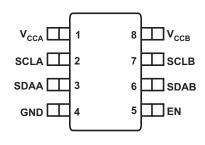

LEVEL-TRANSLATING I²C/SMBUS BUS REPEATER

Check for Samples: TCA9509


FEATURES

- Two-Channel Bidirectional Buffer
- I²C Bus and SMBus Compatible
- Operating Supply Voltage Range of 2.7 V to 5.5 V on B side
- Operating Voltage Range of 0.9 V to V_{CCB} 1V on A Side
- Voltage-Level Translation From 0.9 V to (V_{CCB} - 1V) and 2.7 V to 5.5 V
- · Active-High Repeater-Enable Input
- Requires no external pull-up resistors on lower-voltage port-A
- Open-Drain I²C I/O
- 5.5-V Tolerant I²C and Enable Input Support Mixed-Mode Signal Operation
- Lockup-Free Operation

- Accommodates Standard Mode and Fast Mode I²C Devices and Multiple Masters
- Supports Arbitration and Clock Stretching Across Repeater
- Powered-Off High-Impedance I²C bus pins
- Supports 400-kHz Fast I²C Bus operating speeds
- Available in
 - 1.6mm x 1.6mm, 0.4mm height, 0.5mm pitch
 QFN pkg
 - 3mm x 3mm industry standard MSOP pkg
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 1000-V Charged-Device Model (C101)

DGK PACKAGE (TOP VIEW)

DESCRIPTION/ORDERING INFORMATION

This TCA9509 integrated circuit is an I²C bus/SMBus Repeater for use in I²C/SMBus systems. It can also provide bidirectional voltage-level translation (up-translation/down-translation) between low voltages (down to 0.9 V) and higher voltages (2.7 V to 5.5 V) in mixed-mode applications. This device enables I²C and similar bus systems to be extended, without degradation of performance even during level shifting.

The TCA9509 buffers both the serial data (SDA) and the serial clock (SCL) signals on the I²C bus, thus allowing 400-pF bus capacitance on the B-side. This device can also be used to isolate two halves of a bus for voltage and capacitance.

The TCA9509 has two types of drivers – A-side drivers and B-side drivers. All inputs and B-side I/O's are overvoltage tolerant to 5.5V. The A-side I/O's are overvoltage tolerant to 5.5V when the device is unpowered (VCCB and/or VCCA=0V).

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

ORDERING INFORMATION

T _A	ORDERABLE PART NUMBERS	PACKAG	iES ⁽¹⁾ (2)	TOP-SIDE MARKING	
–40°C to 85°C	TCA9509RVHR	RVH - QFN	Tape and reel	7K	
-40°C to 85°C	TCA9509DGKR	DGK - MSOP	Tape and reel	7KQ	

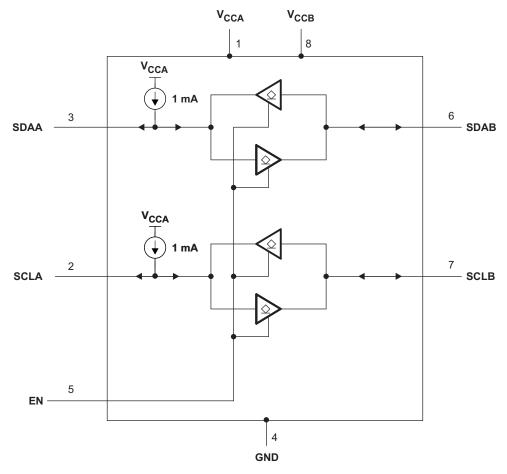
Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

DESCRIPTION/ORDERING INFORMATION (CONTINUED)

The bus port B drivers are compliant with SMBus I/O levels, while the A side uses a current sensing mechanism to detect the input or output LOW signal which prevents bus lock-up. The A side uses a 1 mA current source for pull-up and a 200 Ω pull-down driver. This results in a LOW on the A side accommodating smaller voltage swings. The output pull-down on the A side internal buffer LOW is set for approximately 0.2 V, while the input threshold of the internal buffer is set about 50 mV lower than that of the output voltage LOW. When the A side I/O is driven LOW internally, the LOW is not recognized as a LOW by the input. This prevents a lock-up condition from occurring. The output pull-down on the B side drives a hard LOW and the input level is set at 0.3 of SMBus or I²C-bus voltage level which enables B side to connect to any other I²C-bus devices or buffer.

The TCA9509 drivers are not enabled unless V_{CCA} is above 0.8 V and V_{CCB} is above 2.5 V. The enable (EN) pin can also be used to turn the drivers on and off under system control. Caution should be observed to only change the state of the EN pin when the bus is idle.

⁽²⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.


TERMINAL FUNCTIONS

NO.	NAME	DESCRIPTION
1	V _{CCA}	A-side supply voltage (0.9V to V _{CCB} - 1V)
2	SCLA	Serial clock bus, A side.
3	SDAA	Serial data bus, A side.
4	GND	Supply ground
5	EN	Active-high repeater enable input
6	SDAB	Serial data bus, B side. Connect to V _{CCB} through a pullup resistor.
7	SCLB	Serial clock bus, B side. Connect to V _{CCB} through a pullup resistor.
8	V _{CCB}	B-side and device supply voltage (2.7 V to 5.5 V)

Table 1. FUNCTION TABLE

INPUT EN	FUNCTION
L	Outputs disabled
Н	SDAA = SDAB SCLA = SCLB

Figure 1. FUNCTIONAL BLOCK DIAGRAM

Copyright © 2011–2012, Texas Instruments Incorporated

ABSOLUTE MAXIMUM RATINGS(1)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CCB}	Supply voltage range		-0.5	6	V
V_{CCA}	Supply voltage range		-0.5	6	V
VI	Enable input voltage range ⁽²⁾	-0.5	6	V	
V _{I/O}	I ² C bus voltage range ⁽²⁾	-0.5	6	V	
I _{IK}	Input clamp current	V ₁ < 0		-20	A
I _{OK}	Output clamp current	V _O < 0		-20	mA
P _d	Max power dissipation			100	mW
T _{stg}	Storage temperature range		-65	150	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

THERMAL IMPEDANCE

over operating free-air temperature range (unless otherwise noted)

				UNIT
θ_{JA}	Doolsons the small instruction of (1)	RVH package	208.99	°C/W
	Package thermal impedance ⁽¹⁾	DGK package	222.9	°C/W

⁽¹⁾ The package thermal impedance is calculated in accordance with JESD 51-7.

RECOMMENDED OPERATING CONDITIONS

			MIN	MAX	UNIT
V_{CCA}	Supply voltage, A-side bus		0.9 ⁽¹⁾	V _{CCB} - 1	V
V _{CCB}	Supply voltage, B-side bus		2.7	5.5	V
		SDAA, SCLA	0.7 × V _{CCA}	V_{CCA}	
V_{IH}	High-level input voltage	SDAB, SCLB	0.7 × V _{CCB}	5.5	V
		EN	0.7 × V _{CCA}	5.5	
		SDAA, SCLA	-0.5	0.3	
V_{IL}	Low-level input voltage	SDAB, SCLB	-0.5	0.3 × V _{CCB}	V
		EN	-0.5	0.3 × V _{CCA}	
	Lauren autout aussaut	SDAA, SCLA		10	μΑ
IOL	Low-level output current	SDAB, SCLB		6	mA
T _A	Operating free-air temperature	·	-40	85	°C

⁽¹⁾ Low-level supply voltage

⁽²⁾ The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

ELECTRICAL CHARACTERISTICS

 $V_{CCB} = 2.7 \text{ V}$ to 5.5 V, $V_{CCA} = 0.9 \text{ V}$ to $(V_{CCB}-1)$, $T_A = -40 ^{\circ}\text{C}$ to $85 ^{\circ}\text{C}$ (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{IK}	Input clamp voltage		I _I = -18 mA	-1.5		-0.5	V
V	Low-level output voltage	SDAA, SCLA	$I_{OL} = 10 \mu A,$ $V_{ILA} = V_{ILB} = 0 V,$ $V_{CCA} = 0.9 \text{ to } 1.2 V$		0.18	0.25	V
V _{OL}	Low-level output voltage	SDAA, SCLA	$I_{OL} = 20 \mu A,$ $V_{ILA} = V_{ILB} = 0 V,$ $1.2V < V_{CCA} <= (V_{CCB} - 1V)$		0.2	0.3	V
V _{OL} – V _{ILc}	Low-level input voltage below low-level output voltage	SDAA, SCLA			50		mV
V_{ILc}	SDA and SCL low-level input voltage contention	SDAA, SCLA		-0.5	0.15		V
V _{OLB}	Low-level output voltage	SDAB, SCLB	I _{OL} = 6 mA		0.1	0.2	V
laa	Ouissant supply surrent f	or \/	All port A Static high	0.25	0.45	0.9	A
I _{CC}	Quiescent supply current for	or v _{CCA}	All port A Static low	1.25	3	5	mA
I _{CC}	Quiescent supply current for	or V _{CCB}	All port B Static high	0.5	0.9	1.1	mA
		CDAR CCLR	$V_I = V_{CCB}$			±1	
		SDAB, SCLB	$V_1 = 0.2 \text{ V}$			10	
	Input leakage current	SDAA, SCLA	$V_I = V_{CCA}$			±1	
l _l	input leakage current	SDAA, SCLA	$V_{I} = 0.2 \text{ V}$			10	μΑ
		EN	$V_I = V_{CCB}$			±1	
		EIN	$V_1 = 0.2 \text{ V}$			-10	
	High-level output leakage	SDAB, SCLB	V - 3 6 V			10	
I _{OH}	current	SDAA, SCLA	$V_0 = 3.6 \text{ V}$			10	μA
C _{IOA}	I/O capacitance of A-side	SCLA, SDAA	$V_I = 0 V$	6	6.5	7	pF
C _{IOB}	I/O capacitance of B-side	SCLB, SDAB	V _I = 0 V	5.5	6	6.2	pF

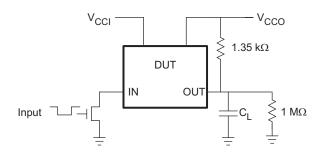
TIMING REQUIREMENTS

over recommended operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
t _{su}	Setup time, EN high before Start condition ⁽¹⁾	100		ns
t _h	Hold time, EN high after Stop condition ⁽¹⁾	100		ns

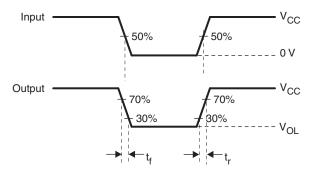
(1) EN should change state only when the global bus and the repeater port are in an idle state.

Copyright © 2011–2012, Texas Instruments Incorporated


I²C INTERFACE TIMING REQUIREMENTS

 $T_A = -40^{\circ}\text{C}$ to 85°C (unless otherwise noted)

A	PARAMET	ER	V _{CCA} (INPUT)	V _{CCB} (OUTPUT)	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
t _{PHL}	Propagation	port A to port B	1.9 V	5.0 V	EN High	123.1	127.2	132. 8	ns
	delay	port B to port A				88.1	88.8	89.8	
t _{PLH}	Propagation delay	port A to port B	101/	5.0 V	EN High	122.6	125.7	131. 7	20
		port B to port A	1.9 V		EN High	123.0	124.1	126. 9	ns
	Transition time	port A	1.9 V	5.0 V	EN High	40.1	40.9	41.9	
t _{rise}		port B	1.9 V			57.3	57.5	58.4	ns
+	Transition time	port A	1.9 V	5.0 V	EN High	14.5	16.4	17.9	ns
t _{fall}	Transition time	port B	1.9 V	3.0 V	Livingii	18.7	19.4	20.2	115
t _{PLH2}	Propagation delay 50% of initial low on Port A to 1.5 V on Port B	port A to port B	1.9 V	5.0 V		176.0	177.3	178. 0	ns
f _{MAX}	Maximum switching frequency					400			KHz


⁽¹⁾ Typical values were measured with $V_{CCA} = V_{CCB} = 2.7 \text{ V}$ at $T_A = 25^{\circ}\text{C}$, unless otherwise noted.

PARAMETER MEASUREMENT INFORMATION

PIN	CL
SCLA, SDAA (A side)	50 pF
SDAB, SCLB (B side)	50 pF

- A. R_T termination resistance should be equal to Z_{OUT} of pulse generators.
- B. C_L includes probe and jig capacitance.
- C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_O = 50 Ω, slew rate ≥ 1 V/ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 2. Test Circuit and Voltage Waveforms

APPLICATION INFORMATION

A typical application is shown in Figure 3. In this example, the system master is running on a 1.1-V I²C bus, and the slave is connected to a 3.3-V bus. Both buses run at 400 kHz. Master devices can be placed on either bus.

The TCA9509 is 5-V tolerant, so it does not require any additional circuitry to translate between 0.9-V to 5.5-V bus voltages and 2.7-V to 5.5-V bus voltages.

When the B side of the TCA9509 is pulled low by a driver on the I^2C bus and the falling edge goes below 0.3 V_{CCB} , it causes the internal driver on the A side to turn on, causing the A side to pull down to about 0.2 V. When the A side of the TCA9509 falls, first a comparator detects the falling edge and causes the internal driver on the B side to turn on and pull the B-side pin down to ground. In order to illustrate what would be seen in a typical application, refer to Figure 4 and Figure 5. If the bus master in Figure 3 were to write to the slave through the TCA9509, waveforms shown in Figure 4 would be observed on the B bus. This looks like a normal I^2C bus transmission, except that the high level may be as low as 0.9 V, and the turn on and turn off of the acknowledge signals are slightly delayed.

On the A-side bus of the TCA9509, the clock and data lines would have a positive offset from ground equal to the V_{OL} of the TCA9509. After the eighth clock pulse, the data line is pulled to the V_{OL} of the master device, which is very close to ground in this example. At the end of the acknowledge, the level rises only to the low level set by the driver in the TCA9509 for a short delay, while the B-bus side rises above 0.3 V_{CCB} and then continues high. It is important to note that any arbitration or clock stretching events require that the low level on the A-bus side at the input of the TCA9509 (V_{IL}) be at or below 0.15 V to be recognized by the TCA9509 and then transmitted to the B-bus side.

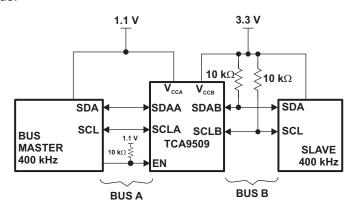


Figure 3. Typical Application

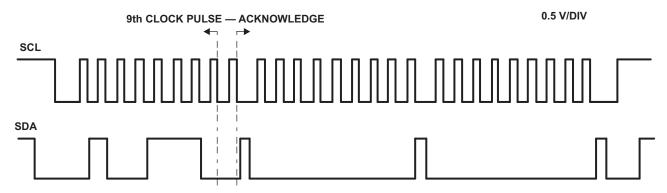


Figure 4. Bus A (0.9-V to 5.5-V Bus) Waveform

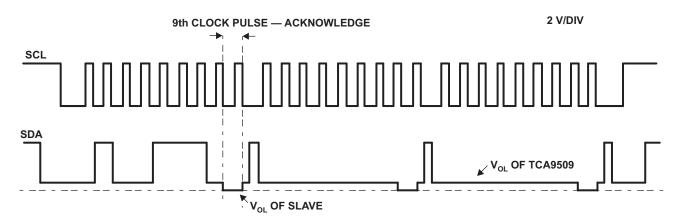


Figure 5. Bus B (2.7-V to 5.5-V Bus) Waveform

REVISION HISTORY

CI	hanges from Original (August 2011) to Revision A	Page
•	Corrected V _{CCA} operating voltage lower limit, to 0.9V at multiple instances in document	1
•	Changed Operating Supply Voltage Range value error in FEATURES for B side. Changed from (0.9 V to 5.5 V on B side) to (2.7 V to 5.5 V on B side).	
•	Changed Operating Voltage Range value error in FEATURES for A side. Changed (2.7 V to V _{CCB} – 1 V on A side) to (0.9 V to V _{CCB} – 1 V on A side).	1
CI	hanges from Revision A (October 2011) to Revision B	Page
	Added DGK package and package information to datasheet.	1

PACKAGE OPTION ADDENDUM

20-May-2013

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TCA9509DGKR	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	7KQ	Samples
TCA9509RVHR	ACTIVE	X2QFN	RVH	8	5000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	7K	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

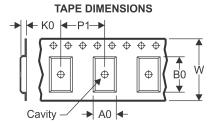
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

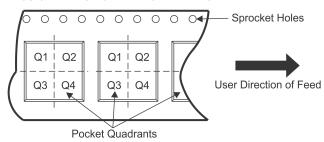
- (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

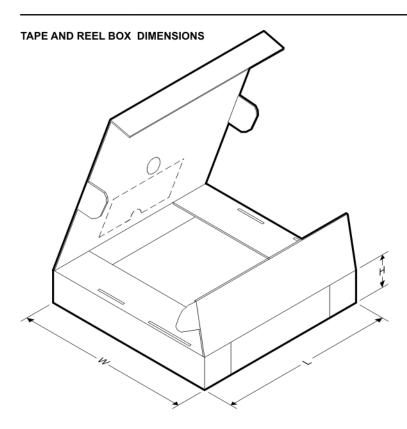

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 15-Aug-2013


TAPE AND REEL INFORMATION

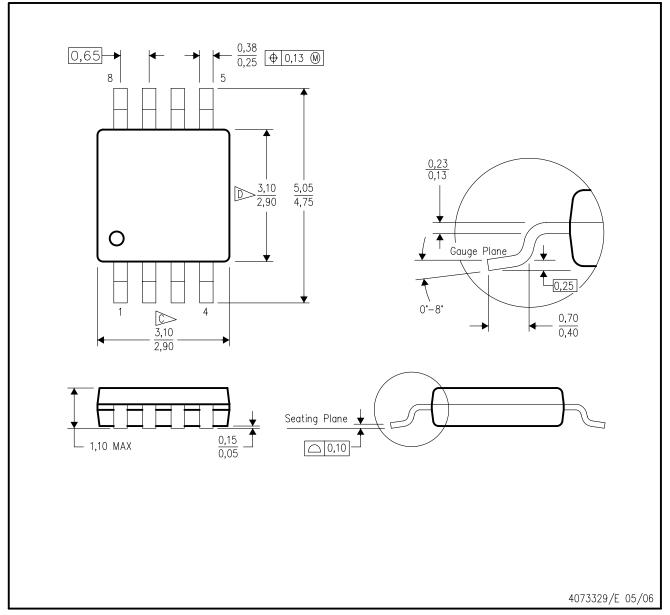
	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TCA9509DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TCA9509RVHR	X2QFN	RVH	8	5000	180.0	8.4	1.8	1.8	0.5	4.0	8.0	Q3

www.ti.com 15-Aug-2013

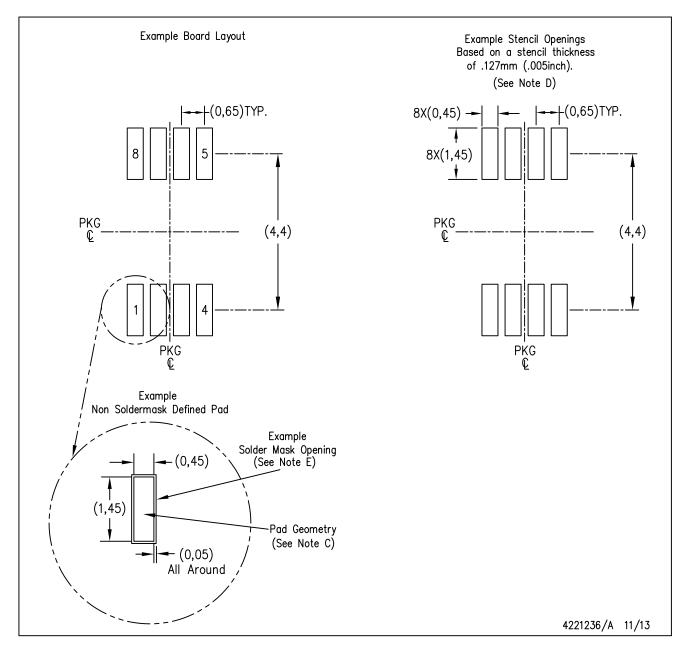


*All dimensions are nominal

Device	Device Package Type		Pins SPQ		Length (mm)	Width (mm)	Height (mm)	
TCA9509DGKR	VSSOP	DGK	8	2500	364.0	364.0	27.0	
TCA9509RVHR	X2QFN	RVH	8	5000	202.0	201.0	28.0	

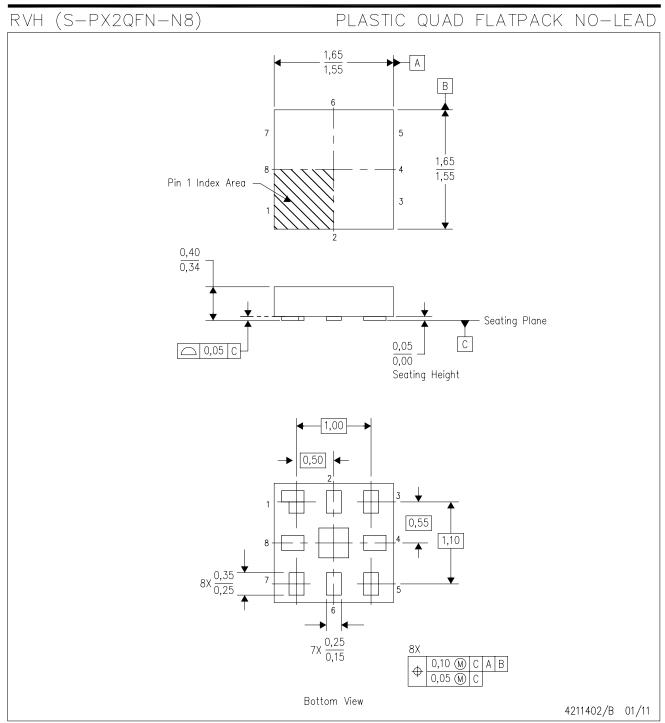
DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE


NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

DGK (S-PDSO-G8)

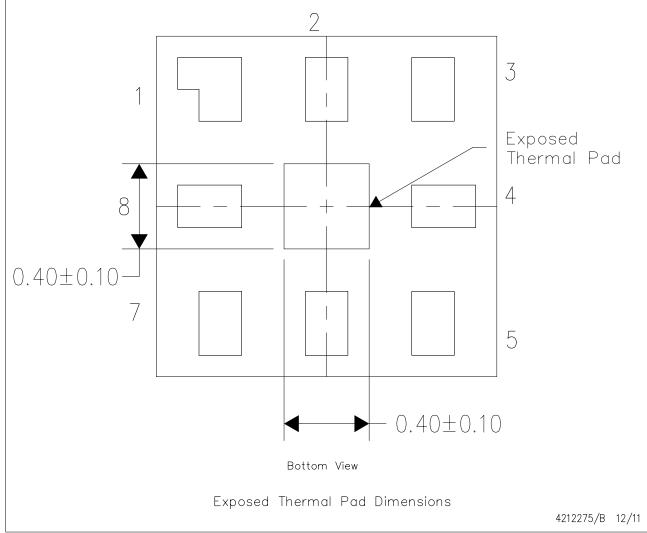

PLASTIC SMALL OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

NOTES: All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.

- This drawing is subject to change without notice. QFN (Quad Flatpack No-Lead) package configuration.
- D. This package complies to JEDEC MO-255.

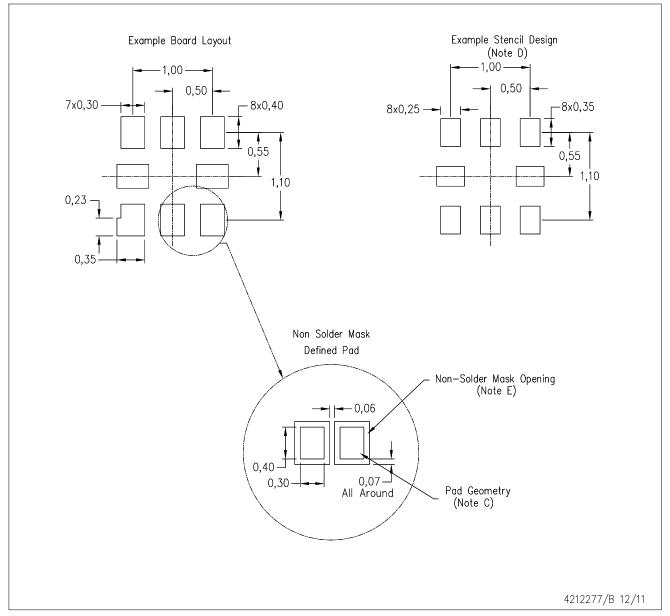

RVH (S-PX2SON-N8)

PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.


NOTES:

A. All linear dimensions are in millimeters

RVH (S-PX2QFN-N8)

PLASTIC SMALL OUTLINE NO-LEAD

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- E. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>