www.ti.com

SGLS312J - SEPTEMBER 2005 - REVISED JUNE 2011

AUTOMOTIVE LOW-DROPOUT VOLTAGE REGULATORS

Check for Samples: TL750Mxx-Q1, TL751Mxx-Q1

FEATURES

- Qualified for Automotive Applications
- Low Dropout Voltage, Less Than 0.6 V at 750 mA
- Low Quiescent Current
- TTL- and CMOS-Compatible Enable on TL751M Series
- Load-Dump Protection
- Overvoltage Protection
- Internal Thermal Overload Protection
- Internal Overcurrent-Limiting Circuitry

DESCRIPTION

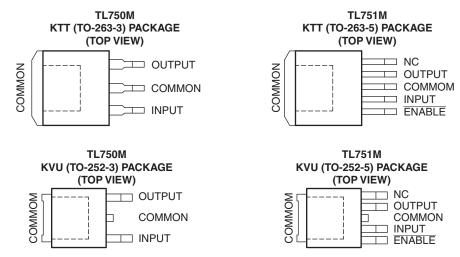
The TL750M and TL751M series are low-dropout positive voltage regulators specifically designed for automotive applications. The TL750M and TL751M series incorporate onboard overvoltage and current-limiting protection circuitry to protect the devices and the regulated system. Both series are fully protected against load-dump and reverse-battery conditions. Load-dump protection is up to a maximum of 60 V at the input of the device. Low quiescent current, even during full-load conditions, makes the TL750M and TL751M series ideal for use in applications that are permanently connected to the vehicle battery.

The TL750M and TL751M series offers 5-V, 8-V, and 12-V options. The TL751M series has the addition of an enable (ENABLE) input. The ENABLE input gives complete control over power up, allowing sequential power up or shutdown. When ENABLE is high, the regulator output is placed in the high-impedance state. The ENABLE input is TTL and CMOS compatible.

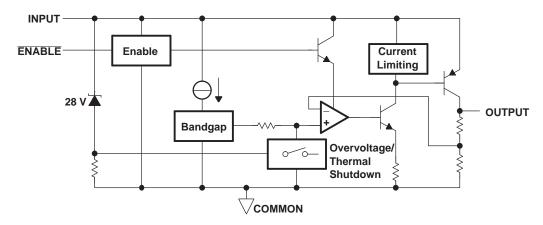
The TL750Mxx and TL751Mxx are characterized for operation over the virtual junction temperature range –40°C to 125°C.

AVAILABLE OPTIONS(1)

TJ	V _O NOM (V)	PACKA	GE ⁽²⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	5 V	TO-263-3 – KTT	Reel of 500	TL750M05QKTTRQ1	TL750M05Q1
	3 V	TO-252-3 – KVU	Reel of 2500	TL750M05QKVURQ1	750M05Q
	0 \/	TO-263-3 – KTT	Reel of 500	TL750M08QKTTRQ1	TL750M08Q1
	8 V	TO-252-3 – KVU	Reel of 2500	TL750M08QKVURQ1	750M08Q
	12 V	TO-263-3 – KTT	Reel of 500	TL750M12QKTTRQ1	TL750M12Q1
–40°C to 125°C		TO-252-3 – KVU	Reel of 2500	TL750M12QKVURQ1	750M12Q
-40 C to 125 C	5 V	TO-263-5 – KTT	Reel of 500	TL751M05QKTTRQ1	TL751M05Q1
		TO-252-5 – KVU	Reel of 2500	TL751M05QKVURQ1	751M05Q
	0.1/	TO-263-5 – KTT	Reel of 500	TL751M08QKTTRQ1	TL751M08Q1
	8 V	TO-252-5 – KVU	Reel of 2500	TL751M08QKVURQ1	751M08Q
	10.1/	TO-263-5 – KTT	Reel of 500	TL751M12QKTTRQ1	TL751M12Q1
	12 V	TO-252-5 – KVU	Reel of 2500	TL751M12QKVURQ1	751M12Q


⁽¹⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


⁽²⁾ Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

NOTE: The COMMON terminal is in electrical contact with the mounting base. NC – No internal connection

TL751Mxx FUNCTIONAL BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted)(1)

	Continuous input voltage		26 V
	Transient input voltage (see Figure 4)		60 V
	Continuous reverse input voltage		–15 V
	Transient reverse input voltage	t = 100 ms	–50 V
		KTT package (3 pin)	26.9°C/W
θ_{JA}	Package thermal impedance (2) (3)	KTT package (5 pin)	26.5°C/W
		KVU package	38.6°C/W
T_{J}	Virtual junction temperature range	–40°C to 150°C	
T _{stg}	Storage temperature range		−65°C to 150°C

- (1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) Maximum power dissipation is a function of T_J(max), θ_{JA}, and T_A. The maximum allowable power dissipation at any allowable ambient temperature is P_D = (T_J(max) T_A)/θ_{JA}. Operating at the absolute maximum T_J of 150°C can impact reliability. Due to variation in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be activated at power levels slightly above or below the rated dissipation.
- (3) The package thermal impedance is calculated in accordance with JESD 51.

THERMAL INFORMATION

		TL750M05	
	THERMAL METRIC(1)	КТТ	UNITS
		3 PINS	
θ_{JA}	Junction-to-ambient thermal resistance ⁽²⁾	27.5	
θ_{JCtop}	Junction-to-case (top) thermal resistance ⁽³⁾	43.2	
θ_{JB}	Junction-to-board thermal resistance ⁽⁴⁾	17.3	°C // //
Ψлт	Junction-to-top characterization parameter ⁽⁵⁾	2.8	°C/W
ΨЈВ	Junction-to-board characterization parameter ⁽⁶⁾	9.3	
θ_{JCbot}	Junction-to-case (bottom) thermal resistance ⁽⁷⁾	0.3	

- (1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.
- (2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment described in JESD51-2a.
- (3) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.
- (4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.
- (5) The junction-to-top characterization parameter, ψ_{JT}, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θ_{JA}, using a procedure described in JESD51-2a (sections 6 and 7).
- (6) The junction-to-board characterization parameter, ψ_{JB}, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θ_{JA}, using a procedure described in JESD51-2a (sections 6 and 7).
- (7) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

RECOMMENDED OPERATING CONDITIONS

			MIN	MAX	UNIT
		TL75xM05	6	26	
VI	Input voltage	TL75xM08	9	26	V
		TL75xM12	13	26	
V_{IH}	High-level ENABLE input voltage	TL751Mxx	2	15	V
V_{IL}	Low-level ENABLE input voltage	TL751Mxx	0	0.8	V
Io	Output current	TL75xMxx		750	mA
T_{J}	Operating virtual junction temperature	TL75xMxx	-40	125	°C

TL751Mxx ELECTRICAL CHARACTERISTICS

 $V_I = 14 \text{ V}, I_O = 300 \text{ mA}, T_J = 25^{\circ}\text{C}$

PARAMETER	TL751Mxx	UNIT
PARAMETER	TYP	UNIT
Response time, ENABLE to output (start-up)	50	μs

TL750M05/TL751M05 ELECTRICAL CHARACTERISTICS

 $V_I = 14 \text{ V}$, $I_O = 300 \text{ mA}$, ENABLE at 0 V for TL751M05, $T_J = -40^{\circ}\text{C}$ to 125°C (unless otherwise noted)⁽¹⁾

PARAMETER	TEST CONDITIONS	TL750M05 TL751M05	UNIT
		MIN TYP MA	X
Output voltage	V _I = 6 V to 26 V	4.85 5 5.	15 V
Line regulation	$V_I = 9 \text{ V to } 16 \text{ V}, \qquad I_O = 250 \text{ mA}$	10	25
Line regulation	$V_I = 6 \text{ V to } 26 \text{ V}, \qquad I_O = 250 \text{ mA}$	12	mV
Power-supply ripple rejection	$V_1 = 8 \text{ V to } 18 \text{ V}, \qquad f = 120 \text{ Hz}$	55	dB
Load regulation	I _O = 5 mA to 750 mA	20	50 mV
Dropout voltage (2)	$I_{O} = 500 \text{ mA}, T_{J} = 25^{\circ}\text{C}$	(.5 V
Dropout voltage —	$I_O = 750 \text{ mA}, T_J = 25^{\circ}\text{C}$	0.	
Current consumption	I _O = 750 mA	60	75
$I_{q} = I_{I} - I_{O}$	I _O = 10 mA		mA 5
Shutdown current (TL751M05 only)	ENABLE V _{IH} ≥ 2 V	2	00 μΑ

¹⁾ Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.1-μF capacitor across the input and a 10-μF tantalum capacitor on the output, with equivalent series resistance within the guidelines shown in Figure 4.

TL750M08/TL751M08 ELECTRICAL CHARACTERISTICS

 $V_I = 14 \text{ V}$, $I_O = 300 \text{ mA}$, $\overline{\text{ENABLE}}$ at 0 V for TL751M08, $T_J = -40^{\circ}\text{C}$ to 125°C (unless otherwise noted)⁽¹⁾

PARAMETER	TEST CONDITIONS	TL750M08 TL751M08	UNIT		
		MIN TYP	MAX		
Output voltage	V _I = 6 V to 26 V	7.76 8	8.24	V	
Line regulation	$V_I = 10 \text{ V to } 17 \text{ V}, \qquad I_O = 250 \text{ mA}$	12	40	m\/	
Line regulation	$V_1 = 9 \text{ V to } 26 \text{ V}, \qquad I_0 = 250 \text{ mA}$	15	68	mV	
Power-supply ripple rejection	$V_1 = 11 \text{ V to } 21 \text{ V}, \qquad f = 120 \text{ Hz}$	55		dB	
Load regulation	I _O = 5 mA to 750 mA	24	80	mV	
Dropout voltage (2)	I _O = 500 mA, T _J = 25°C		0.5		
Dropout voltage 7	$I_O = 750 \text{ mA}, T_J = 25^{\circ}\text{C}$		0.65	V	
Current consumption	$I_{O} = 750 \text{ mA}, T_{J} = 25^{\circ}\text{C}$	60	60 75		
$I_{q} = I_{I} - I_{O}$	I _O = 10 mA		5	mA	
Shutdown current (TL751M08 only)	ENABLE V _{IH} ≥ 2 V		200	μΑ	

⁽¹⁾ Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.1-μF capacitor across the input and a 10-μF tantalum capacitor on the output, with equivalent series resistance within the guidelines shown in Figure 4.

⁽²⁾ Measured when the output voltage, V_0 , has dropped 100 mV from the nominal value obtained at $V_1 = 14$ V.

⁽²⁾ Measured when the output voltage, V_0 , has dropped 100 mV from the nominal value obtained at $V_1 = 14$ V.

TL750M12/TL751M12 ELECTRICAL CHARACTERISTICS

 $V_1 = 14 \text{ V}$, $I_0 = 300 \text{ mA}$, $\overline{\text{ENABLE}}$ at 0 V for TL751M12, $T_1 = -40^{\circ}\text{C}$ to 125°C (unless otherwise noted)⁽¹⁾

PARAMETER	TEST CONDITIONS	1	TL750M12 TL751M12					
		MIN	TYP	MAX				
Output voltage	V _I = 13 V to 26 V	11.76	12	12.24	V			
Line regulation	$V_I = 14 \text{ V to } 19 \text{ V}, \qquad I_O = 250 \text{ mA}$		15	43				
Line regulation	$V_{I} = 13 \text{ V to } 26 \text{ V}, \qquad I_{O} = 250 \text{ mA}$		20	78	78 mV			
Power-supply ripple rejection	V _I = 13 V to 23 V, f = 120 Hz	50	55		dB			
Load regulation	$I_O = 5$ mA to 750 mA		30	120	mV			
Dropout voltage ⁽²⁾	$I_{O} = 500 \text{ mA}, T_{J} = 25^{\circ}\text{C}$			0.5				
Dropout voltage (=/	$I_O = 750 \text{ mA}, T_J = 25^{\circ}\text{C}$			0.6	.6			
Current consumption	$I_{O} = 750 \text{ mA}, T_{J} = 25^{\circ}\text{C}$		60	75				
$I_q = I_l - I_O$	I _O = 10 mA			5	mA			
Shutdown current (TL751M12 only)	ENABLE V _{IH} ≥ 2 V			200	μA			

⁽¹⁾ Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.1-µF capacitor across the input and a 10-µF tantalum capacitor on the output, with equivalent series resistance within the guidelines shown in Figure 4. Measured when the output voltage, V_O , has dropped 100 mV from the nominal value obtained at V_I = 14 V.

PARAMETER MEASUREMENT INFORMATION

The TL750Mxx and TL751Mxx are low-dropout regulators. The output capacitor value and the parasitic equivalent series resistance (ESR) affect the bandwidth and stability of the control loop for these devices. For this reason, the capacitor and ESR must be carefully selected for a given operating temperature and load range. Figure 2 and Figure 3 can be used to establish the appropriate capacitance value and ESR for the best regulator transient response.

Figure 2 shows the recommended range of ESR for a given load with a 10- μ F capacitor on the output. Figure 2 also shows a maximum ESR limit of 2 Ω and a load-dependent minimum ESR limit.

For applications with varying loads, the lightest load condition should be chosen because it is the worst case. Figure 3 shows the relationship of the reciprocal of ESR to the square root of the capacitance, with a minimum capacitance limit of 10 μ F and a maximum ESR limit of 2 Ω . This figure establishes the amount that the minimum ESR limit shown in Figure 2 can be adjusted for different capacitor values. For example, where the minimum load needed is 200 mA, Figure 2 suggests an ESR range of 0.8 Ω to 2 Ω for 10 μ F. Figure 3 shows that changing the capacitor from 10 μ F to 400 μ F can change the ESR minimum by greater than 3/0.5 (or 6). Therefore, the new minimum ESR value is 0.8/6 (or 0.13 Ω). This allows an ESR range of 0.13 Ω to 2 Ω , achieving an expanded ESR range by using a larger capacitor at the output. For better stability in low-current applications, a small resistance placed in series with the capacitor (see Table 1) is recommended, so that ESRs better approximate those shown in Figure 2 and Figure 3.

Table 1. Compensation for Increased Stability at Low Currents

MANUFACTURER	CAPACITANCE	ESR TYP	PART NUMBER	ADDITIONAL RESISTANCE
AVX	15 μF	0.9 Ω	TAJB156M010S	1 Ω
KEMET	33 µF	0.6 Ω	T491D336M010AS	0.5 Ω

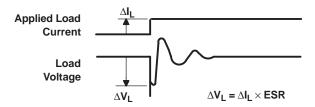


Figure 1.

OUTPUT CAPACITOR EQUIVALENT SERIES RESISTANCE (ESR) vs LOAD CURRENT RANGE

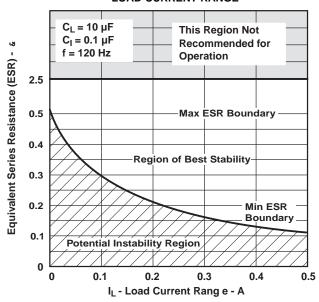


Figure 2.

STABILITY vs EQUIVALENT SERIES RESISTANCE (ESR)

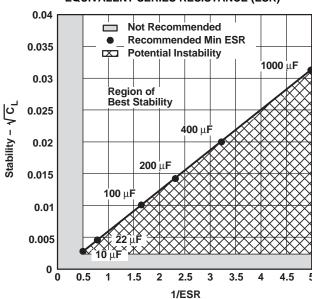
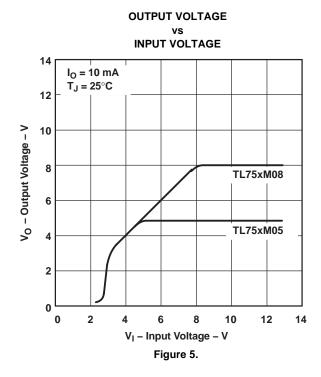
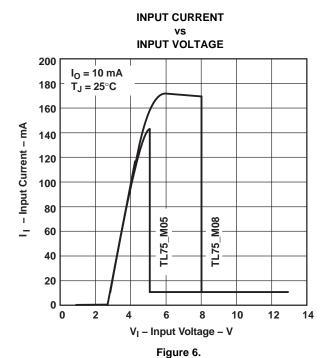
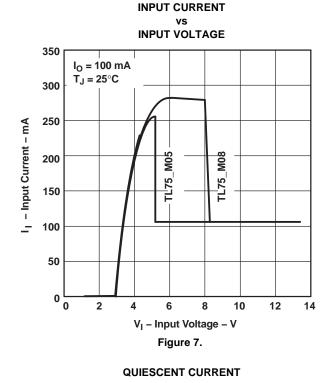


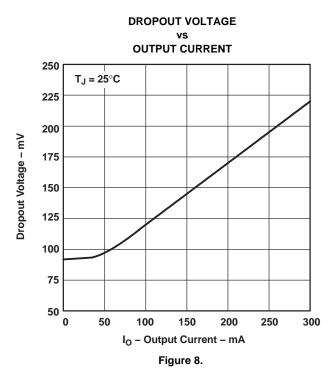
Figure 3.

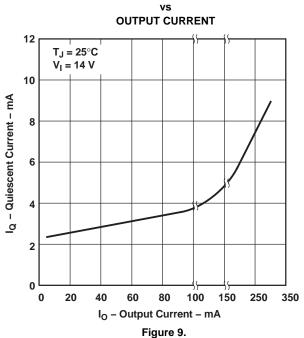


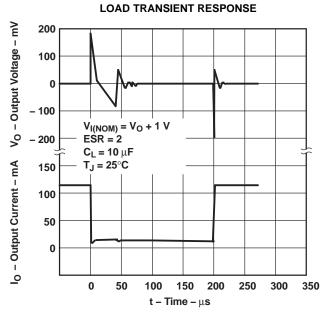
TYPICAL CHARACTERISTICS


Table 2. Table of Graphs


			FIGURE
Transient input voltage	vs Time		4
Output voltage	vs Input voltage		5
In most assessed	vo lanut voltage	I _O = 10 mA	6
Input current	vs Input voltage	I _O = 100 mA	7
Dropout voltage	vs Output current	vs Output current	
Quiescent current	vs Output current		9
Load transient response	10		
Line transient response	11		


TRANSIENT INPUT VOLTAGE TIME 60 $T_J = 25^{\circ}C$ V_{I} = 14 V + 46e^(-t/0.230) for t \geq 5 ms 50 V_I - Transient Input Voltage - V 40 30 t_r = 1 ms 20 10 0 100 200 300 400 500 600 t - Time - ms Figure 4.





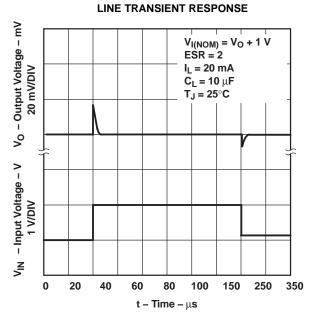


Figure 11.

21-May-2013

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TL750M05QKTTRQ1	ACTIVE	DDPAK/ TO-263	KTT	3	500	Green (RoHS & no Sb/Br)	CU SN	Level-3-245C-168 HR	-40 to 125	TL750M05Q1	Samples
TL750M05QKVURQ1	ACTIVE	TO-252	KVU	3	2500	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	-40 to 125	750M05Q	Samples
TL750M08QKVURQ1	ACTIVE	TO-252	KVU	3	2500	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	-40 to 125	750M08Q	Samples
TL750M12QKTTRQ1	ACTIVE	DDPAK/ TO-263	KTT	3	500	Green (RoHS & no Sb/Br)	CU SN	Level-3-245C-168 HR	-40 to 125	TL750M12Q1	Samples
TL750M12QKVURQ1	ACTIVE	TO-252	KVU	3	2500	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	-40 to 125	750M12Q	Samples
TL751M05QKTTRQ1	ACTIVE	DDPAK/ TO-263	KTT	5	500	Green (RoHS & no Sb/Br)	CU SN	Level-3-245C-168 HR	-40 to 125	TL751M05Q1	Samples
TL751M05QKVURQ1	ACTIVE	TO-252	KVU	5	2500	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	-40 to 125	751M05Q	Samples
TL751M08QKTTRQ1	ACTIVE	DDPAK/ TO-263	KTT	5	500	Green (RoHS & no Sb/Br)	CU SN	Level-3-245C-168 HR	-40 to 125	TL751M08Q1	Samples
TL751M08QKVURQ1	ACTIVE	TO-252	KVU	5	2500	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	-40 to 125	751M08Q	Samples
TL751M12QKTTRQ1	ACTIVE	DDPAK/ TO-263	KTT	5	500	Green (RoHS & no Sb/Br)	CU SN	Level-3-245C-168 HR	-40 to 125	TL751M12Q1	Samples
TL751M12QKVURQ1	ACTIVE	TO-252	KVU	5	2500	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	-40 to 125	751M12Q	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

PACKAGE OPTION ADDENDUM

21-May-2013

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sh/Rr): Til defines "Green" to mean Ph-Free (RoHS compatible) and free of Browing (Rr) and Antimony (Sh) based flame retardants (Br or Sh do not exceed 0.1% by weight

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

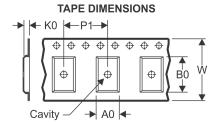
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TL750M05-Q1, TL750M08-Q1, TL750M12-Q1, TL751M05-Q1:

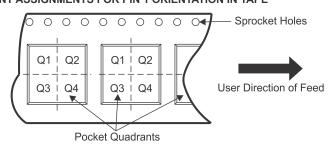
Catalog: TL750M05, TL750M08, TL750M12, TL751M05

NOTE: Qualified Version Definitions:

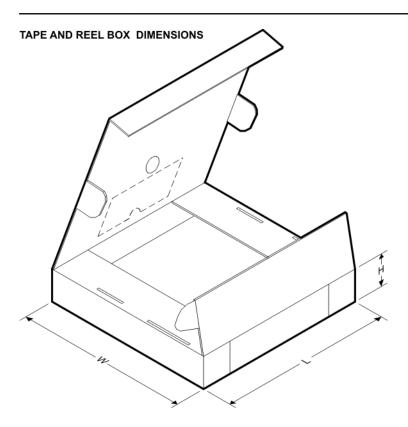

Catalog - TI's standard catalog product

PACKAGE MATERIALS INFORMATION

www.ti.com 29-May-2013


TAPE AND REEL INFORMATION

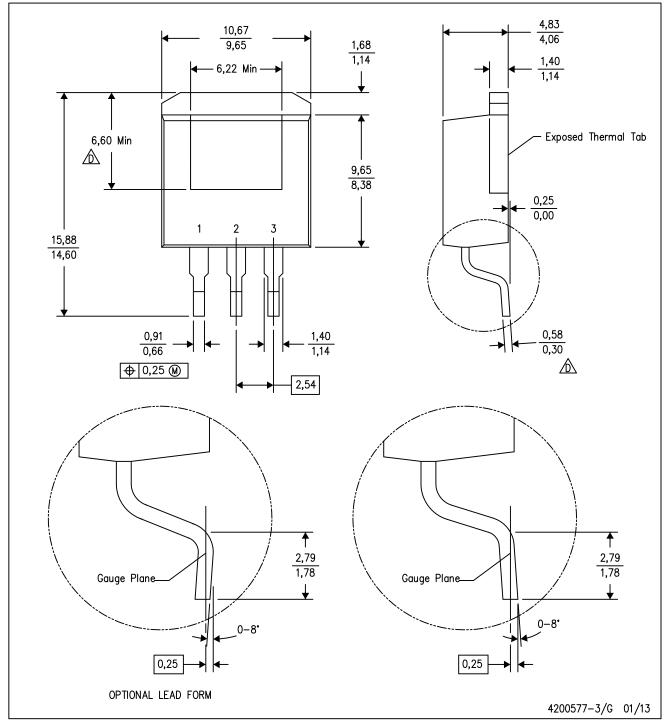
	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

'All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TL750M05QKVURQ1	TO-252	KVU	3	2500	330.0	16.4	6.9	10.5	2.7	8.0	16.0	Q2
TL750M08QKVURQ1	TO-252	KVU	3	2500	330.0	16.4	6.9	10.5	2.7	8.0	16.0	Q2
TL750M12QKTTRQ1	DDPAK/ TO-263	KTT	3	500	330.0	24.4	10.6	15.8	4.9	16.0	24.0	Q2
TL750M12QKVURQ1	TO-252	KVU	3	2500	330.0	16.4	6.9	10.5	2.7	8.0	16.0	Q2
TL751M05QKVURQ1	TO-252	KVU	5	2500	330.0	16.4	6.9	10.5	2.7	8.0	16.0	Q2
TL751M08QKTTRQ1	DDPAK/ TO-263	KTT	5	500	330.0	24.4	10.6	15.8	4.9	16.0	24.0	Q2
TL751M08QKVURQ1	TO-252	KVU	5	2500	330.0	16.4	6.9	10.5	2.7	8.0	16.0	Q2
TL751M12QKTTRQ1	DDPAK/ TO-263	KTT	5	500	330.0	24.4	10.6	15.8	4.9	16.0	24.0	Q2
TL751M12QKVURQ1	TO-252	KVU	5	2500	330.0	16.4	6.9	10.5	2.7	8.0	16.0	Q2

www.ti.com 29-May-2013

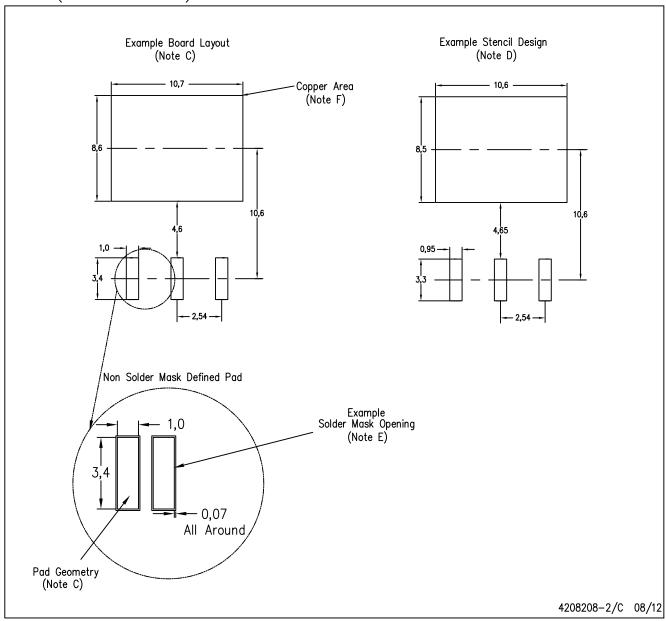


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TL750M05QKVURQ1	TO-252	KVU	3	2500	340.0	340.0	38.0
TL750M08QKVURQ1	TO-252	KVU	3	2500	340.0	340.0	38.0
TL750M12QKTTRQ1	DDPAK/TO-263	KTT	3	500	340.0	340.0	38.0
TL750M12QKVURQ1	TO-252	KVU	3	2500	340.0	340.0	38.0
TL751M05QKVURQ1	TO-252	KVU	5	2500	340.0	340.0	38.0
TL751M08QKTTRQ1	DDPAK/TO-263	KTT	5	500	340.0	340.0	38.0
TL751M08QKVURQ1	TO-252	KVU	5	2500	340.0	340.0	38.0
TL751M12QKTTRQ1	DDPAK/TO-263	KTT	5	500	340.0	340.0	38.0
TL751M12QKVURQ1	TO-252	KVU	5	2500	340.0	340.0	38.0

KTT (R-PSFM-G3)

PLASTIC FLANGE-MOUNT PACKAGE

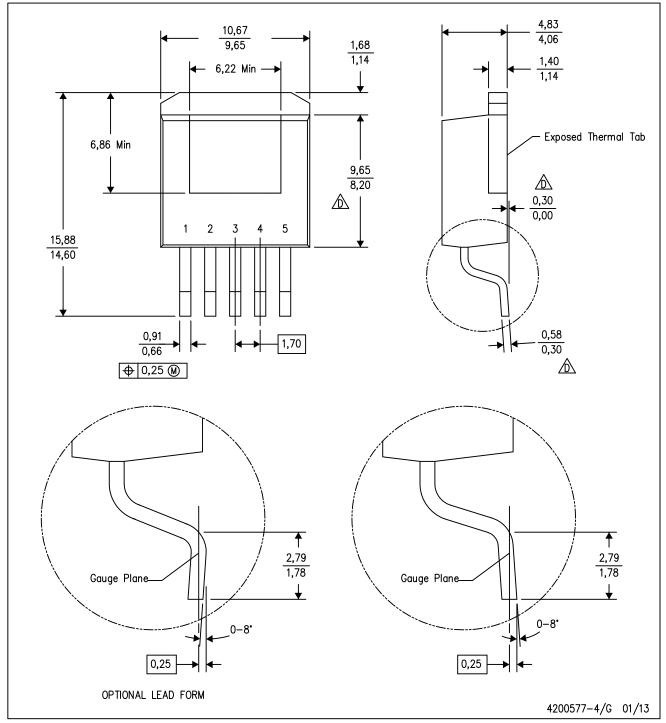


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash or protrusion not to exceed 0.005 (0,13) per side.
- Falls within JEDEC T0-263 variation AA, except minimum lead thickness and minimum exposed pad length.

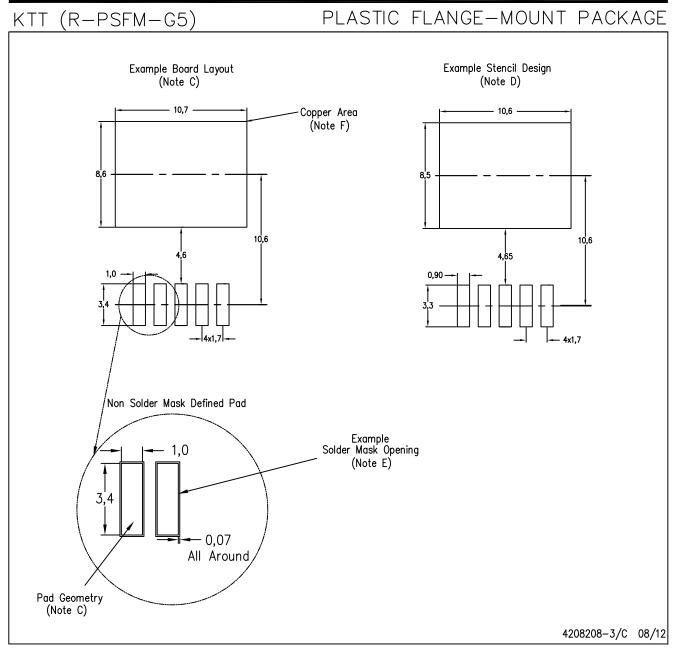
KTT (R-PSFM-G3)

PLASTIC FLANGE-MOUNT PACKAGE

NOTES: A.

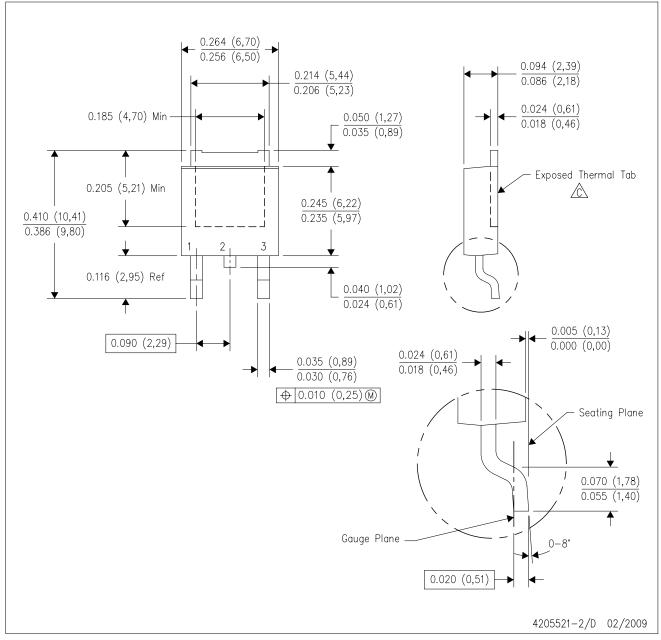

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-SM-782 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release.

 Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
- F. This package is designed to be soldered to a thermal pad on the board. Refer to the Product Datasheet for specific thermal information, via requirements, and recommended thermal pad size. For thermal pad sizes larger than shown a solder mask defined pad is recommended in order to maintain the solderable pad geometry while increasing copper area.


KTT (R-PSFM-G5)

PLASTIC FLANGE-MOUNT PACKAGE

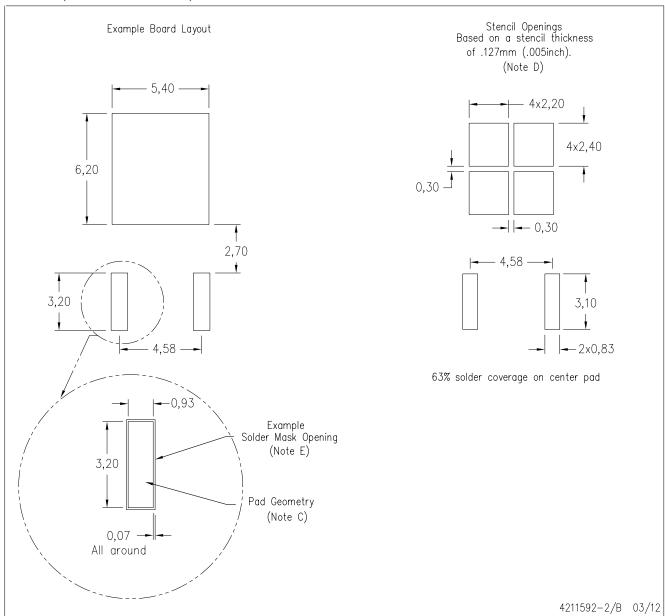
- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash or protrusion not to exceed 0.005 (0,13) per side.
- Falls within JEDEC TO—263 variation BA, except minimum lead thickness, maximum seating height, and minimum body length.



NOTES: A.

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-SM-782 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release.

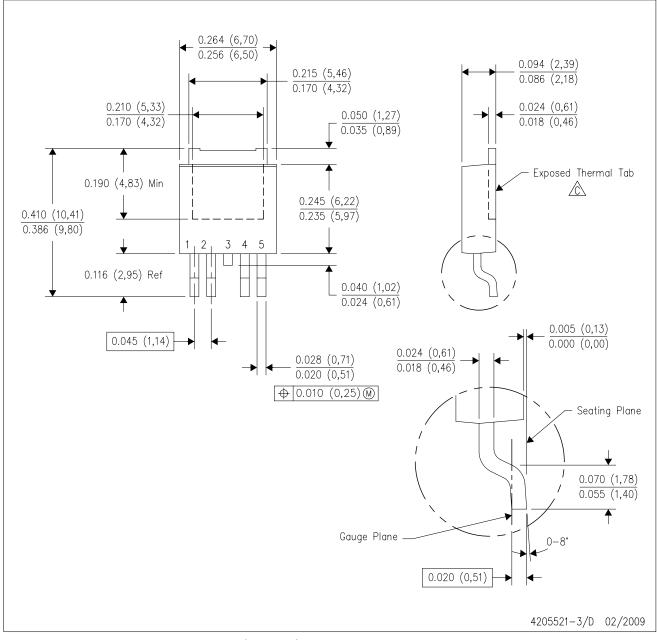
 Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
- F. This package is designed to be soldered to a thermal pad on the board. Refer to the Product Datasheet for specific thermal information, via requirements, and recommended thermal pad size. For thermal pad sizes larger than shown a solder mask defined pad is recommended in order to maintain the solderable pad geometry while increasing copper area.



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- The center lead is in electrical contact with the exposed thermal tab.
- D. Body Dimensions do not include mold flash or protrusions. Mold flash and protrusion shall not exceed 0.006 (0,15) per side.
- E. Falls within JEDEC TO-252 variation AA.

KVU (R-PSFM-G3)

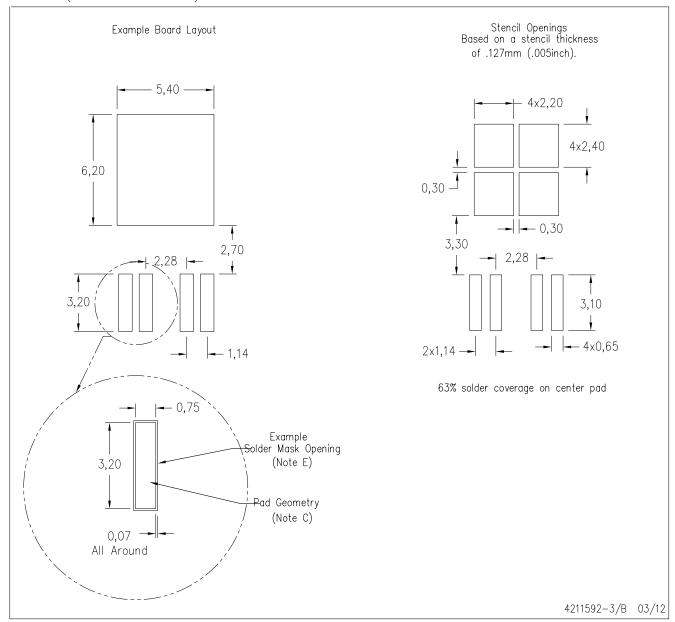
PLASTIC FLANGE MOUNT PACKAGE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-SM-782 is an alternate information source for PCB land pattern designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in thermal pad.

KVU (R-PSFM-G5)

PLASTIC FLANGE-MOUNT PACKAGE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- The center lead is in electrical contact with the exposed thermal tab.
- D. Body Dimensions do not include mold flash or protrusions. Mold flash and protrusion shall not exceed 0.006 (0,15) per side.
- E. Falls within JEDEC TO-252 variation AD.

KVU (R-PSFM-G5)

PLASTIC FLANGE MOUNT PACKAGE

- A. All linear dimensions are in millimeters.
- 3. This drawing is subject to change without notice.
- C. Publication IPC-SM-782 is an alternate information source for PCB land pattern designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in thermal pad.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>