR		f=16 Hz			-40	dB
		f=50 Hz			-30	dB
		f=60 Hz			-26	dB
		f=200 Hz	-1.8		-0.1	dB
		f=300 Hz-3000 Hz	-0.15		0.15	dB
	Transmit Gain, Relative to G _{XA}	f=3152 Hz	-0.15		0.20	dB
		f=3300 Hz	-0.35		0.1	dB
		f=3400 Hz	-0.7		0	dB
		f=4000 Hz			-14	dB
		f=4600 Hz and Up, Measure			-32	dB
		Response from 0 Hz to 4000 Hz				
G _{XAT}	Absolute Transmit Gain Variation with Temperature	Relative to G _{XA}	-0.15		0.15	dB
G _{XAV}	Absolute Transmit Gain Variation with Supply Voltage	Relative to G _{XA}	-0.05		0.05	dB
G_{XRL}		Sinusoidal Test Method				
		Reference Level=-10 dBm0				
	Transmit Gain Variations with Level	VF _X I ⁺ =−40 dBm0 to +3 dBm0	-0.2		0.2	dB
		VF _X I ⁺ =−50 dBm0 to −40 dBm0	-0.4		0.4	dB
		VF _X I ⁺ =−55 dBm0 to −50 dBm0	-1.2		1.2	dB
G _{RA}		T _A =25°C, V _{CC} =5V, V _{BB} =-5V				
	Receive Gain, Absolute	Input=Digital Code Sequence	-0.20		0.20	dB
		for 0 dBm0 Signal at 1020 Hz				
G _{RR}		f=0 Hz to 3000 Hz	-0.15		0.15	dB
	5 . 0 . 5	f=3300 Hz	-0.35		0.1	dB
	Receive Gain, Relative to G _{RA}	f=3400 Hz	-0.7		0	dB
		f=4000 Hz			-14	dB
G _{RAT}	Absolute Receive Gain Variation with Temperature	Relative to G _{RA}	-0.15		0.15	dB
G _{RAV}	Absolute Receive Gain Variation with Supply Voltage	Relative to G _{RA}	-0.05		0.05	dB
G _{RRL}		Sinusoidal Test Method; Reference				
		Input PCM Code Corresponds to an				
		Ideally Encoded				
	Receive Gain Variations with Level	PCM Level =-40 dBm0 to +3 dBm0	-0.2		0.2	dB
		PCM Level =-50 dBm0 to -40 dBm0	-0.4		0.4	dB
		PCM Level =-55 dBm0 to -50 dBm0	-1.2		1.2	dB
V _{RO}	Receive Output Drive Level	$R_L=600\Omega$	-2.5		2.5	V

Submit Documentation Feedback

Copyright © 2005–2013, Texas Instruments Incorporated

Transmission Characteristics (continued)

Unless otherwise noted, limits printed in **BOLD** characters are ensured for V_{CC} = +5.0V ±5%, V_{BB} = -5.0V ±5%; T_A = -40°C to +85°C by correlation with 100% electrical testing at T_A = 25°C. All other limits are assured by correlation with other production tests and/or product design and characterization. GNDA = 0V, f = 1.02 kHz, V_{IN} = 0 dBm0, transmit input amplifier connected for unity gain non inverting. Typicals are specified at V_{CC} = +5.0V, V_{BB} = -5.0V, T_A = 25°C.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
ENVELO	PE DELAY DISTORTION WITH FREQUE	ENCY				
D _{XA}	Transmit Delay, Absolute	f=1600 Hz		290	315	μs
D _{XR}		f=500 Hz-600 Hz		195	220	μs
		f=600 Hz-800 Hz		120	145	μs
		f=800 Hz-1000 Hz		50	75	μs
	Transmit Delay, Relative to D _{XA}	f=1000 Hz-1600 Hz		20	40	μs
		f=1600 Hz-2600 Hz		55	75	μs
		f=2600 Hz-2800 Hz		80	105	μs
		f=2800 Hz-3000 Hz		130	155	μs
D _{RA}	Receive Delay, Absolute	f=1600 Hz		180	200	μs
D _{RR}		f=500 Hz-1000 Hz	-40	-25		μs
		f=1000 Hz-1600 Hz	-30	-20		μs
	Receive Delay, Relative to D _{RA}	f=1600 Hz-2600 Hz		70	90	μs
		f=2600 Hz-2800 Hz		100	125	μs
		f=2800 Hz-3000 Hz		145	175	μs
NOISE						
N _{XC}	Transmit Noise, C Message Weighted	TP3054 ⁽¹⁾		12	16	dBrnC0
N _{XP}	Transmit Noise, P Message Weighted	TP3057 ⁽¹⁾		-74	-67	dBm0p
N _{RC}	Receive Noise, C Message Weighted	PCM Code is Alternating Positive and Negative Zero - TP3054		8	11	dBrnC0
N _{RP}	Receive Noise, P Message Weighted	TP3057 PCM Code Equals Positive Zero		-82	-79	dBm0p
N _{RS}	Noise, Single Frequency	f=0 kHz to 100 kHz, Loop Around Measurement, VF _X I ⁺ =0 Vrms			-53	dBm0
PPSR _X	Positive Power Supply Rejection, Transmit	V _{CC} =5.0 V _{DC} +100 mVrms f=0 kHz-50 kHz ⁽²⁾	40			dBC
NPSR _X	Negative Power Supply Rejection, Transmit	V _{BB} =-5.0 V _{DC} + 100 mVrms f=0 kHz-50 kHz ⁽²⁾	40			dBC
PPSR _R		PCM Code Equals Positive Zero				
1 1 OKR		V _{CC} =5.0 V _{DC} +100 mVrms				
	Desiring Bernard County Delication	Measure VF _R 0				
	Positive Power Supply Rejection, Receive	f=0 Hz-4000 Hz	38			dBC
		f=4 kHz-25 kHz	38			dB
		f=25 kHz-50 kHz	35			dB
NPSR _R		PCM Code Equals Positive Zero	33			GD.
01.18		V_{BB} =-5.0 V_{DC} +100 mVrms				
	Negative Dower Cumply Deigstics	Measure VF _R 0				
	Negative Power Supply Rejection, Receive	f=0 Hz-4000 Hz	38			dBC
		f=4 kHz-25 kHz	38			dB
		f=25 kHz-50 kHz	35			dB

Copyright © 2005-2013, Texas Instruments Incorporated

⁽¹⁾ Measured by extrapolation from the distortion test result at −50 dBm0.

⁽²⁾ PPSR_X, NPSR_X, and CT_{R-X} are measured with a −50 dBm0 activation signal applied to VF_XI⁺.

Transmission Characteristics (continued)

Unless otherwise noted, limits printed in **BOLD** characters are ensured for $V_{CC} = +5.0V \pm 5\%$, $V_{BB} = -5.0V \pm 5\%$; $T_A = -40^{\circ}C$ to +85°C by correlation with 100% electrical testing at $T_A = 25^{\circ}C$. All other limits are assured by correlation with other production tests and/or product design and characterization. GNDA = 0V, f = 1.02 kHz, $V_{IN} = 0$ dBm0, transmit input amplifier connected for unity gain non inverting. Typicals are specified at $V_{CC} = +5.0V$, $V_{BB} = -5.0V$, $T_A = 25^{\circ}C$.

Symbol	Parameter	Conditions		Min	Тур	Max	Units
SOS		Loop Around Measurement, 0	dBm0,			-30	dB
		300 Hz to 3400 Hz Input PCM	l Code				
	Spurious Out-of-Band Signals at the	Applied at D _R .					
	Channel Output	4600 Hz-7600 Hz				-30	dB
		7600 Hz-8400 Hz				-40	dB
		8400 Hz-100,000 Hz				-30	dB
DISTORT	ION				•		
STD _{X,}		Sinusoidal Test Method ⁽³⁾					
STDR		Level=3.0 dBm0		33			dBC
		=0 dBm0 to −30 dBm0		36			dBC
	Signal to Total Distortion Transmit or Receive Half-Channel	=-40 dBm0	XMT	28			dBC
	Troscive Fian Charmer		RCV	29			dBC
		=-55 dBm0	XMT	13			dBC
			RCV	14			dBC
SFD _X	Single Frequency Distortion, Transmit					-43	dB
SFD _R	Single Frequency Distortion, Receive					-43	dB
IMD		Loop Around Measurement,					
	Intermodulation Distortion	VF _X I ⁺ =−4 dBm0 to −21 dBm0	, Two			-41	dB
	Intermodulation distortion	Frequencies in the Range				-41	αБ
		300 Hz-3400 Hz					
CROSSTA	ALK						
CT _{X-R}	Transmit to Receive Crosstalk, 0 dBm0	f=300 Hz-3400 Hz			-90	-70	dB
	Transmit Level	D _R =Quiet PCM Code ⁽⁴⁾			-90	-70	UD
CT _{R-X}	Receive to Transmit Crosstalk, 0 dBm0 Receive Level	f=300 Hz-3400 Hz, VF _X I=Mul	titone ⁽⁵⁾		-90	-70	dB

³⁾ TP3054/57 are measured using C message weighted filter for μ-law and psophometric weighted filter for A-law.

Submit Documentation Feedback

⁽⁴⁾ CT_{X-R} @ 1.544 MHz MCLK_X freq. is -70 dB max. 50% ±5% BCLK_X duty cycle.

⁽⁵⁾ PPSR_X, NPSR_X, and CT_{R-X} are measured with a −50 dBm0 activation signal applied to VF_XI⁺.

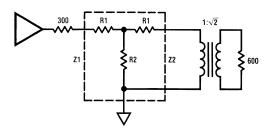
Encoding Format at D_x Output

		TP3054 μ-Law								23057	4-Law	(Includ	es Eve	n Bit Ir	nversio	on)
V _{IN} (at GS _X)=+Full-Scale	1	0	0	0	0	0	0	0	1	0	1	0	1	0	1	0
\\ (-1 00 \ 0\\	1	1	1	1	1	1	1	1	1	1	0	1	0	1	0	1
V _{IN} (at GS _X)=0V	0	1	1	1	1	1	1	1	0	1	0	1	0	1	0	1
V _{IN} (at GS _X)=−Full-Scale	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0

APPLICATIONS INFORMATION

POWER SUPPLIES

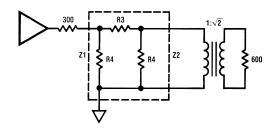
While the pins of the TP3050 family are well protected against electrical misuse, it is recommended that the standard CMOS practice be followed, ensuring that ground is connected to the device before any other connections are made. In applications where the printed circuit board may be plugged into a "hot" socket with power and clocks already present, an extra long ground pin in the connector should be used.


All ground connections to each device should meet at a common point as close as possible to the GNDA pin. This minimizes the interaction of ground return currents flowing through a common bus impedance. 0.1 μ F supply decoupling capacitors should be connected from this common ground point to V_{CC} and V_{BB} , as close to device pins as possible.

For best performance, the ground point of each CODEC/FILTER on a card should be connected to a common card ground in star formation, rather than via a ground bus.

This common ground point should be decoupled to V_{CC} and V_{BB} with 10 μF capacitors.

RECEIVE GAIN ADJUSTMENT


For applications where a TP3050 family CODEC/filter receive output must drive a 600Ω load, but a peak swing lower than $\pm 2.5 \text{V}$ is required, the receive gain can be easily adjusted by inserting a matched T-pad or π -pad at the output. Table 2 lists the required resistor values for 600Ω terminations. As these are generally non-standard values, the equations can be used to compute the attenuation of the closest practical set of resistors. It may be necessary to use unequal values for the R1 or R4 arms of the attenuators to achieve a precise attenuation. Generally it is tolerable to allow a small deviation of the input impedance from nominal while still maintaining a good return loss. For example a 30 dB return loss against 600Ω is obtained if the output impedance of the attenuator is in the range 282Ω to 319Ω (assuming a perfect transformer).

$$\begin{split} \text{R1} &= \text{Z1}\bigg(\frac{N^2+1}{N^2-1}\bigg) - 2\sqrt{\text{Z1.Z2}}\left(\frac{N}{N^2-1}\right) \\ \text{R2} &= 2\sqrt{\text{Z1.Z2}}\left(\frac{N}{N^2-1}\right) \\ \text{Where: N} &= \sqrt{\frac{\text{POWER IN}}{\text{POWER OUT}}} \\ \text{and} \\ &\text{S} &= \sqrt{\frac{Z1}{2Z}} \\ \text{Also: Z} &= \sqrt{Z_{SC} \bullet Z_{OC}} \\ \text{Where Z}_{SC} &= \text{impedance with short circuit termination} \\ \text{and Z}_{CO} &= \text{impedance with open circuit termination} \end{split}$$

Figure 6. T-Pad Attenuator

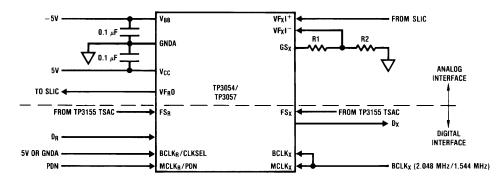
$$R3 = \sqrt{\frac{Z1.Z2}{2}} \left(\frac{N^2 - 1}{N} \right)$$

 $R3 = Z1 \left(\frac{N^2 - 1}{N^2 - 2NS + 1} \right)$

Note: See Application Note 370 for further details.

Figure 7. π-Pad Attenuator

Table 2. Attentuator Tables for Z1=Z2=300 Ω (All Values in Ω)


dB	R1	R2	R3	R4
0.1	1.7	26k	3.5	52k
0.2	3.5	13k	6.9	26k
0.3	5.2	8.7k	10.4	17.4k
0.4	6.9	6.5k	13.8	13k
0.5	8.5	5.2k	17.3	10.5k
0.6	10.4	4.4k	21.3	8.7k
0.7	12.1	3.7k	24.2	7.5k
0.8	13.8	3.3k	27.7	6.5k
0.9	15.5	2.9k	31.1	5.8k
1.0	17.3	2.61	34.6	5.2k
2	34.4	1.3k	70	2.6k
3	51.3	850	107	1.8k
4	68	650	144	1.3k
5	84	494	183	1.1k
6	100	402	224	900
7	115	380	269	785
8	379	284	317	698
9	143	244	370	630
10	156	211	427	527
11	168	184	490	535
12	180	161	550	500
13	190	142	635	473
14	200	125	720	450
15	210	110	816	430
16	218	98	924	413
18	233	77	1.17k	386
20	246	61	1.5k	366

Submit Documentation Feedback

Copyright © 2005–2013, Texas Instruments Incorporated

Typical Synchronous Application

Note 1: XMIT gain = $20 \times log \left(\frac{R1 + R2}{R2}\right)$,(R1 + R2) > 10 K Ω .

Figure 8.

SNOSBY2C - MARCH 2005-REVISED APRIL 2013

REVISION HISTORY

Changes from Revision B (April 2013) to Revision C						
•	Changed layout of National Data Sheet to TI format		15			

Product Folder Links: TP3054-X TP3057-X

Submit Documentation Feedback

18-Oct-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing		Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TP3054WM-X	NRND	SOIC	DW	16	45	TBD	Call TI	Call TI		TP3054WM-X COMBO\$R	
TP3054WM-X/63	NRND	SOIC	DW	16	1000	TBD	Call TI	Call TI		TP3054WM-X COMBO\$R	
TP3054WM-X/63SN	NRND	SOIC	DW	16	1000	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR		TP3054WM-X COMBO\$R	
TP3054WM-X/NOPB	NRND	SOIC	DW	16	45	Green (RoHS & no Sb/Br)	SN CU SN	Level-4-260C-72 HR		TP3054WM-X COMBO\$R	

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

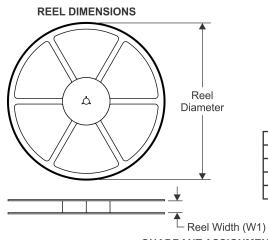
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

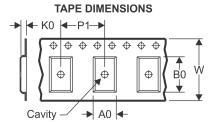
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

PACKAGE OPTION ADDENDUM

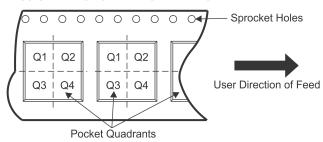
18-Oct-2013


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

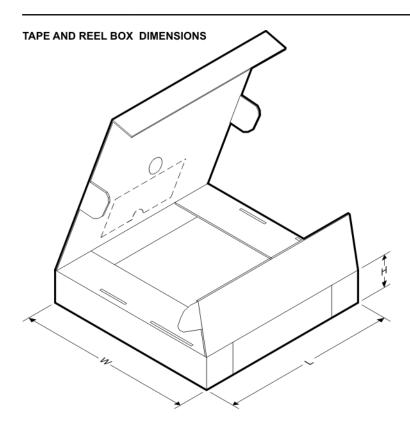

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 8-Apr-2013


TAPE AND REEL INFORMATION

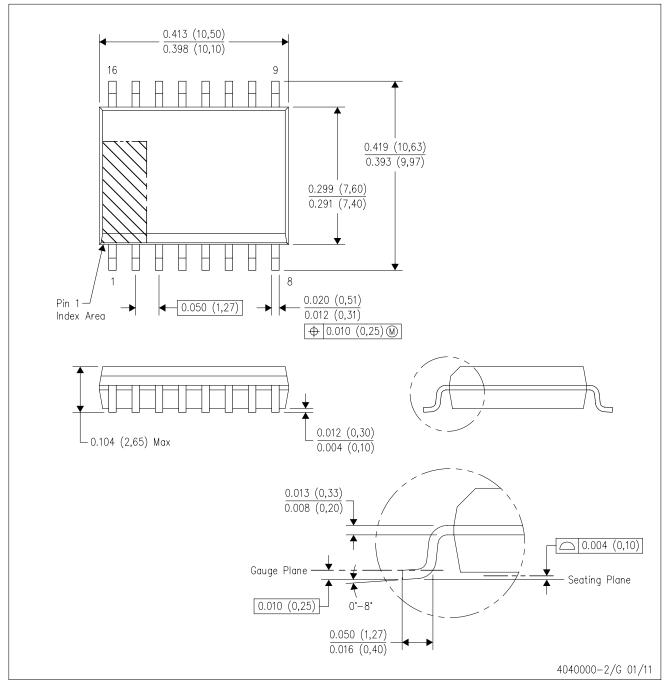
A0	
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TP3054WM-X/63	SOIC	DW	16	1000	330.0	16.4	10.9	10.7	3.2	12.0	16.0	Q1
TP3054WM-X/63SN	SOIC	DW	16	1000	330.0	16.4	10.9	10.7	3.2	12.0	16.0	Q1

www.ti.com 8-Apr-2013



*All dimensions are nominal

Device	Package Type	Package Drawing	g Pins SPQ		Length (mm)	Width (mm)	Height (mm)	
TP3054WM-X/63	SOIC	DW	16	1000	367.0	367.0	38.0	
TP3054WM-X/63SN	SOIC	DW	16	1000	367.0	367.0	38.0	

DW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AA.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>