

AN-1951 LM3000 Evaluation Board

1 Introduction

The LM3000 evaluation board is designed to provide the design engineer with a fully-functional power converter based solution using Dual Output Emulated Current Mode Controller in LM3000. This evaluation board provides two output voltages of 3.3V and 1.2V. The 3.3V output is designed to handle a maximum current of 8A; whereas the 1.2V output has a maximum current capability of 15A. The switching frequency for the converter is set at 500 kHz. The gate signals for each output voltage will be 180 degree out of phase from each other. The printed circuit board consists of 4 layers of FR4 material with 2 ounce copper on top and bottom layer and 1 ounce copper for internal layers. This application note contains the evaluation board schematic, bill of materials (BOM) and a quick setup procedure. Refer to the *LM3000 Dual Synchronous Emulated Current-Mode Controller* (SNVS612) data sheet for complete circuit design information.

The performance of the evaluation board is as follows:

Input Range	: 6V to 18V
Output Voltage 1 (VO1)	: 3.3V
Output Current 1	: 0 to 8A
Output Voltage 2 (VO2)	: 1.2V
Output Current 2	: 0 to 15A
Switching Frequency	: 500 kHz
Load Regulation	: 1%
Board Size	: 2.68 x 3.146 x 0.068 inches

2 Powering and Loading Considerations

Read this entire page prior to attempting to power the evaluation board.

2.1 Quick Setup Procedure

- 1. Set the input power supply current limit to 10A. Turn off the input power supply. Connect the input power supply to VIN terminal. Make sure to connect power supply ground to each GND1 and GND2 terminals in order to provide a short path for input current to return to the power supply.
- 2. Connect the load with an 8A capability on VO1 and 15A capability on VO2. Connect the positive terminal to VO1 and VO2 and negative terminal to GND1 and GND2.
- 3. Connect a secondary power supply to EN1 and EN2 terminals. Set the power supply voltage to 5V. The ground return for this power supply should be connected to GND terminal. Since the evaluation board is configured such that V_{OUT2} tracks V_{OUT1}, therefore V_{OUT2} cannot be turned on without turning on V_{OUT1}. Different configuration might be required in order to turn on VOUT2 independently. This will be discussed later in the Tracking section of this application notes.
- 4. Set V_{IN} to 12V with no load being applied. Turn on the input power supply followed by the secondary power supply in order to power up the enable pins. The output voltage should be in regulation with a value of 3.3V on VO1 and 1.2V on VO2.
- 5. Slowly increase the load in each output into its maximum output current while monitoring the output voltages in each channel. The output voltages should also be in regulation at each respective maximum output current.

Board Configuration

www.ti.com

6. Slowly vary the input voltages from 6V and 18.5V. Both output voltages should remain in regulation with a nominal value of 3.3V on VO1 and 1.2V on VO2.

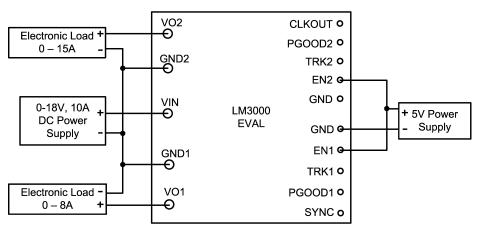


Figure 1. Basic Test Setup for LM3000EVAL Board

3 Board Configuration

3.1 External Clock Synchronization

A SYNC terminal has been provided in this evaluation board in order to synchronize the converter to an external clock or other fixed frequency signal from 200 kHz to 1.5 MHz. Refer to LM3000 datasheet for complete information.

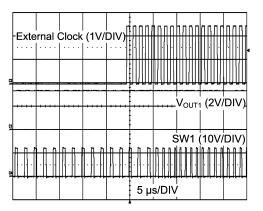


Figure 2. Synchronization at 3.3V Output

3.2 CLKOUT

A CLKOUT terminal provides an external clock signal 90 degrees out of phase with the main clock. This clock signal can be used to synchronize a second LM3000.

3.3 Tracking

2

LM3000 evaluation board is configured such that VOUT2 tracks VOUT1, while VOUT1 voltage increases with a rate determined by the value of C17 which is the soft-start capacitor for VOUT1 (Condition 1). This configuration will not allow VOUT2 to be turned on independently without turning on VOUT1. In order to track VOUT1, TRK2 pin should be connected to a divider junction between R14 and R15 through R26.

When both outputs are used to track an external source (Condition 2), then R25, R26, and R28 should be left open and a 10Ω resistor should be added into R24 and R27.

If no tracking feature is required, both TRK1 and TRK2 should then be tied to VDD in order to soft-start each output voltage based on soft-start capacitor value (Condition 3). This can be done by keeping R24, R26, and R27 open while adding a 10Ω resistor onto R25 and R28.

Please note that the slew rate of track signal should be lower than the soft-start slew rate which is set by soft-start capacitor value.

The following are the summary of different tracking configuration on LM3000EVAL board:

Condition	R24	R25	R26	R27	R28
1	Open	10Ω	10Ω	Open	Open
2	10Ω	Open	Open	10Ω	Open
3	Open	10Ω	Open	Open	10Ω

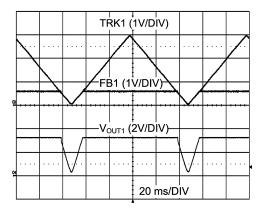
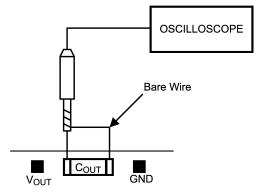
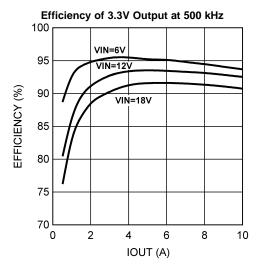
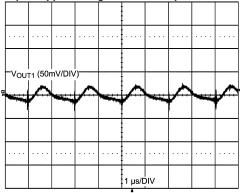


Figure 3. Tracking with an External Ramp for 3.3V Output

3.4 Output Voltage Ripple

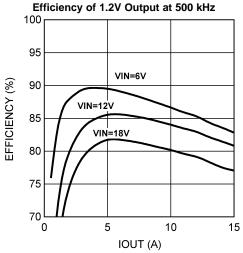
Output voltage ripple measurement should be taken directly across the output capacitor C21 or C22. Care has to be taken to minimize the loop area between the scope probe tip and the ground lead in order to minimize noise in the measurement. This can be achieved by removing the probe's spring tip and ground lead and then wire a bare wire around scope probe shaft. The bare wire should be in contact with the probe shaft since this is the "new" ground lead for the probe. The measurement can be taken by connecting the bare wire onto the ground side of the capacitor and the probe tip onto the other side of the capacitor. Figure 4 shows a diagram of this measurement technique.

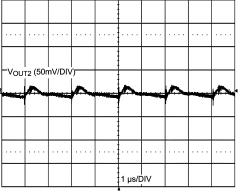

Figure 4. Output Voltage Ripple Measurement Setup

З

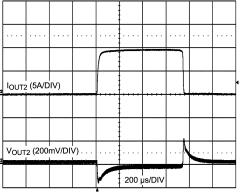
4 **Typical Performance Waveforms**



Output Ripple Voltage for 3.3V Output at 8A Load



Output Load Transient from 0 to 6A for 3.3V Output


8	I _{OUT1}	(5A/D	IV)							
a	Vout	₁ (200	mV/DI	/)				M		
					W				 	
						200	ıs/DIV			

Output Ripple Voltage for 1.2V Output at 15A Load

Output Load Transient from 0 to 10A for 1.2V Output

5 Evaluation Board Schematic

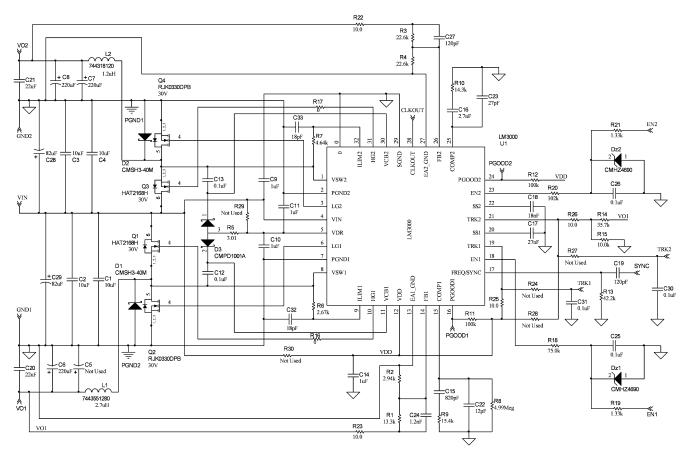


Figure 5. Evaluation Board Full Schematic

6 Bill of Materials

Table 1. Bill of Materials

ID	Part Number	Туре	Size	Parameters	Qty	Vendor
C1, C2, C3, C4	GRM31CR6E106KA12L	Capacitor, Ceramic	1206	10 µF, 25V, X5R, 10%	4	Murata
C5			7343-43	Not Used	0	
C6,C7, C8	EEF-UE0G221R	Capacitor, Polymer	7343-43	220 μF, 4V, 12 mΩ	3	Panasonic
C9, C10, C11, C14	GRM188R61E105KA12D	Capacitor, Ceramic	0603	1 μF, 25V, X5R, 10%	4	Murata
C12, C13, C30, C31	GRM188R71E104KA01D	Capacitor, Ceramic	0603	0.1 µF, 25V, X7R, 10%	4	Murata
C15	VJ0603Y821KXXA	Capacitor, Ceramic	0603	820 pF, 25V, X7R, 10%	1	Vishay
C16	VJ0603Y272KXXA	Capacitor, Ceramic	0603	2.7 nF, 25V, X7R, 10%	1	Vishay
C17	06035C273KAT2A	Capacitor, Ceramic	0603	0.027 µF, 50V, X7R, 10%	1	AVX
C18	VJ0603Y183KXXA	Capacitor, Ceramic	0603	18 nF, 25V, X7R, 10%	1	Vishay
C19	VJ0603A121JXAA	Capacitor, Ceramic	0603	120 pF, 50V, COG, 5%	1	Vishay
C20, C21	GRM31CR60J226KE19L	Capacitor, Ceramic	1206	22 μF, 6.3V, X5R, 10%	2	Murata

www.ti.com

Table 1	Bill of	Materials	(continued)
---------	---------	-----------	-------------

ID	Part Number	Туре	Size	Parameters	Qty	Vendor	
C22	VJ0603A120KXAA	Capacitor, Ceramic	0603	12 pF, 50V, COG, 5%	1	Vishay	
C23	06031A270KAT2A	Capacitor, Ceramic	0603	27 pF, 100V, COG, 10%	1	AVX	
C24	06035C122KAT2A	Capacitor, Electrolytic	0603	1200 pF, 50V, X7R, 10%	1	AVX	
C25,C26	GRM188R71C104KA01D	Capacitor, Ceramic	0603	0.1 µF, 16V, X7R, 10%	2	Murata	
C27	06035A121JAT2A	Capacitor, Ceramic	0603	120 pF, 50V, COG, 5%	1	AVX	
C28, C29	EEEFK1H151P	Capacitor, Aluminum	10x10.2 mm	150 μF, 50V, 670 mA	2	Panasonic	
C32, C33	06031A180KAT2A	Capacitor, Ceramic	0603	18 pF, 100V, COG, 10%	2	AVX	
D1, D2	CMSH3-40M	Diode, Schottky	SMA	3A, 40V	2	Central Semiconducto r	
D3	CMPD1001A	Diode, Switching	SOT-23	250 mA, 90V	1	Central Semiconducto r	
Dz1, Dz2	CMHZ4690	Diode, Zener	SOD-123	5.6V, 500 mW	2	Central Semiconducto r	
L1	7443551280	Inductor		2.8 μH, 20A, 3.8 mΩ	1	Wurth Elektronik	
L2	744318120	Inductor		1.2 μH, 22A, 1.79 mΩ	1	Wurth Elektronik	
Q1, Q3	HAT2168H	N-CH MOSFET	LF-PAK	30A, 30V, 6 mΩ	2	Renesas Technology	
Q2, Q4	RJK0330DPB	N-CH MOSFET	LF-PAK	45A, 30V, 2.1 mΩ	2	Renesas Technology	
R1	CRCW060313k3FKEA	Resistor	0603	13.3 kΩ, 1%	1	Vishay	
R2	CRCW06032k94FKEA	Resistor	0603	2.94 kΩ, 1%	1	Vishay	
R3, R4	CRCW060322k6FKEA	Resistor	0603	22.6 kΩ, 1%	2	Vishay	
R5	CRCW06033R01FNEA	Resistor	0603	3.01Ω, 1%	1	Vishay	
R6	CRCW06032k67FKEA	Resistor	0603	2.67 kΩ, 1%	1	Vishay	
R7	CRCW06034k64FKEA	Resistor	0603	4.64 kΩ, 1%	1	Vishay	
R8	CRCW06034M99FKEA	Resistor	0603	4.99 MΩ, 1%	1	Vishay	
R9	CRCW060315k4FKEA	Resistor	0603	15.4 kΩ, 1%	1	Vishay	
R10	CRCW060314k3FKEA	Resistor	0603	14.3 kΩ, 1%	1	Vishay	
R11, R12	CRCW0603100kFKEA	Resistor	0603	100 kΩ, 1%	2	Vishay	
R13	CRCW060342k2FKEA	Resistor	0603	42.2 kΩ, 1%	1	Vishay	
R14	CRCW060335k7FKEA	Resistor	0603	35.7 kΩ. 1%	1	Vishay	
R15	CRCW060310k0FKEA	Resistor	0603	10 kΩ, 1%	1	Vishay	
R16, R17	CRCW06030000Z0EA	Resistor	0603	Ω0	2	Vishay	
R18	CRCW060375k0FKEA	Resistor	0603	75 kΩ , 1%	1	Vishay	
R19, R21	CRCW06031k33FKEA	Resistor	0603	1.33 kΩ, 1%	2	Vishay	
R20	CRCW0603102kFKEA	Resistor	0603	102 kΩ, 1%	1	Vishay	
R22, R23	CRCW040210R0FKED	Resistor	0402	10Ω, 1%	2	Vishay	
R24, R27, R28, R29, R30		Resistor	0603	Not Used			

ID	Part Number	Туре	Size	Parameters	Qty	Vendor
R25, R26	CRC060310R0FKEA	Resistor	0603	10Ω, 1%	2	Vishay
U1	LM3000	Controller	32 Lead WQFN		1	Texas Instruments
VIN, VO1, VO2, GND1, GND2	1514-2	Turret Terminal	0.090" diameter		5	Keystone
CLKOU T, PGOOD 2, TRK2, EN2, GND	1573-2	Turret Terminal	0.072" diameter		5	Keystone
GND, EN1, TRK1, PGOOD 1, SYNC	1573-2	Turret Terminal	0.072" diameter		5	Keystone

Table 1. Bill of Materials (continued)

PCB Layout

7 PCB Layout

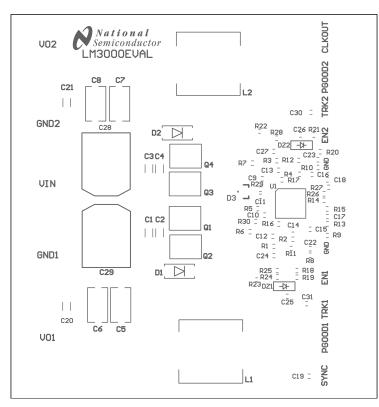


Figure 6. Top Overlay as Viewed from Top

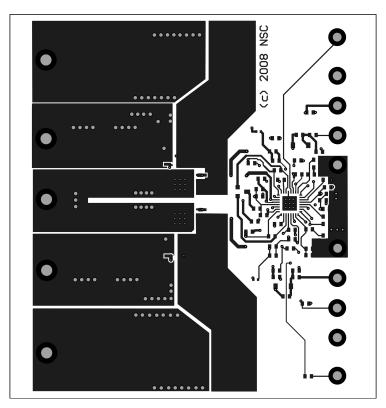
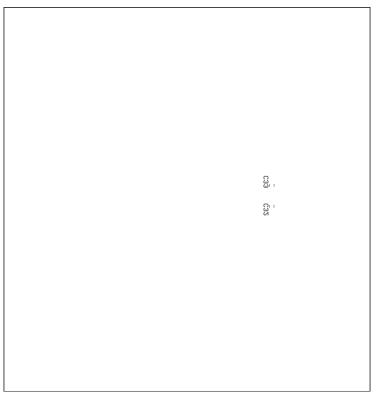



Figure 7. Top Layer as Viewed from Top

Figure 8. Bottom Overlay as Viewed from Top

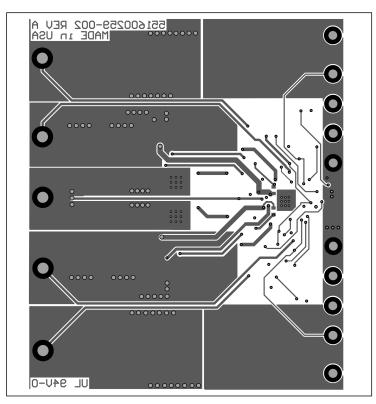


Figure 9. Bottom Layer as Viewed from Top

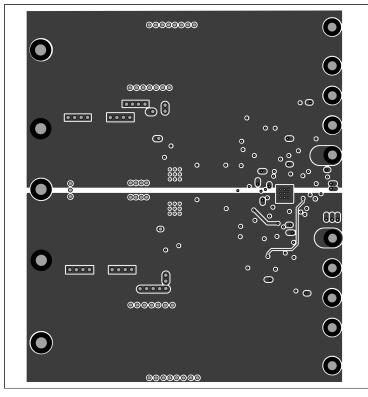
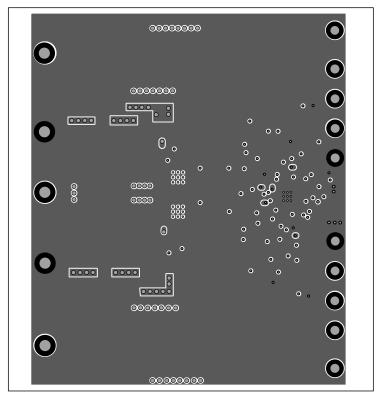



Figure 10. Internal Layer 1 as Viewed from Top

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated