SX1701B – Datasheet

Highly linear wideband LNA

Multi-channel, single-ended to differential conversion

GENERAL DESCRIPTION

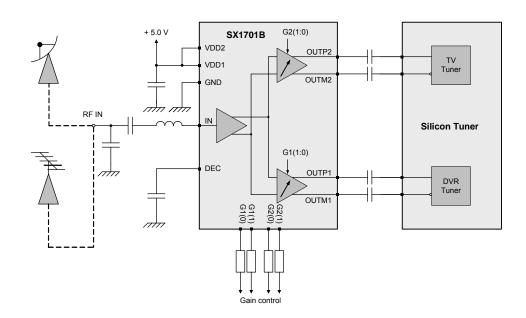
The SX1701B is an integrated LNA operating over a wide frequency range from 40 MHz to 2.5 GHz. It is optimized for high OIP2 and OIP3 with minimum current consumption. It also performs a single-ended to differential conversion.

Two independent output channels are available and the gain of each may be adjusted independently.

APPLICATIONS

- Digital Set Top Boxes (Satellite and Terrestrial)
- CATV Distribution Systems
- Active Splitter
- Data Communications Systems
- Active Balun

KEY PRODUCT FEATURES


- Single-ended input / Dual differential outputs
- Independent programmable gain for each channel: 6, 12 and 18 dB
- High Linearity: OIP2 of 57 dBm and OIP3 of 22 dBm
- Noise Figure of 7 dB
- 75 Ω Input impedance
- 100Ω differential output impedance
- Current consumption of 130 mA with one channel enabled
- ESD protection (Normal ESD handling procedures should be observed)
- Very small package: MLPQ-16, 4 mm x 4 mm (equivalent to QFN-16, 4 mm x 4 mm)

ORDERING INFORMATION

Part number	Temp	erature range	Package
SX1701BI085TR	T -40	°C to +85 °C	Lead Free MLPQ-16

Note: This device is WEEE and RoHS compliant.

TYPICAL APPLICATION

TABLE OF CONTENTS

1	Simplified Block Diagram	
2	Simplified Block DiagramPin Description	
2.1.1	Pin Connections	_
2.1.2	Gain Control Pins	
3	Electrical Characteristics	5
3.1	Absolute Maximum Ratings	
3.2	Specifications	5
3.2.1	Operating Range	5
3.2.2	Operating Range Electrical Specifications Typical Operating Characteristics Application Information	6
3.3	Typical Operating Characteristics	
4	Application Information	ç
5	Application Example	10
5.1	Single-Ended Input to 1 Differential Outputs with Loop-through Single-Ended OUTPUT	
6	Package Outline Drawing	
7	Marking Information	
8	Land Pattern Drawing	

1 SIMPLIFIED BLOCK DIAGRAM

The simplified block diagram of the SX1701B is illustrated below in Figure 1.

The amplifier comprises two main stages. The first stage is common to both channels and performs the single-ended to differential conversion. The second stage, duplicated for both channels, is implemented as two cascaded stages and performs independently the gain control for each channel.

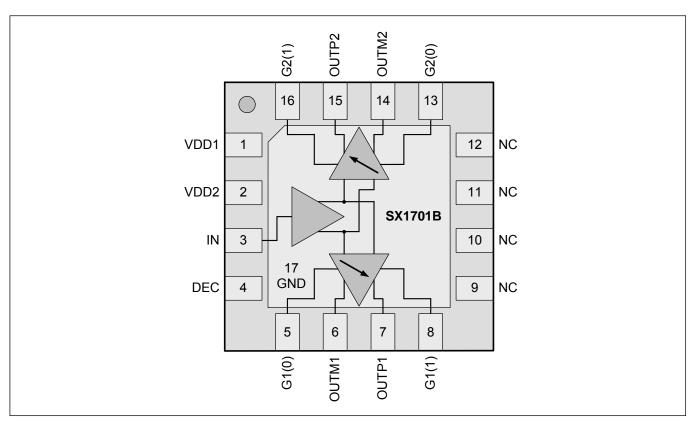


Figure 1. Simplified block diagram of the SX1701B.

2 PIN DESCRIPTION

2.1.1 Pin Connections

The pin description of the SX1701B is given in Table 1.

Number	Name	Туре	Description
1	VDD1	Input	Supply voltage
2	VDD2	Input	Supply voltage
3	IN	Input	LNA input
4	DEC	Input	Decoupling capacitor
5	G1(0)	Input	Control of the 1st channel
6	OUTM1	Output	Differential output 1st Channel
7	OUTP1	Output	Differential output 1st Channel
8	G1(1)	Input	Control of the 1st channel
9	NC	None	No Connect
10	NC	None	No Connect
11	NC	None	No Connect
12	NC	None	No Connect
13	G2(0)	Input	Control of the 3rd channel
14	OUTM2	Output	Differential output 3rd Channel
15	OUTP2	Output	Differential output 3rd Channel
16	G2(1)	Input	Control of the 3rd channel
17	GND	Input	Ground pad

Table 1. Pin description.

2.1.2 Gain Control Pins

The gain setting for each channel is given in Table 2.

Gi(1:0)	Description
0 0	Channel OFF (default value set by pull-down devices)
0 1	Channel ON, G = 6 dB
10	Channel ON, G = 12 dB
11	Channel ON, G = 18 dB

Table 2. Channel gain setting.

<u>Note:</u> For applications that require less than 3 outputs, the unused differential outputs and the corresponding channel gain setting pins can be left floating. The default channel gain setting is "channel OFF [0:0]" (set by internal pull down resistors).

3 ELECTRICAL CHARACTERISTICS

3.1 ABSOLUTE MAXIMUM RATINGS

Stresses above the values listed below may cause permanent device failure. Exposure to absolute maximum ratings for extended periods may affect device reliability.

Symbol	Description	Min.	Max.	Unit
VDDmr	Supply voltage	-0.5	5.5	V
Tmr	Storage temperature	-55	+125	°C
Tjmr	Junction Temperature	-	+125	°C
Pmr	Input level	-	0	dBm

Table 3. Absolute Maximum ratings.

3.2 SPECIFICATIONS

3.2.1 Operating Range

Symbol	Description	Min.	Max.	Unit
VDDop	Supply voltage	4.5	5.3	V
Trop	Temperature	-40	+85	°C

Table 4. Operating Range.

3.2.2 Electrical Specifications

The table below gives the electrical specifications of the LNA under the following conditions: VDD = 5.0 V, Temperature = 25 °C, Input frequency = 1 GHz, Gain = 18 dB, Pin = -20dBm, unless otherwise specified.

Symbol	Description	Condition		Min	Тур	Max	Unit
RIN	Input impedance	Single-ended	Single-ended		75	-	Ω
ROUT	Output impedance	Differential		-	100	-	Ω
FR	Frequency range			0.04	-	2.5	GHz
G	Gain	S ₂₁		-	6	-	
		Programmable		-	12	-	dB
				-	18	-	
GFLAT	Gain Flatness	Rs = 75 Ω, max	imum gain	-	±1	-	dB
NF	Noise figure	Rs = 75 Ω	G = 18 dB	-	7	-	
			G = 12 dB	-	9	-	dB
			G = 6 dB	-	13	-	
P1dB	Output P1dB compression point			-	13	-	dBm
OIP3	Output 3 rd order intermodulation (differential)	f ₁ = 1.0 GHz	G = 18 dB	-	22	-	
		f ₂ = 1.1 GHz	G = 12 dB	-	21	-	dBm
			G = 6 dB	-	19	-	
OIP2	Output 2 nd order intermodulation (differential)	f ₁ = 1.0 GHz	@ f ₁ + f ₂	-	53	-	dBm
		f ₂ = 1.1 GHz	@ f ₂ - f ₁	-	57	-	UDIII
IDD	Current consumption	1 channel enabled 2 channels enabled		-	130	-	
				-	200	-	mA
		3 channels enabled		-	270	-	
IRL	Input Return loss	-20.log(ls ₁₁ l)		-	15		dB
ORL	Output Return loss	-20.log(ls iil)		-	20		dB
ISOUTIN	RF out to RF in Isolation	-20.log(ls _{1 i} l)		50	-	-	dB
ISOUTOUT	RF out i to RF out j isolation	-20.log(ls _{i j} l)	G = 18 dB	-	25	-	
			G = 12 dB	-	30	-	dB
			G = 6 dB	-	35	1	
ISOUTDWN	RF in to RF out isolation in shut down mode	-20.log(ls _{i1} l)		-	50	1	dB
CMRR	Common mode rejection at the output			-	20	-	dB
VESD	ESD robustness on all pins	НВМ		3	-	-	kV

Table 5. Electrical Specifications.

3.3 TYPICAL OPERATING CHARACTERISTICS

The curves below give the typical RF performances of the LNA under the following conditions: VDD = 5.0 V, Temperature = 25 $^{\circ}$ C, Z $^{\circ}$ Source = 75 $^{\circ}$ C, Z $^{\circ}$ Load = 100 $^{\circ}$ C differential, Frequency range = 40 MHz to 2.5 GHz, input matching network according to application schematics of figure 4.

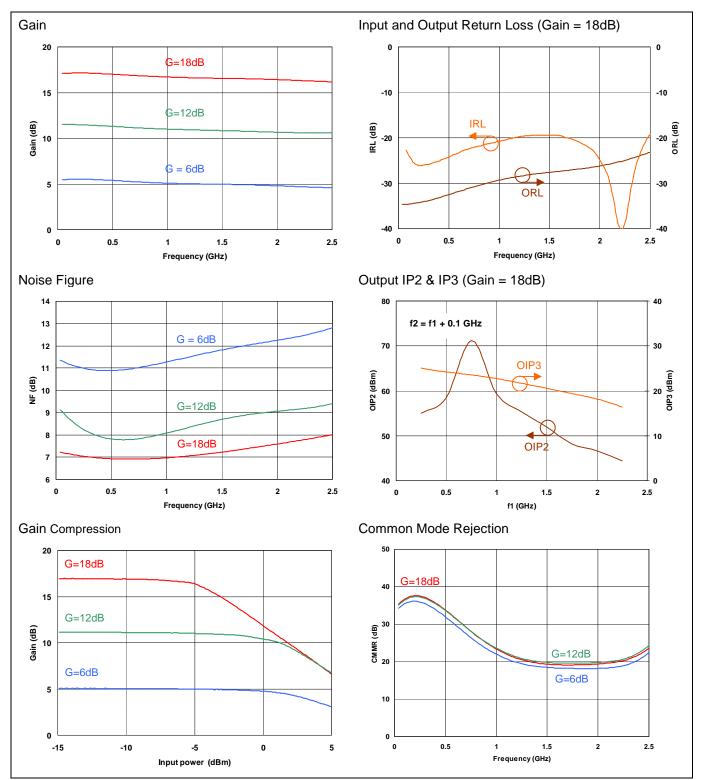


Figure 2. Typical Operating Characteristics Curves.

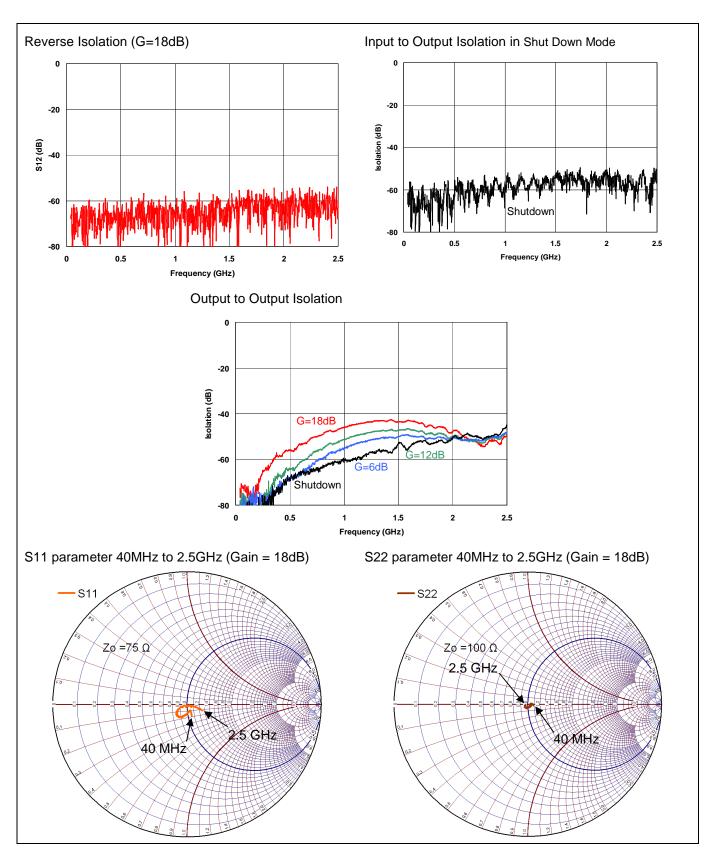


Figure 3. Typical Operating Characteristics Curves.

4 APPLICATION INFORMATION

Figure 4, below, shows the recommended board schematic. Typical component values are shown and are subject to change depending on the PCB layout and material used. Please refer to the Semtech SX1701B reference design at www.semtech.com.

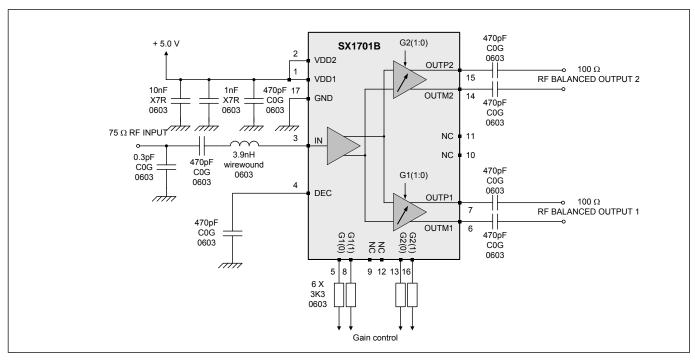


Figure 4. Application board schematic.

5 APPLICATION EXAMPLE

Although intended for differential output operation, the SX1701B may be used for the single-ended output configuration as shown in Figure 5. Note that some degradation in device performance may be experienced, including a 3 dB reduction in gain.

5.1 SINGLE-ENDED INPUT TO 1 DIFFERENTIAL OUTPUTS WITH LOOP-THROUGH SINGLE-ENDED OUTPUT

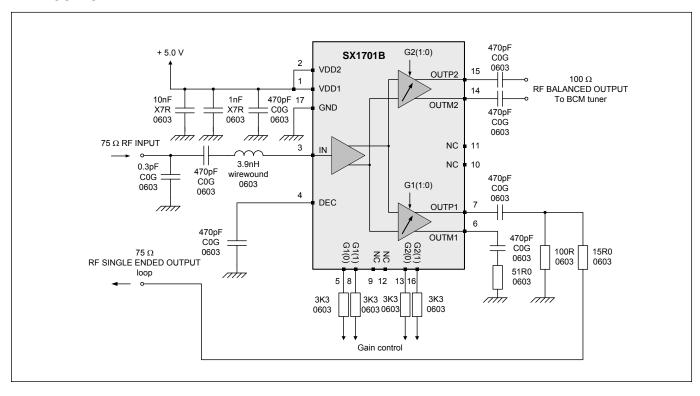


Figure 5. Differential output with loop-through.

6 PACKAGE OUTLINE DRAWING

SX1701B is assembled in a MLPQ-16, 4 mm x 4 mm as shown in Figure 6.

Figure 6. Package outline drawing.

7 MARKING INFORMATION

Figure 7. Marking information.

8 LAND PATTERN DRAWING

The land pattern of MLPQ-16 package, 4 mm x 4 mm is shown in Figure 8.

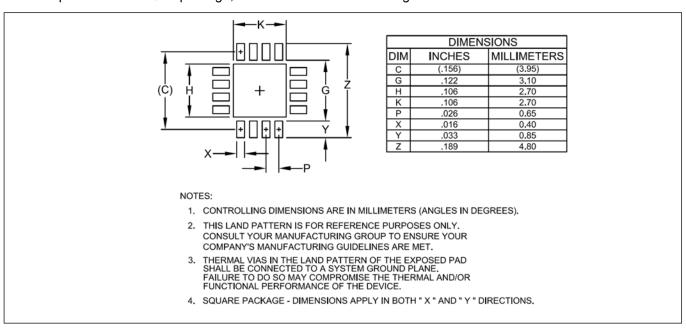


Figure 8. Land pattern drawing.

© Semtech 2008

All rights reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights. Semtech assumes no responsibility or liability whatsoever for any failure or unexpected operation resulting from misuse, neglect improper installation, repair or improper handling or unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the specified maximum ratings or operation outside the specified range.

SEMTECH PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF SEMTECH PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE UNDERTAKEN SOLELY AT THE CUSTOMER'S OWN RISK. Should a customer purchase or use Semtech products for any such unauthorized application, the customer shall indemnify and hold Semtech and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs damages and attorney fees which could arise.

Contact Information

Semtech Corporation

Advanced Communications and Sensing Products Division
200 Flynn Road, Camarillo, CA 93012

Phone (805) 498-2111 Fax: (805) 498-3804