

AN-1441 LM4962 Evaluation Board

1 Introduction

The LM4962 Evaluation Board is designed to evaluate both mono and stereo applications. The LM4962 integrates a switching boost converter with an audio power amplifier. For stereo applications an external audio amplifier is needed. The LM4962 Evaluation Board presents the LM4962 along with the LM4951 audio power amplifier. For more information on the LM4962 or LM4951, see the device-specific data sheet.

The LM4962 is an audio power amplifier primarily designed for driving ceramic speaker in cell phones, Smart Phones, PDA's and other portable applications. It is capable of driving 15Vpp (typ) BTL, per channel, to a 2 μ F + 30 Ω load with less than 1% THD + N from a 3.2VDC power supply. The LM4962 features a low power consumption shutdown mode, an internal thermal shutdown protection mechanism, over current protection (OCP) and over voltage protection (OVP).

2 Operating Conditions

• Temperature Range

 $-40^{\circ}C \le T_{A} \le +85^{\circ}C$

Boost Converter Supply Voltage (V_{DD})

 $3.0V < V_{DD} < 5.0V$

• Amplifier Supply Voltage

 $2.7V < V_{AMP} < 8.5V$

All trademarks are the property of their respective owners.

Demo Board Schematic

www.ti.com

3 Demo Board Schematic

Figure 1. Demo Board Schematic

Table 1. Demo Board Connections

Designator	Label	Function	
J1	IN A	Single Ended Audio Input Signal A (LM4962)	
J2	OUTA	BTL Audio Output Signal A (LM4962)	
J3	SD Boost	Boost Converter Shutdown J3 open = Shutdown J3 shorted = Active	
J4	SD AmpB	Amplifier B Shutdown (LM4951) J4 open = Shutdown J4 shorted = Active	
J5	SD AmpA	Amplifier A Shutdown (LM4962) J5 open = Shutdown J5 shorted = Active	
J6	IN B	Single Ended Audio Input Signal B (LM4951)	
J7	OUTB	BTL Audio Output Signal B (LM4951)	
J8	GND VDD	Power Supply Connection	
J9		Stereo/Mono select J9 Shorted = Stereo J9 Open = Mono	
J10	Flagout	Flagout pin to monitor Over Voltage or Over Current conditions	

4 Start-Up Sequence

For the LM4962 correct start-up sequencing is important for optimal device performance. Using the correct start up sequence will improve click/pop performance as well as avoid transients that could reduce battery life. For ringer/loudspeaker mode, the supply voltage should be applied first and both the boost and the amplifier should be in shutdown (J3 and J5 open). Then the boost converter can be activated (J3 shorted) followed by the amplifier (J5 shorted). If the boost converter shutdown is toggled while the amplifier is active an audible pop will be heard.

5 Setting the Output Voltage (V1) of Boost Converter

The output voltage is set using the external resistors R2 and R5 (see Figure 1). A value of approximately 25 k Ω is recommended for R2 to establish the open loop gain of the boost converter. The output voltage of the boost converter can be calculated using Equation 1.

 $V_1 = V_{FB} [1 + (R2 / R5)]$

(1)

(2)

Start-Up Sequence

6 Feed-Forward Compensation For Boost Converter

Although the LM4962's internal Boost converter is internally compensated, an external feed-forward capacitor, Cf, is required for stability (see Figure 1). Adding this capacitor puts a zero in the loop response of the converter. The recommended frequency for the zero's –3dB point should be approximately 60 kHz. C3 can be calculated using the formula in Equation 2.

$$C3 = 1 / (2\pi x R2 x f_z)$$

7 PCB Layout Guidelines

High frequency boost converters require very careful layout of components in order to get stable operation and low noise. All components must be as close as possible to the LM4962 device. It is recommended that a 4-layer PCB be used so that internal ground planes are available. See Figure 1 for demo board reference schematic and layout. Some additional guidelines to be observed:

- Keep the path between L1, D2, and C2 extremely short. Parasitic trace inductance in series with D2 and C2 will increase noise and ringing.
- If internal ground planes are available (recommended) use vias to connect directly to ground at the GND (SW) and GND pins of U1, as well as the negative sides of capacitors Cs1 and C2
- To ensure correct operation of this device, it is essential that the GND (SW) pin (A3), GND pin (D1), and the negative side of Cs2 be connected to the same GND plane. Cs2 should be placed as close as possible to these two GND planes

8 General Layout Recommendations

This section provides practical guidelines for PCB layouts. Designers should note that these are only "ruleof-thumb" recommendations and the actual results will depend heavily on the final layout.

8.1 Power and Ground Circuits

For multi-layer boards, it is important to isolate the switching power and ground trace paths from the amplifier power and ground trace paths. Star trace routing techniques (bringing individual traces back to a central point rather than daisy chaining traces together in a serial manner) can have a major impact on low level signal performance. Star trace routing refers to using individual traces to feed power and ground to each circuit or even device. This technique requires a greater amount of design time but will not increase the final price of the board.

8.2 Avoiding Typical Design and Layout Problems

Avoid ground loops or running digital and analog traces parallel to each other (side-by-side) on the same PCB layer. When traces must cross over each other do it at 90°. Running digital and analog traces at 90° to each other from the top to the bottom side as much as possible will minimize capacitive noise coupling and crosstalk.

	Texas Instruments
--	----------------------

PCB Layout

Table 2. LM4962 Evaluation Board Bill of Materials Item Description Package Value Notes U1 DSBGA Ceramic Speaker Driver U2 Audio Power Amplifier DSBGA Cf1, Cf3 Ceramic Capacitor 1210 82 pF, 50V 50V 50V C3 Ceramic Capacitor 1210 100 pF, 50V CinA, CinB Ceramic Capacitor 1210 0.39 µF, 50V C2, Cs1, Cs2, Cs3 Ceramic Capacitor 1210 4.7 μF, 16V low ESR, ESR < 50 Ω Ceramic Capacitor 1210 10 nF, 16V Css Cb1, Cb2 Tantalum Capacitor 1210 1 µF, 16V SOD-123 D2 Schottky Diode 20V, 0.5A On Semi MBR0520 4.3mm X 4.8mm X 10 µH, 1.04A Sumida CR43-100 L1 Inductor 3.5mm R3 Resistor 0603 1.6 kΩ 1/10W, 5% R2 Resistor 0603 25 kΩ 1/10W, 5% Rpu, Rpu2, Rpu3, Resistor 0603 1 kΩ 1/10W, 5% Rchg1, Rchg2, Rpu4 Resistor 0603 100 kΩ 1/10W, 5% RinA, RinB, Rf2 Resistor 0603 20 kΩ 1/10W, 5% Rf1, Rf3 Resistor 0603 200 kΩ 1/10W, 5% 0603 1 kΩ Rchg1, Rchg2 Resistor 1/10W, 5% R4 Resistor 0603 4.9 kΩ 1/10W, 5% R3 Resistor 0603 100 mΩ 1/10W, 5%

9 PCB Layout

Figure 2. Top Layer (Shown With Top Silkscreen visible)

Figure 3. Mid Layer 1 (Shown With Top Silkscreen visible)

Figure 4. Mid Layer 2 (Shown With Top Silkscreen visible)

Figure 5. Bottom Layer (Shown With Top Silkscreen visible)

Figure 6. Top Silkscreen

10 Revision Table

Rev	Date	Description
0.1	04/20/06	Initial release.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconr	nectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated