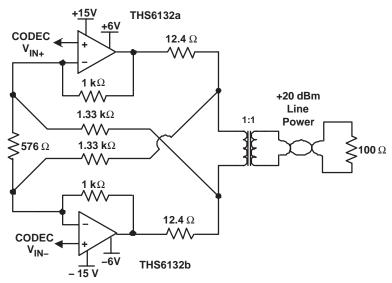


HIGH EFFICIENCY CLASS-G ADSL LINE DRIVER

FEATURES

- Low Total Power Consumption Increases ADSL Line Card Density (20 dBm on Line)
 - 600 mW w/Active Termination (Full Bias)
 - 530 mW w/Active Termination (Low Bias)
- Low MTPR of -74 dBc (All Bias Conditions)
- High Output Current of 500 mA (typ)
- Wide Supply Voltage Range of ±5 V to ±15 V [V_{CC(H)}] and ±3.3 V to ±15 V [V_{CC(L)}]
- Wide Output Voltage Swing of 43 Vpp Into 100-Ω Differential Load [V_{CC(H)} = ±12 V]
- Multiple Bias Modes Allow Low Quiescent Power Consumption for Short Line Lengths
 - 160-mW/ch Full Bias Mode
 - 135-mW/ch Mid Bias Mode
 - 110-mW/ch Low Bias Mode
 - 75-mW/ch Terminate Only Mode
 - 13-mW/ch Shutdown Mode
- Low Noise for Increased Receiver Sensitivity
 - 3.3 pA/√Hz Noninverting Current Noise
 - 9.5 pA/√Hz Inverting Current Noise
 - 3.5 nV/√Hz Voltage Noise


APPLICATIONS

 Ideal for Active Termination Full Rate ADSL DMT applications (20-dBm Line Power)

DESCRIPTION

The THS6132 is a Class-G current feedback differential line driver ideal for full rate ADSL DMT systems. Its extremely low power consumption of 600 mW or lower is ideal for ADSL systems that must achieve high densities in ADSL central office rack applications. The unique patent pending architecture of the THS6132 allows the quiescent current to be much lower than existing line drivers while still achieving very high linearity. In addition, the multiple bias settings of the amplifiers allow for even lower power consumption for line lengths where the full performance of the amplifier is not required. The output voltage swing has been vastly improved over first generation Glass-G amplifiers and allows the use of lower power supply voltages that help conserve power. For maximum flexibility, the THS6132 can be configured in classical Class-AB mode requiring only as few as one power supply.

Typical ADSL CO Line Driver Circuit Utilizing Active Impedance Supporting A 6.3 Crest Factor

A

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage.

ORDERING INFORMATION

PRODUCT	PACKAGE	PACKAGE CODE	SYMBOL	TA	ORDER NUMBER	TRANSPORT MEDIA
TUCC420\/ED	TOED SO Davis DADIM	VED 00	TI 100422		THS6132VFP	Tube
THS6132VFP	TQFP-32 PowerPAD™	VFP-32	THS6132	-40°C to 85°C	THS6132VFPR	Tape and reel
THS6132RGW	Leadless 25-pin 5,mm x 5, mm PowerPAD™	RGW-25	6132	-40 0 10 03 0	THS6132RGWR	Tape and reel

PACKAGE DISSIPATION RATINGS

PACKAGE	ΘЈА	ΘJC	$T_A \le 25^{\circ}C$ POWER RATING(1)	T _A = 70°C POWER RATING(1)	T _A = 85°C POWER RATING ⁽¹⁾
VFP-32	29.4°C/W	0.96°C/W	3.57 W	2.04 W	1.53 W
RGW-25	31°C/W	1.7°C/W	3.39 W	1.94 W	1.45 W

⁽¹⁾ Power rating is determined with a junction temperature of 130°C. This is the point where distortion starts to substantially increase. Thermal management of the final PCB should strive to keep the junction temperature at or below 125°C for best performance.

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range unless otherwise noted(1)

		THS6132
Supply voltage	e, V _{CC(H)} and V _{CC(L)} (2)	±16.5 V
Input voltage, \	V _I	±VCC(L)
Output current	, I _O (3)	900 mA
Differential inp	ut voltage, V _{IO}	±2 V
Maximum junc	tion temperature, T _J (see Dissipation Rating Table for more information)	150°C
Operating free	-air temperature, T _A	-40°C to 85°C
Storage tempe	rature, T _{Stg}	65°C to 150°C
Lead temperat	ure, 1,6 mm (1/16-inch) from case for 10 seconds	300°C
	НВМ	1 kV
ESD ratings	CDM	500 V
	MM	200 V

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

⁽²⁾ $V_{CC(H)}$ must always be greater than or equal to $V_{CC(L)}$ for proper operation. Class-AB mode operation occurs when $V_{CC(H)}$ is equal to $V_{CC(L)}$ and is considered acceptable operation for the THS6132 even though it is not fully specified in this mode of operation.

⁽³⁾ The THS6132 incorporates a PowerPAD on the underside of the chip. This acts as a heatsink and must be connected to a thermally dissipating plane for proper power dissipation. Failure to do so may result in exceeding the maximum junction temperature that could permanently damage the device. See TI Technical Brief SLMA002 for more information about utilizing the PowerPAD thermally enhanced package.

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
Committee	+VCC(H) to -VCC(H)	$\pm V_{CC(L)}$	±15	±16	.,
Supply voltage	+VCC(L) to $-VCC(L)$	±3.3	±5	±V _{CC(H)}	V
Operating free-air t	emperature, T _A	-40		85	°C

ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range, $T_A = 25^{\circ}C$, $V_{CC(H)} = \pm 15$ V, $V_{CC(L)} = \pm 5$ V $R_F = 1.5$ k Ω , Gain = +10, Full Bias Mode, $R_L = 50$ Ω (unless otherwise noted)

NOISE	E/DISTORTION PER			T CONDITIONS		T)/D		
	PARAMETE Multitone power ratio		Gain =+11, 163kHz +20 dBm Line Powe	r, 1:1.1 transformer,	MIN	TYP -74	MAX	dBc
	Receive band spill-over			ynthesis factor = 4 o 138 kHz with MTPR signal		–95		dBc
	· ·		applied	Differential load = 100 Ω		-84		
	Harmonic distortion	(Differential	2 nd harmonic	Differential load = 100Ω		-69		dBc
HD		Configuration, f = 1 MHz,		Differential load = 20.02		-92		
	$V_{O(PP)} = 2 \text{ V}, \text{ Gain} = +10)$		3 rd harmonic	Differential load = 25Ω		-73		dBc
Vn	Input voltage noise		f = 10 kHz			3.5		nV/√Hz
_		+Input	6 40111		3.3		A / /	
In	Input current noise —Input		f = 10 kHz		9.5			pA/√Hz
	Crosstalk		f = 1 MHz, $R_L = 100 \Omega,$	$V_O(PP) = 2 V$, Gain = +2		-52		dBc
OUTP	UT CHARACTERIS	TICS	•					
			V	R _L = 100 Ω	±10.4	±10.8		V
Vo	Single-ended outpu	t voltago ewing	V _{CC(H)} = ±12 V	$R_L = 30 \Omega$	±9.9	±10.4		V
VO	Single-ended odipa	t voltage swing	V _{CC(H)} = ±15 V	$R_L = 100 \Omega$	±13.3	±13.8		V
			VCC(H) - ±13 V	$R_L = 50 \Omega$	±13	±13.6		v
	Output voltage trans	ition from V _{CC(L)} to	$R_1 = 50 \Omega$	$V_{CC(L)} = \pm 5 \text{ V}$		±3.1		V
	V _{CC(H)} (Point wher	e ICC(L) = ICC(H)	TT_ 00 22	VCC(L) = ±6 V		±3.9		, i
lo	Output current (1)		$R_{I} = 10 \Omega$	$V_{CC(H)} = \pm 12 \text{ V}$		±500		mA
.0		(1)		$V_{CC(H)} = \pm 15 \text{ V}$	±400	±500		
I(SC)	Short-circuit current	(1)	$R_L = 1 \Omega$	$V_{CC(H)} = \pm 15 \text{ V}$		±750		mA
	Output resistance		Open-loop			5		Ω
	Output resistance—		f = 1 MHz,	Gain = +10		0.35		Ω
	Output resistance—	shutdown mode	f = 1 MHz,	Open-loop		5.5		kΩ

⁽¹⁾ A heatsink is required to keep the junction temperature below absolute maximum rating when an output is heavily loaded or shorted. See Absolute Maximum Ratings section for more information.

ELECTRICAL CHARACTERISTICS (continued)

over recommended operating free-air temperature range, $T_A = 25^{\circ}C$, $V_{CC(H)} = \pm 15$ V, $V_{CC(L)} = \pm 5$ V RF = 1.5 k Ω , Gain = +10, Full Bias Mode, $R_L = 50 \Omega$ (unless otherwise noted)

POWER	R SUPPLY								
	PARAMETER	TES"	CONDITIONS	MIN	TYP	MAX	UNIT		
Vasus	Operating rooms	±V _{CC(H)}		±VCC(L)	±15	±16.5	٧		
VCC(x)	Operating range	±V _{CC(L)}		±3	±5	±VCC(H)	V		
		$V_{CC(L)} = \pm 5 \text{ V};$	T _A = 25°C	5.7	6.4	7.5	mA		
		(V _{CC(H)} =±15 V)	T _A = full range			8.1	ША		
	Quiescent current (each driver) Full-bias mode	$V_{CC(L)} = \pm 6 \text{ V};$	T _A = 25°C		6.7		A		
	(Bias-1 = 1, Bias-2 = 1,	$(V_{CC(H)} = \pm 15 \text{ V})$	T _A = full range				mA		
	Bias-3 = X) (Icc trimmed with $V_{CC(H)} = \pm 15 \text{ V}$, $V_{CC(L)} = \pm 5 \text{ V}$)	(Icc trimmed with $V_{CC(H)} = \pm 15 \text{ V}$,	Bias-3 = X)	$V_{CC(H)} = \pm 12 \text{ V};$	T _A = 25°C		3.1		mA
			$(V_{CC(L)} = \pm 5 \text{ V})$	T _A = full range				ША	
		$V_{CC(H)} = \pm 15 \text{ V};$	$T_A = 25^{\circ}C$	2.9	3.25	3.75	mA		
1		$(V_{CC(L)} = \pm 5 \text{ V})$	T _A = full range			4.25			
Icc		Mid; Bias $-1 = 1$, Bias $-2 = 0$, Bias $-3 = 1$		5.0	5.6	6.8	mA		
	Quiescent current (each driver) Variable bias modes,	Low; Bias-1 = 1, Bias-2 = 0, Bias-3 = 0		4.25	4.8	6.0			
	$V_{CC(L)} = \pm 5 \text{ V}$	Terminate; Bias-1 = 0, Bias-2 = 1, Bias-3 = X(1)		3.2	3.8	4.5			
		Shutdown; Bias-1 =		1	1.3				
		Mid; Bias-1 = 1, Bias	-2 = 0, Bias-3 = 1	2.4	2.7	3.0			
	Quiescent current (each driver) Variable bias modes,	Low ; Bias-1 = 1, Bia	s-2 = 0, Bias-3 = 0	1.9	2.15	2.4	A		
	$V_{CC(H)} = \pm 15 \text{ V}$	Terminate; Bias-1 = 0), Bias-2 = 1, Bias-3 = X(1)	1.1	1.3	1.5	mA		
	00(11)	Shutdown ; Bias-1 =	0, Bias-2 = 0, Bias-3 = $X(1)$		0.1	0.5			
		Vacan IEV	T _A = 25°C	-70	-82				
DODD	Power supply rejection ratio	$V_{CC(L)} = \pm 5V$	T _A = full range	-68			dB		
PSRR	$(\Delta V_{CC(x)} = \pm 1 \text{ V})$	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	T _A = 25°C	-70	-82		uБ		
	• •	$V_{CC(H)} = \pm 15V$	T _A = full range	-68					

⁽¹⁾ X is used to denote a logic state of either 1 or 0.

ELECTRICAL CHARACTERISTICS (continued) over recommended operating free-air temperature range, $T_A = 25^{\circ}C$, $V_{CC(H)} = \pm 15$ V, $V_{CC(L)} = \pm 5$ V RF = 1.5 kΩ, Gain = +10, Full Bias Mode, $R_L = 50$ Ω (unless otherwise noted)

DYNAMIC PERFORMANCE								
	PARAMETER	ARAMETER TEST CONDITIONS		MIN	TYP	MAX	UNIT	
			Gain = +1, RF = 750 Ω		80			
		D. 100 O	Gain = +2, RF = 620 Ω		70		MHz	
	Single-ended small-signal bandwidth	$R_L = 100 \Omega$	Gain = +5, RF = 500Ω		60			
DIM			Gain = +10, RF = 1 k Ω	20				
BW	$(-3 \text{ dB}), V_0 = 0.1 \text{ Vrms}$		Gain = +1, RF = 750 Ω		60			
		D 05.0	Gain = +2, RF = 620 Ω		55	MHz		
		$R_L = 25 \Omega$	Gain = +5, RF = 500Ω		50			
			Gain = +10, RF = 1 k Ω		17			
SR	Single-ended slew-rate(1)	V _O = 20 V _{PP} ,	Gain =+10		300		V/μs	

⁽¹⁾ Slew-rate is defined from the 25% to the 75% output levels

DC PE	RFORMANCE						
	PARAMETER	TEST C	ONDITIONS	MIN	TYP	MAX	UNIT
	lanut effect voltage		T _A = 25°C		1	15	
	Input offset voltage		T _A = full range			20	mV
Vos	Differential effect voltage	$V_{CC(L)} = \pm 5 \text{ V}, \pm 6 \text{ V}$	T _A = 25°C		0.3	6	
	Differential offset voltage		T _A = full range			8	
	Offset drift		T _A = full range		40		μV/°C
	land thing assument		T _A = 25°C		1	15	
	-Input bias current	V 15.V 16.V	T _A = full range			20	
I _{IB}		$V_{CC(L)} = \pm 5 \text{ V}, \pm 6 \text{ V}$	T _A = 25°C		1.5	15	μΑ
	+ Input bias current		T _A = full range			20	
Z _{OL}	Open loop transimpedance	$R_L = 1 \text{ k}\Omega$	•		2		МΩ

ELECTRICAL CHARACTERISTICS (continued)

over recommended operating free-air temperature range, T_A = 25°C, $V_{CC(H)}$ = ±15 V, $V_{CC(L)}$ = ±5 V R_F = 1.5 k Ω , Gain = +10, Full Bias Mode, R_L = 50 Ω (unless otherwise noted)

INPUT	INPUT CHARACTERISTICS								
	PARAMETER	TEST C	ONDITIONS	MIN	TYP	MAX	UNIT		
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	T _A = 25°C	±2.7	±3.0				
V _{ICR} Ir	Input common-mode voltage range(1)	$V_{CC(L)} = \pm 5 \text{ V}$	T _A = full range	±2.6			V		
		$V_{CC(L)} = \pm 6 \text{ V}$	$T_A = 25^{\circ}C$		±4.0				
	REF pin input voltage range	V _{CC} -(L)= ±5 V			±2.5		V		
	REF pili iliput voltage range	V _{CC(L)} = ±6 ∨			±3.5		V		
CMDD	Common-mode rejection ratio	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$T_A = 25^{\circ}C$	60	67		dB		
CMRR	Common-mode rejection ratio	$V_{CC(L)} = \pm 5 \text{ V}, \pm 6 \text{ V}$	T _A = full range	57			uБ		
В	Input resistance	+ Input			800		kΩ		
R _I	input resistance	- Input			45	·	Ω		
CI	Differential Input capacitance				1.2	·	pF		

⁽¹⁾ To conserve as much power as possible, the input stage of the THS6132 is powered from the $V_{CC(L)}$ supplies and is limited by the $V_{CC(L)}$ supply voltage. For Class-AB operation, connect the $V_{CC(L)}$ supplies to $V_{CC(H)}$.

LOGIC CONTROL CHARACTERISTICS								
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
VIH	Bias pin voltage for logic 1	Relative to DGND pin voltage	2.0			V		
VIL	Bias pin voltage for logic 0	Relative to DGND pin voltage			0.8	V		
lн	Bias pin current for logic 1	V _{IH} = 5 V, DGND = 0 V		-0.1	-0.2	μΑ		
IIL	Bias pin current for logic 0	V _{IL} = 0 V, DGND = 0 V		-0.1	-0.2	μΑ		
	Transition time—logic 0 to logic 1 ⁽¹⁾			0.1		μs		
	Transition time—logic 1 to logic 0 ⁽¹⁾			0.2		μs		
	DGND useable range		-VCC(H)		+VCC(H) -5	V		

⁽¹⁾ Transition time is defined as the time from when the logic signal is applied to the time when the supply current has reached half its final value.

LOGIC	LOGIC TABLE								
BIAS-1	BIAS-2	BIAS-3	DESCRIPTION						
1	1	χ(1)	Full bias mode	Amplifiers ON with lowest distortion possible					
1	0	1	Mid bias mode	Amplifiers ON with power savings with a reduction in distortion performance					
1	0	0	Low bias mode	Amplifiers ON with enhanced power savings and a reduction of distortion performance					
0	1	χ(1)	Terminate mode	Lowest power state with +Vin pins internally connect to REF pin and output has low impedance					
0	0	χ(1)	Shutdown mode	Amplifiers OFF and output has high impedance					

⁽¹⁾ X is used to denote a logic state of either 1 or 0.

NOTE: The default state for all logic pins is a logic one (1).

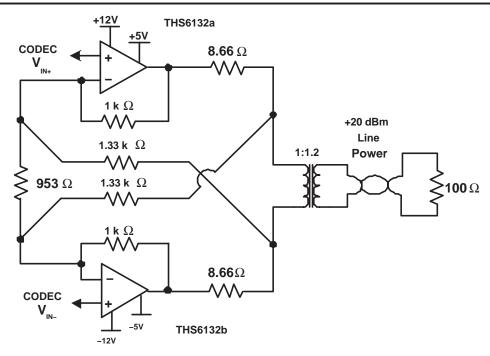
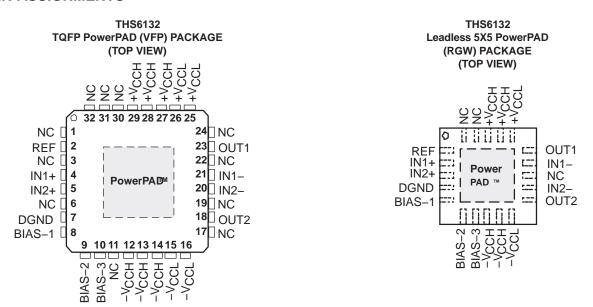
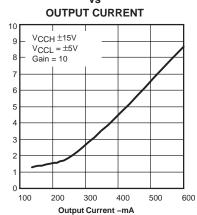



Figure 1. ±12 V Active Termination ADSL CO Line Driver Circuit (Synthesis Factor = 4; CF = 5.6)

PIN ASSIGNMENTS



TYPICAL CHARACTERISTICS

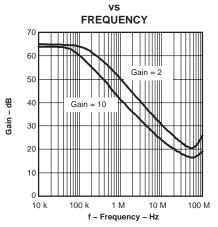
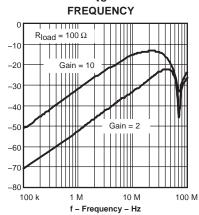

Table of Graphs

		FIGURE
Output voltage headroom	vs Output current	2
Common-mode rejection ratio	vs Frequency	3
Crosstalk	vs Frequency	4
Quiescent current	vs Temperature	5, 6
Large signal bandwidth	vs Frequency	7 – 10
Noise	vs Frequency	11
Overdrive recovery		12
Power supply rejection ratio	vs Frequency	13
Small signal frequency response		14, 15, 16
Small signal bandwidth	vs Frequency	17 – 28
Slew rate	vs Output voltage	29
Closed-loop output impedance	vs Frequency	30, 31
Shutdown response		32
Common-mode rejection ratio	vs Common-mode input voltage	33
Input bias current	vs Temperature	34
Input offset voltage	vs Temperature	35
Current draw distribution	vs Output voltage	36, 37
Output voltage	vs Temperature	38
Differential distortion	vs Frequency	39 – 52
Differential distortion	vs Differential output voltage	53 - 63
Single ended distortion	vs Frequency	64, 65

OUTPUT VOLTAGE HEADROOM vs

COMMON-MODE REJECTION RATIO

CROSSTALK vs



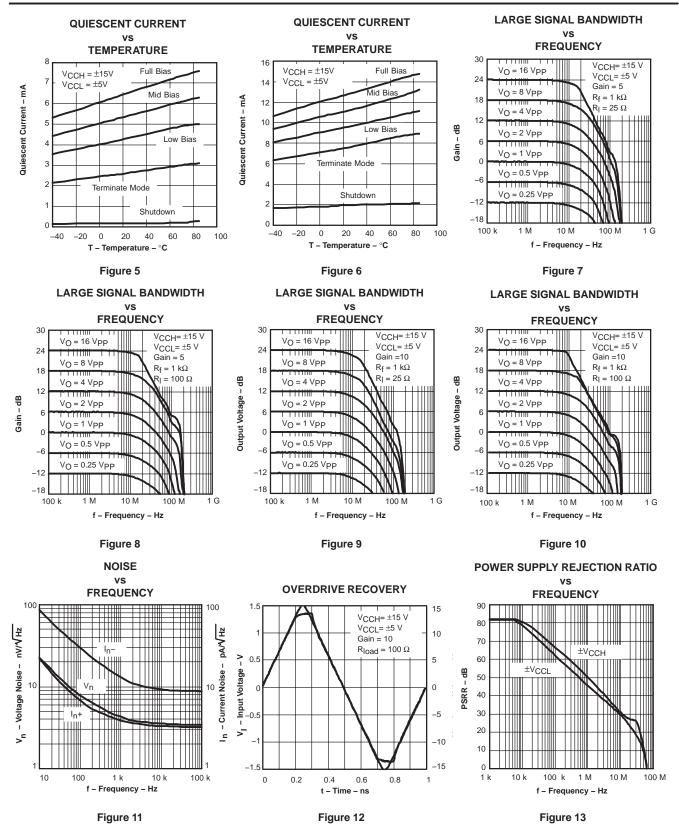

Figure 2

Figure 3

Figure 4

Output Voltage Headroom - VCC - Vout

SMALL SIGNAL FREQUENCY RESPONSE

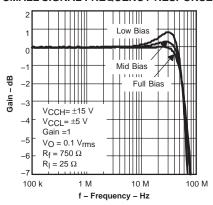


Figure 14

SMALL SIGNAL FREQUENCY RESPONSE SMALL SIGNAL FREQUENCY RESPONSE

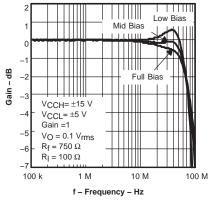


Figure 15

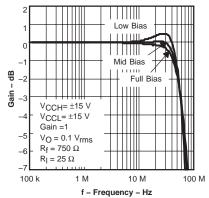


Figure 16
SMALL SIGNAL BANDWIDTH

SMALL SIGNAL BANDWIDTH

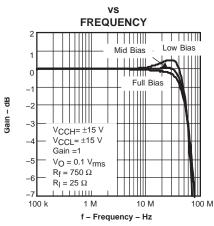


Figure 17

SMALL SIGNAL BANDWIDTH

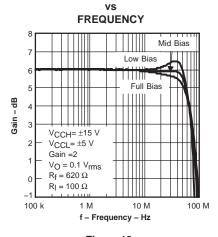


Figure 18

VS
FREQUENCY

8
7
Low Bias

7
Low Bias

7
VCCH=±15 V
VCCL=±15 V
VCCL=±15 V
Gain =2
VO = 0.1 Vrms
0 R_f = 620 Ω
R_l = 25 Ω
100 k 1 M 10 M 100 M
f - Frequency - Hz

Figure 19

SMALL SIGNAL BANDWIDTH

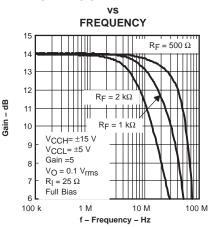


Figure 20

SMALL SIGNAL BANDWIDTH

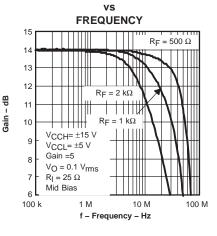


Figure 21

SMALL SIGNAL BANDWIDTH

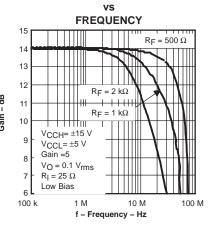
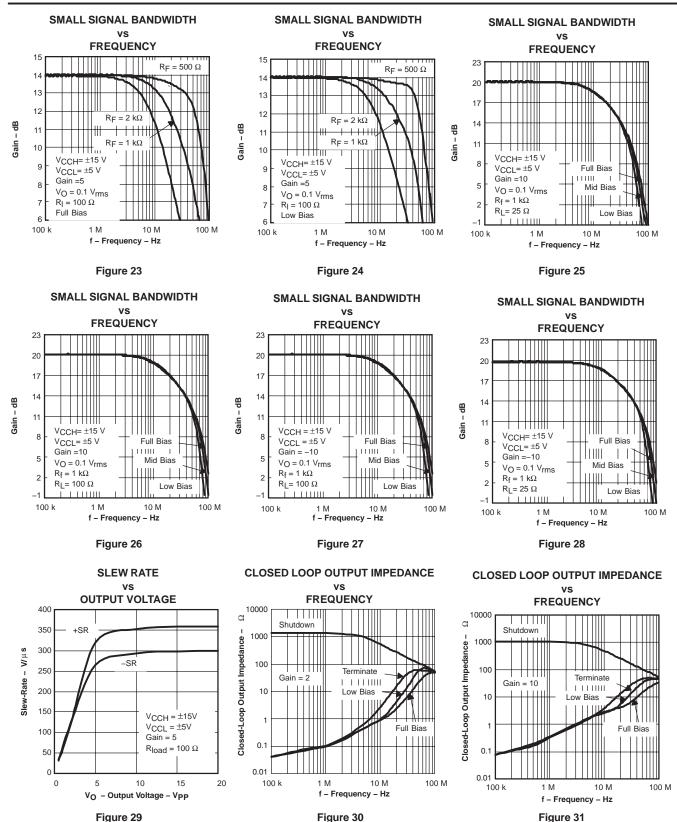
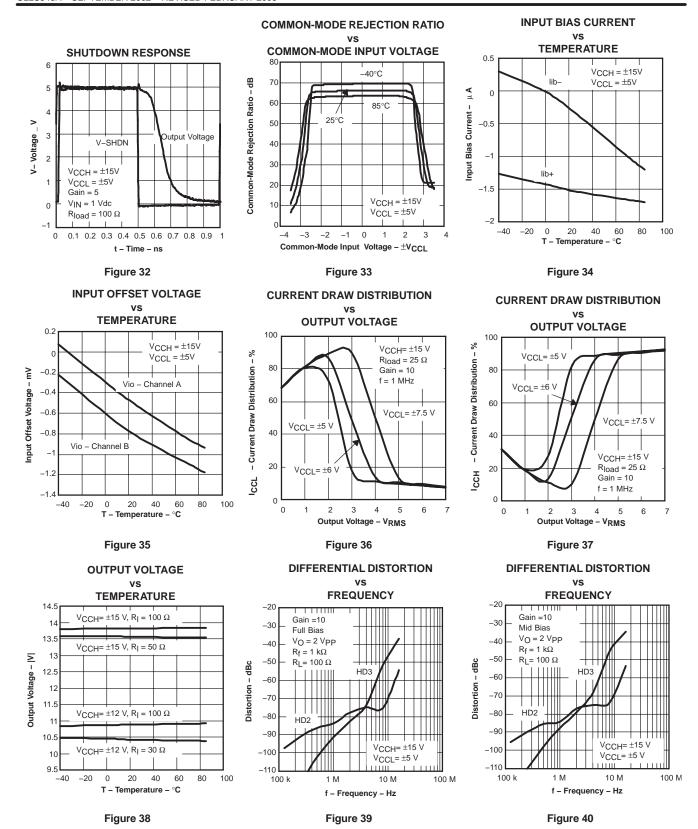
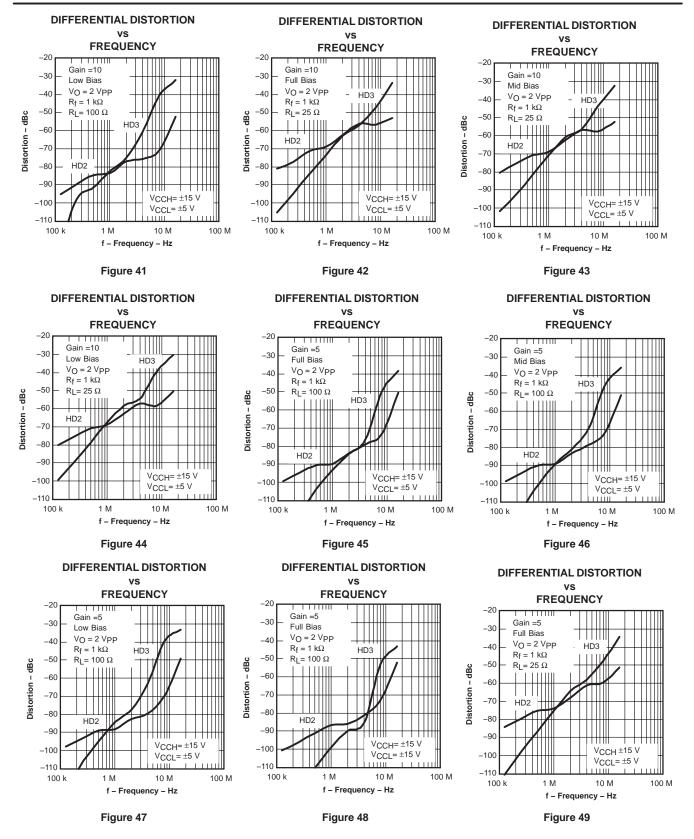
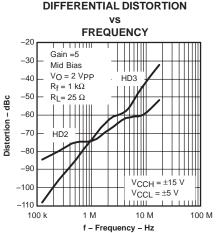




Figure 22





FREQUENCY -20 Gain =5 -30 Low Bias V_O = 2 V_{PP} HD3 -40 $R_f = 1 k\Omega$ -50 R_L= 25 Ω -60 -70 HD2 -80 -90 V_{CCH} = ±15 V -100 V_{CCL} = ±5 V -110 100 k 10 M 100 M f - Frequency - Hz

DIFFERENTIAL DISTORTION

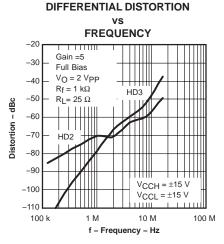
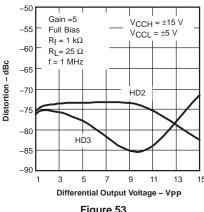



Figure 50

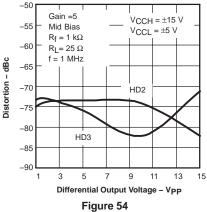
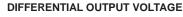

Figure 51

Figure 52


DIFFERENTIAL DISTORTION vs **DIFFERENTIAL OUTPUT VOLTAGE**

DIFFERENTIAL DISTORTION vs **DIFFERENTIAL OUTPUT VOLTAGE**

DIFFERENTIAL DISTORTION vs

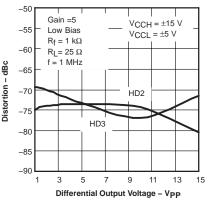


Figure 53

DIFFERENTIAL DISTORTION

DIFFERENTIAL OUTPUT VOLTAGE

DIFFERENTIAL DISTORTION

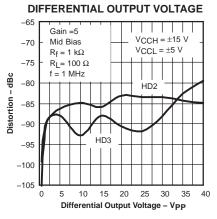
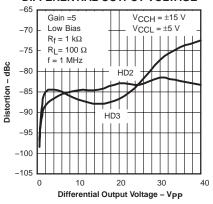



Figure 55

DIFFERENTIAL DISTORTION VS **DIFFERENTIAL OUTPUT VOLTAGE**

VCCH = ±15 V Full Bias -70 VCCL = ±5 V $R_f = 1 k\Omega$ -75 R_L= 100 Ω f = 1 MHz Distortion – dBc -80 HD₂ -85 -90 HD3 -95

Figure 56

15 20

Differential Output Voltage - Vpp

25

Figure 57

Figure 58

-65

-100

-105

Gain =5

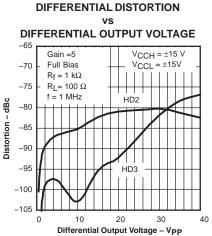


Figure 59

DIFFERENTIAL OUTPUT VOLTAGE -50 Gain =10 V_{CCL} = ±15 V V_{CCL} = ±5V Full Bias -55 $R_f = 1 k\Omega$ -60 R_L= 25 Ω f = 1 MHz HD2 -65 Distortion -70 -75 -80 HD3 -85 -90 11 13 15 Differential Output Voltage - Vpp

DIFFERENTIAL DISTORTION

Figure 60

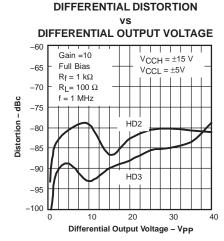


Figure 61

DIFFERENTIAL DISTORTION vs **DIFFERENTIAL OUTPUT VOLTAGE**

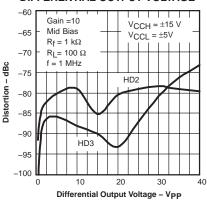


Figure 62

DIFFERENTIAL DISTORTION VS **DIFFERENTIAL OUTPUT VOLTAGE** -60 Gain =10 V_{CCH} = ±15 V -65 Low Bias

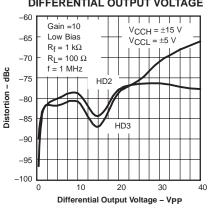


Figure 63

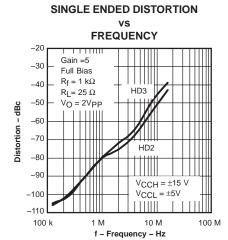


Figure 64

SINGLE ENDED DISTORTION

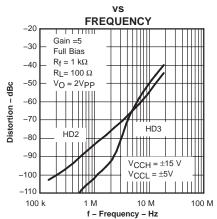


Figure 65

PACKAGE OPTION ADDENDUM

www.ti.com 8-Dec-2009

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
THS6132RGWR	ACTIVE	VQFN	RGW	20	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
THS6132RGWRG4	ACTIVE	VQFN	RGW	20	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
THS6132VFP	ACTIVE	HLQFP	VFP	32	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
THS6132VFPG4	ACTIVE	HLQFP	VFP	32		TBD	Call TI	Call TI

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

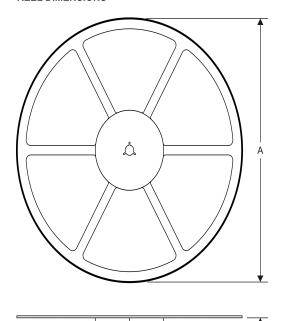
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

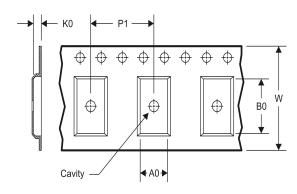
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

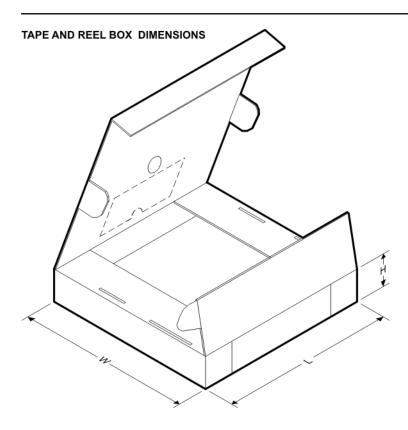
PACKAGE MATERIALS INFORMATION


www.ti.com 16-Feb-2012

TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSIONS

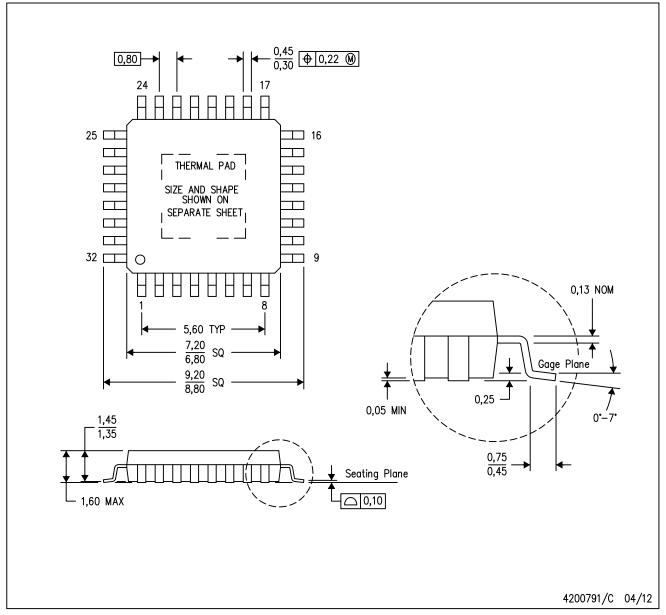

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
THS6132RGWR	VQFN	RGW	20	3000	330.0	12.4	5.3	5.3	1.5	8.0	12.0	Q2

www.ti.com 16-Feb-2012



*All dimensions are nominal

I	Device	Device Package Type		Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
I	THS6132RGWR	VQFN	RGW	20	3000	338.1	338.1	20.6	

VFP (S-PQFP-G32)

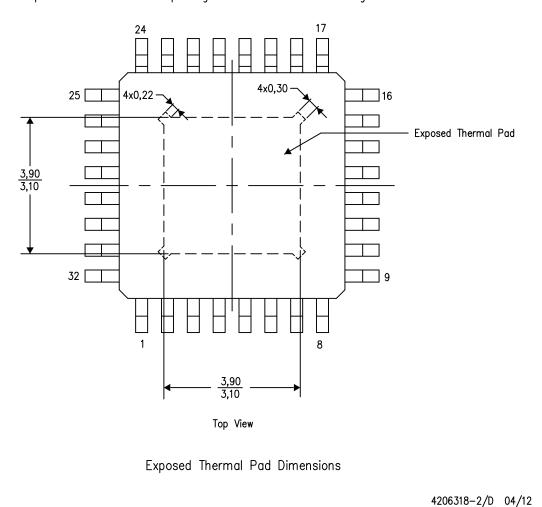
PowerPAD™ PLASTIC QUAD FLATPACK

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com www.ti.com.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- F. Falls within JEDEC MS-026

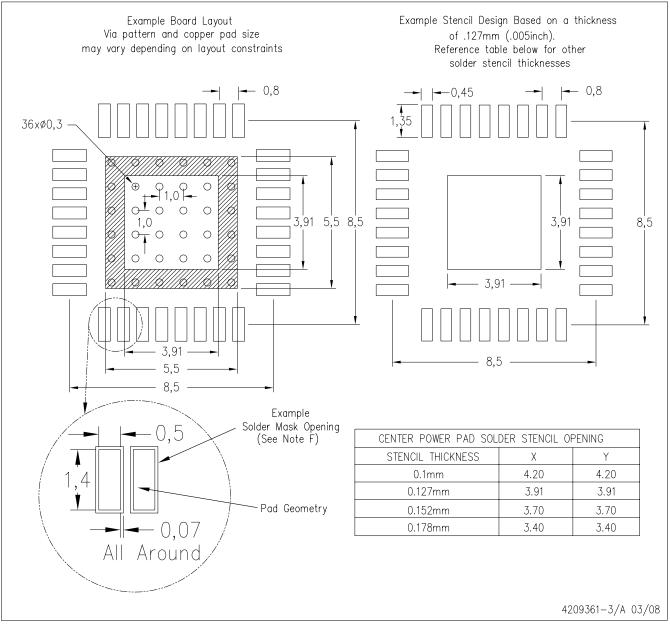
PowerPAD is a trademark of Texas Instruments Incorporated.

VFP (S-PQFP-G32)


PowerPAD™ PLASTIC QUAD FLATPACK

THERMAL INFORMATION

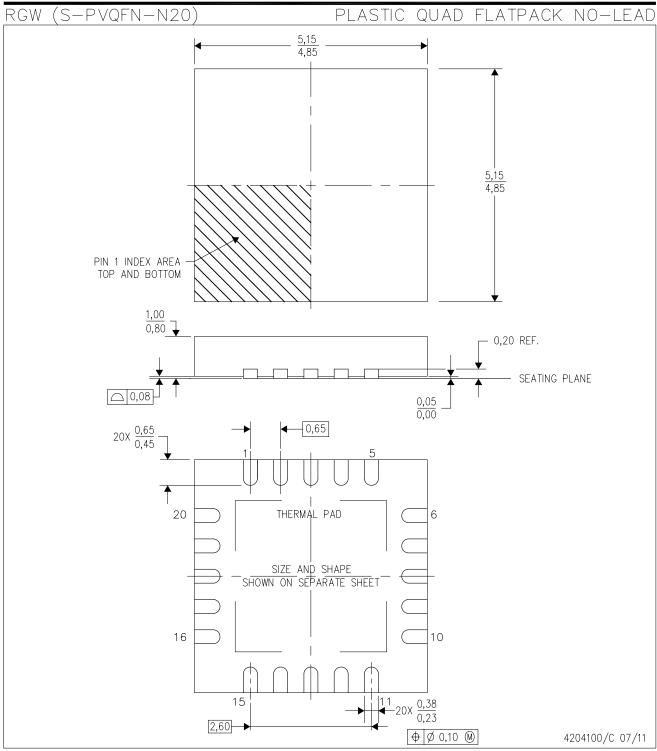
This PowerPAD package incorporates an exposed thermal pad that is designed to be attached to a printed circuit board (PCB). The thermal pad must be soldered directly to the PCB. After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).


For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: All linear dimensions are in millimeters

VFP (S-PQFP-G32) PowerPAD™



NOTES:

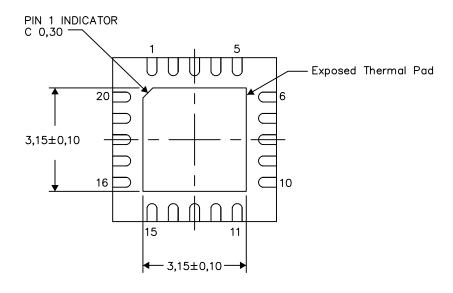
- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002, SLMA004, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
- F. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PowerPAD is a trademark of Texas Instruments.

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5—1994.

- B. This drawing is subject to change without notice.
- C. Quad Flat pack, No-leads (QFN) package configuration
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- F. Falls within JEDEC MO-220.

RGW (S-PVQFN-N20)


PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

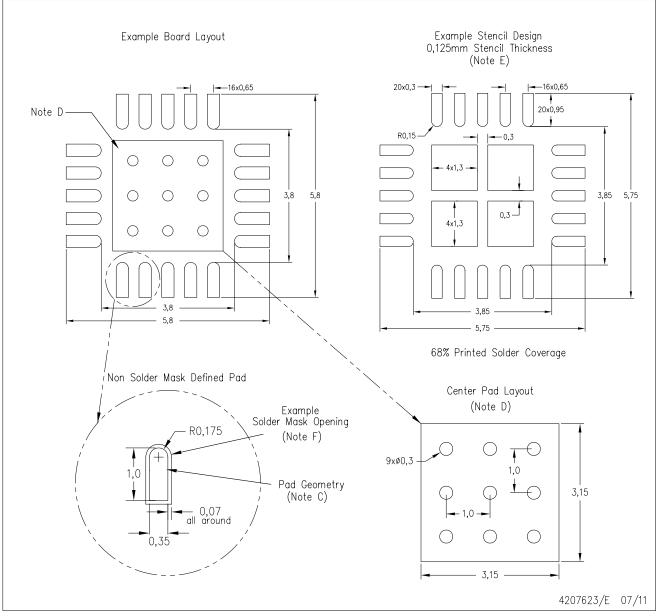
This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View

Exposed Thermal Pad Dimensions


4206352-2/K 12/12

NOTE: All linear dimensions are in millimeters

RGW (S-PVQFN-N20)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, QFN Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for solder mask tolerances.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u>

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>