

AN-1886 LM3686 Evaluation Board

1 Introduction

This evaluation board is designed to enable independent evaluation of the LM3686 electrical performance. Each board is pre-assembled and tested in the factory.

The evaluation kit is available in the following voltages LM3686TL-181228EVB (DCDC = 1.8, LILO = 1.2, LDO = 2.8). This user's guide contains information about the evaluation board. For further information on device electrical characteristics and component selection, please refer to LM3686 Step-Down DC-DC Converter with Integrated Post Linear Regulators System and Low-Noise Linear Regulator (SNVS520).

2 General Description

The LM3686 is a step-down DC-DC converter with two integrated low dropout linear regulators optimized for powering ultra-low voltage circuits from a single Li-Ion cell or 3 cell NiMH/NiCd batteries. It provides three outputs with combined load current up to 900 mA over an input voltage range from 2.7V to 5.5V.

The device offers superior features and performance for many applications. Automatic intelligent switching between PWM low-noise and PFM low-current mode offers improved system control. During full-power operation, a fixed-frequency 3 MHz (typ.), PWM mode drives loads from ~70 mA to 600 mA max. Hysteretic PFM mode extends the battery life through reduction of the quiescent current to 28 µA (typ.) at light load and system standby. Internal synchronous rectification provides high efficiency.

It also features internal protection against short-circuit and over-temperature conditions.

For the Evaluation Board, the typical post regulation application is realized: the output voltage of the DC-DC converter is used as supply for the linear regulator ($V_{OUT_DCDC} = V_{IN_LILO}$). Thereby, a higher efficiency and lower power dissipation of the system can be achieved compared to using the battery voltage V_{BATT} as supply for the linear regulator (V_{IN_LILO}).

3 General Operation Recommendations

Three enable pins allow the separate operation of either the DC-DC, post-regulation linear regulator or the linear regulator alone. If the DC-DC is not enabled during startup of the post-regulation linear regulator, a parallel small-pass transistor supplies the linear regulator from V_{BATT} with maximal 50 mA. In the combined operation where both Enables are raised or lowered together, the small pass transistor is deactivated, and the big-pass transistor provides 350 mA output current. In shutdown mode (Enable pins pulled low), the device turns off and reduces battery consumption to 2.5 μ A (typ.).

A load of up to 600 mA maximum may be connected from the V_{OUT_DCDC} pin to GND if no additional load is applied at the output of the linear regulator. For V_{OUT_LILO} , the maximum load is 350 mA, while the LDO supplies a maximum of 300 mA. As in the typical post regulation application the load of the linear regulator is supplied by the DC-DC converter, the combined maximum load conditions are:

300 mA at V_{OUT_LILO} plus 300 mA at V_{OUT_DCDC} .

All trademarks are the property of their respective owners.

Typical Application Circuit

www.ti.com

Figure 1. LM3686 Board Layout

4 Typical Application Circuit

Figure 2. Typical Application Circuit

5 Connection Diagram

Figure 3. Connection Diagram 12–Bump Thin DSBGA Package, Large Bump, 0.5 mm Pitch Left: Top View, Right: Bottom View

6 Pin Descriptions

Pin Number	Symbol	Name and Function
A1	PGND	Power Ground pin
A2	SW	Switching node connection to the internal PFET switch and NFET synchronous rectifier.
A3	FB_DCDC	Feedback analog input for the DC-DC converter. Connect to the output filter capacitor.
B1	V _{BATT}	Power supply input for switcher. Connect to the input filter capacitor.
B2	EN_LILO	Enable input for the linear regulator. The linear regulator is in shutdown mode if voltage at this pin is $< 0.4V$ and is enabled if $> 1.0V$. Do not leave this pin floating.
B3	EN_DCDC	Enable input for the DC-DC converter. The DC-DC converter is in shutdown mode if voltage at this pin is < 0.4V and is enabled if > 1.1V. Do not leave this pin floating.
C1	V _{IN_LDO}	Input power to LDO. (Must tie to V_{BATT} at all times)
C2	EN_LDO	Enable input for the linear regulator. The linear regulator is in shutdown mode if voltage at this pin is $< 0.4V$ and is enabled if $> 1.1V$. Do not leave this pin floating.
C3	QGND	Quiet GND pin for LDO and reference circuit.
D1	V _{OUT_LDO}	Voltage output of the linear regulator.
D2	V _{OUT_LILO}	Voltage output of the low input linear regulator
D3	V _{IN_LILO}	Input power to LILO (VIN_LILO connects to output of DCDC or standalone).

Table 1. Pin Descriptions

Table 2.	Enable	Combinations
----------	--------	--------------

EN_DCDC	EN_LILO	EN_LDO	Function
0	0	0	No Outputs
0	0	1	Linear Regulator enabled only (EN_LDO), supply from V_{IN_LDO}, I_{OUT_MAX} = 300 mA
0	1	0	Linear Regulator enabled only LILO supplies from V _{IN_LDO} , I _{OUT_MAX} = 50 mA, V _{IN_LDO} > = V _{OUT_LILO}
1	0	0	DC-DC converter enabled only
1	1	0	Linear Regulator and DCDC enabled 1) $V_{IN_LILO} < V_{OUT_LILO} + 150 \text{ mV}$ (typ.), the small NMOS device is active ($I_{MAX} = 50 \text{ mA}$) and supplied by V_{IN_LDO} . 2) If $V_{IN_LILO} > V_{OUT_LILO} + 250 \text{ mV}$ (typ.), the large NMOS device is active ($I_{MAX} = 350 \text{ mA}$) and supplied by V_{IN_LILO} . Maxium current of DC-DC when EN_LILO = High is 250 mA ⁽¹⁾⁽²⁾
1	1	1	DC-DC converter and linear regulator active. Linear regulator starts after DC-DC converter.

⁽¹⁾ The LILO is turned on via a small NMOS device supplied by V_{IN_LDO} . The maximum current is 50 mA when this small NMOS is ON. If higher current > 50 mA is desired the following condition must be done: EN_DC = HIGH.

⁽²⁾ When the switcher is enabled, a transition occurs from the small NMOS to a larger NMOS. The transition occurs when $V_{IN_LILO} > V_{OUT_LILO} + 250 \text{ mV}$. If $V_{IN_LILO} < V_{OUT_LILO} + 150 \text{ mV}$, the LILO switches back to small NMOS (Switcher EN = low).

Evaluation Board Layout

7 Evaluation Board Layout

Figure 4. Top Silk Screen

Figure 5. Top Layer

Figure 6. Mid Layer 1

Figure 7. Mid Layer 2

Figure 8. Bottom Layer

Evaluation Board Layout

www.ti.com

Figure 9. Bottom Silk Screen

8 Bill of Materials

LM3686	Manufacturer	Manufacturer No.	Description	
C _{IN_ BATT} (C2) (input capacitor)	TDK	C1608X5R0J475	4.7 µF 6.3V, 0603, 10%	
C _{IN_LDO} (C4) (LDO input capacitor)	TDK	C1005JB0J105KT	1 µF 6.3V, 0402, 10%	
C _{OUT_DCDC} (C4) (DC output capacitor)	TDK	C1608X5R0J106K	10 µF 6.3V, 0603, 10%	
C _{OUT_LDO} (C5) (LDO output capacitor)	TDK	C1005J105KT	1 µF 6.3V, 0402, 10%	
C _{OUT_LILO} (C3) (LILO output capacitor)	TDK	C1608X5R0J225	2.2 µF 6.3V, 0402, 10%	
L1 (inductor)	Taiyo Yuden	BRL2518T1R0M	1 µH inductor, 1.6A sat	

Table 3. Bill of Materials for LM3686TL

Common to All	Manufacturer	Manufacturer No.	Description
V _{IN} banana jack - red		108–0902–001	connector, insulated banana jack (red)
V _{out_DCDC} and V _{out_LILO} banana jack - yellow	lebaca Componente	108–0907–001	connector, insulated banana jack (yellow)
V _{LDO} banana jack - white	Johnson Components	108–0901–001	connector, insulated banana jack (white)
GND banana jack - yellow		108–0903–001	connector, insulated banana jack (black)

9 Application Hints

9.1 Evaluation Board Connection

- 1. EN_DC_DC, EN_LILO and EN_LDO can be connected to V_{IN} for evaluation purpose.
- 2. Connect all return Ground from meters to a single PGND point on the PCB Board.
- 3. Each individual V_{OUT} can be monitored through the meter.

9.2 Power Dissipation Calculation

The permissible power dissipation for any package is a measure of the capability of the device to pass heat from the power source, the junctions of the IC, to the ultimate heat sink, the ambient environment. Thus the power dissipation is dependent on the ambient temperature and the thermal resistance across the various interfaces between the die and ambient air.

The allowable power dissipation for the device in a given package can be calculated using the following equation:

$$\mathsf{P}_{\mathsf{D}_{\mathsf{SYS}}} = (\mathsf{T}_{\mathsf{J}(\mathsf{MAX})} - \mathsf{T}_{\mathsf{A}}) / \theta_{\mathsf{JA}}$$

(1)

For the LM3686, there are three different main sources contributing to the systems power dissipation $(P_{D_{_SYS}})$:

- the DC-DC converter (P_{D_DCDC})
- the linear regulator (P_{D LILO})
- the low noise linear regulator (P_{D LDO})

Neglecting switching losses and quiescent currents these two main contributors can be estimated by the following equations:

$P_{D_LILO} = (V_{IN_LILO} - V_{OUT_LILO}) \times I_{OUT_LILO}$	(2)
$P_{D_{LDO}} = (V_{IN_{LDO}} - V_{OUT_{LDO}}) \times I_{OUT_{LDO}}$	(3)
$P_{D_{DCDC}} = I_{OUT_{DCDC}}^{2} \times [(R_{DSON(P)} \times D) + (R_{DSON(N)} \times (1 - D))]$	(4)

where: duty cycle $D = V_{OUT_DCDC} / V_{BATT}$

As an example, assuming the typical post regulation application, the conversion from $V_{BATT} = 3.6V$ to $V_{OUT_DCDC} = 1.8V$ and further to $V_{OUT_LIN} = 1.5V$, at maximum load currents, results in following power dissipations:

 $P_{D DCDC} = (0.300A)^2 \times (0.35\Omega \times 1.8V / 3.6V + 0.15\Omega \times (1 - 1.8V / 3.6V)) = 15.6 \text{ mW}$

 $P_{D \text{ LILO}} = (1.8 \text{V} - 1.2 \text{V}) \times 0.35 \text{A} = 210 \text{ mW}$

 $P_{D LDO} = (3.6V - 2.8V) \times 0.3A = 240 \text{ mW}$

 $P_{D SYS} = 466 \text{ mW}$

With a θ_{JA} = 120°C/W for the DSBGA 12 package, this P_{D_SYS} will cause a rise of the junction temperature T_J of:

 $\Delta T_{J} = P_{D SYS} \times \theta_{JA} = 56K$

For the same conditions but the LILO regulator biased from V_{BATT} , this results in a $P_{D_{LILO}}$ of 840 mW rather than 210 mW. As lower total power dissipation translates to higher efficiency this example highlights the advantage of the post regulation setup.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconnectivity		

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated