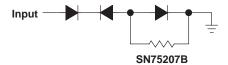
- Plug-In Replacement for SN75107A and SN75107B With Improved Characteristics
- ±10-mV Input Sensitivity
- TTL-Compatible Circuitry
- Standard Supply Voltages . . . ±5 V
- Differential Input Common-Mode Voltage Range of ±3 V
- Strobe Inputs for Channel Selection
- Totem-Pole Outputs
- SN75207B Has Diode-Protected Input Stage for Power-Off Condition
- Sense Amplifier for MOS Memories
- Dual Comparator
- High-Sensitivity Line Receiver


N PACKAGE (TOP VIEW) □ ∨_{CC+} 1В[13 V_{CC}-2 NCΠ 3 **1Υ**Π 2B 1G[5 ПΝС SI **1** 2Y GND ∏ 2G

NC - No internal connection

description

The SN75207B is a terminal-for-terminal replacement for the SN75107B. The improved input sensitivity makes it more suitable for MOS memory sense amplifiers and can result in faster memory cycles. Improved sensitivity also makes it more useful in line-receiver applications by allowing use of longer transmission line lengths. The SN75207B features a TTL-compatible, active-pullup output.

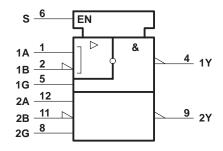
Input protection diodes are in series with the collectors of the differential-input transistors of the SN75207B. These diodes are useful in certain party-line systems that may have multiple V_{CC+} power supplies and may be operated with some of the V_{CC+} supplies turned off. In such a system, if a supply is turned off and allowed to go to ground, the equivalent input circuit connected to that supply would be as follows:

This would be a problem in specific systems that might have the transmission lines biased to some potential greater than 1.4 V.

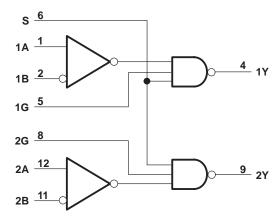
This device is characterized for operation from 0°C to 70°C.

FUNCTION TABLE

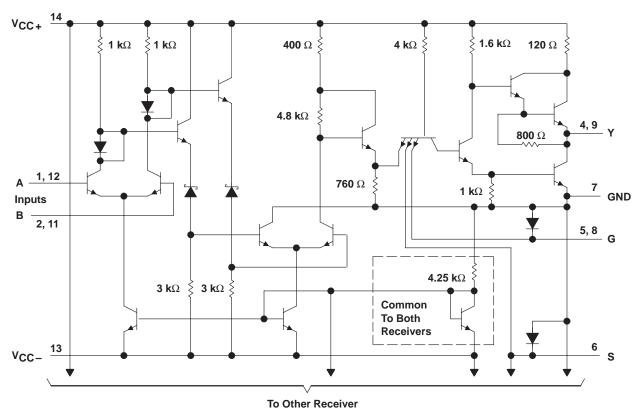
DIFFERENTIAL INPUTS	STR	OBES	OUTPUT	
A–B	G	S	Υ	
$V_{ID} \ge 10 \text{ mV}$	Х	Χ	Н	
	Х	L	Н	
-10 mV < V _{ID} < 10 mV	L	Χ	Н	
	Н	Н	Indeterminate	
	Х	L	Н	
V _{ID} ≤ −10 mV	L	Χ	Н	
	Н	Н	L	


H = high level, L = low level, X = irrelevant

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



logic symbol†



†This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

schematic (each receiver)

Resistor values shown are nominal.

design characteristics

The SN75207B line receivers/sense amplifiers are TTL-compatible, dual circuits intended for use in high-speed, data-transmission systems or MOS memory systems. They are designed to detect low-level differential signals in the presence of common-mode noise and variations of temperature and supplies. The dc specifications reflect worst-case conditions of temperature, supply voltages, and input voltages.

The input common-mode voltage range is ± 3 V. This is adequate for application in most systems. In systems with requirements for greater common-mode voltage range, input attenuators may be used to decrease the noise to an acceptable level at the receiver-input terminals.

The circuits feature individual strobe inputs for each channel and a strobe input common to both channels for logic versatility. The strobe inputs are tested to ensure 400 mV of dc noise margin when interfaced with Series 54/74 TTL.

The circuits feature high input impedance and low input currents, which induce very little loading on the transmission line. This makes these devices especially useful in party-line systems. The excellent input sensitivity (3 mV typical) is particularly important when data is to be detected at the end of a long transmission line and the amplitude of the data has deteriorated due to cable losses. The circuits are designed to detect input signals of 10-mV (or greater) amplitude and convert the polarity of the signal into appropriate TTL-compatible output logic levels.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC+} (see Note 1)	7 V
Supply voltage, V _{CC} (see Note 1)	7 V
Differential input voltage, V _{ID} (see Note 2)	±6 V
Common-mode input voltage, V _{IC} (see Note 3)	±5 V
Strobe input voltage	5.5 V
Continuous total dissipation	See Dissipation Rating Table
Operating free-air temperature range, T _A	0°C to 70°C
Storage temperature range, T _{stq}	65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

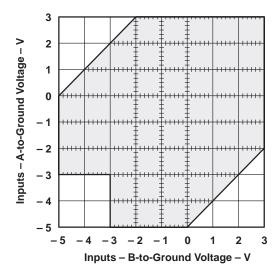
NOTES: A. All voltage values, except differential voltages, are with respect to GND terminal.

- 1. Differential input voltage values are at the noninverting (A) terminal with respect to the inverting (B) terminal.
- 2. Common-mode input voltage is the average of the voltages at the A and B inputs.

DISSIPATION RATING TABLE

	PACKAGE	$T_{\mbox{A}} \le 25^{\circ}\mbox{C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING		
Γ	N	1050 mW	9.2 mW/°C	636 mW		

SN75207B **DUAL SENSE AMPLIFIER FOR MOS MEMORIES** OR DUAL HIGH-SENSITIVITY LINE RECEIVERS


SLLS096C - JULY 1973 - REVISED MARCH 1997

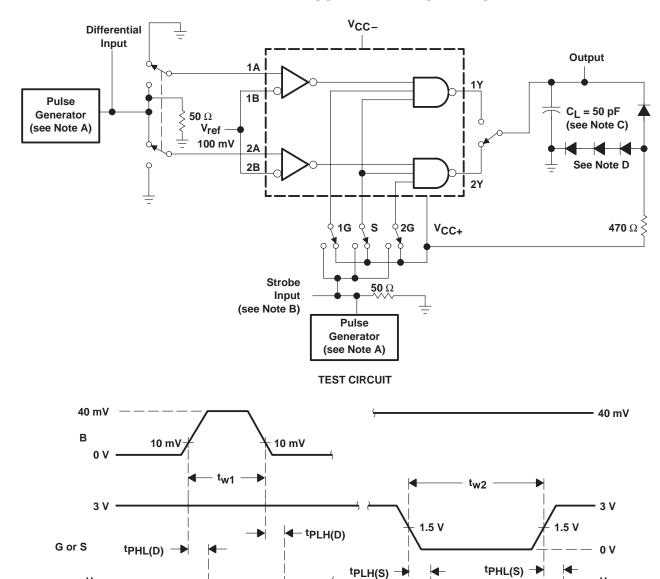
recommended operating conditions (see Note 4)

	MIN	NOM I	VIAX	UNIT
Supply voltage, V _{CC+}	4.75	5	5.25	V
Supply voltage, V _{CC} -	-4.75	-5 -	5.25	V
High-level differential input voltage, V _{ID(H)} (see Note 5)	0.01		5	V
Low-level differential input voltage, V _{ID(L)}	-5 [†]	_	0.01	V
Common-mode input voltage, V _{IC} (see Notes 5 and 6)	-3†		3	V
Input voltage, any differential input to ground (see Note 5)	-5†		3	V
High-level input voltage at strobe inputs, VIH(S)	2		5.5	V
Low-level input voltage at strobe inputs, V _{IL(S)}	0		0.8	V
Low-level output current, IOL			-16	mA
Operating free-air temperature, T _A	0		70	°C

The algebraic convention, in which the less positive (more negative) limit is designated as minimum, is used in this data sheet for logic voltage levels only.

- NOTES: B. When using only one channel of the line receiver, the strobe G of the unused channel should be grounded and at least one of the differential inputs of the unused receiver should be terminated at some voltage between -3 V and 3 V.
 - 3. The recommended combinations of input voltages fall within the shaded area of the figure shown.
 - 4. The common-mode voltage may be as low as -4 V provided that the more positive of the two inputs is not more negative than -3 V.

electrical characteristics over recommended free-air temperature range (unless otherwise noted)


	PARAMETER		TEST CONDITIONS		MIN	TYP [†]	MAX	UNIT
lн	High-level input current	$V_{CC\pm} = \pm 5.25 \text{ V}$		$V_{ID} = -5 V$		30	75	μΑ
Ι _Ι L	Low-level input current	$V_{CC\pm} = \pm 5.25 \text{ V}$		V _{ID} = 5 V			-10	μΑ
1	High-level input current	$V_{CC\pm} = \pm 5.25 \text{ V},$	V _{IH(S)} = 2.4 V				40	μΑ
ΙΉ	into 1G or 2G	$V_{CC\pm} = \pm 5.25 \text{ V},$	$V_{IH(S)} = \pm 5.25 \text{ V}$				1	mA
Ι _Ι L	Low-level input current into 1G or 2G	$V_{CC\pm} = \pm 5.25 \text{ V},$	V _{IL(S)} = 0.4 V				-1.6	mA
I	High-level input current into S	$V_{CC\pm} = \pm 5.25 \text{ V},$	V _{IH(S)} = 2.4 V				80	μΑ
l'IH	nigh-level input current into 5	$V_{CC\pm} = \pm 5.25 \text{ V},$	$V_{IH(S)} = \pm 5.25 \text{ V}$				2	mA
IIL	Low-level input current into S	$V_{CC\pm} = \pm 5.25 \text{ V},$	$V_{IL(S)} = 0.4 V$				-3.2	mA
VOH	High-level output voltage	$V_{CC\pm} = \pm 4.75 \text{ V},$ $I_{OH} = -400 \mu\text{A},$	$V_{IL(S)} = 0.8 \text{ V},$ $V_{IC} = -3 \text{ V to 3 V}$	$V_{ID(H)} = 10 \text{ mV},$	2.4			٧
VOL	Low-level output voltage	$V_{CC\pm} = \pm 4.75 \text{ V},$ $I_{OL} = 16 \text{ mA},$	$V_{IH(S)} = 2 \text{ V},$ $V_{IC} = -3 \text{ V to 3 V}$	$V_{ID(L)} = -10 \text{ mV},$			0.4	٧
IOH	High-level output current	$V_{CC\pm} = \pm 4.75 \text{ V},$	V _{OH} = ±5.25 V				400	μΑ
los	Short-circuit output current‡	$V_{CC\pm} = \pm 5.25 \text{ V}$			-18		-70	mA
I _{CC+}	Supply current from V _{CC+}	$V_{CC\pm} = \pm 5.25 \text{ V},$	T _A = 25°C,	Outputs high		18	30	mA
I _{CC} _	Supply current from V _{CC} -	$V_{CC\pm} = \pm 5.25 \text{ V},$	T _A = 25°C,	Outputs high		-8.4	-15	mA

[†] All typical values are at $V_{CC+} = 5$ V, $V_{CC-} = -5$ V, $T_A = 25$ °C. ‡ Not more than one output should be shorted at a time.

switching characteristics, V_{CC+} = 5 V, V_{CC-} = -5 V, T_A = 25°C

	PARAMETER	TE: CONDI	MIN	MAX	UNIT	
tPLH(D)	Propagation delay time, low- to high-level output: from differential inputs A and B				35	ns
tPHL(D)	Propagation delay time, high- to low-level output: from differential inputs A and B	$R_L = 470 \Omega$	C _L = 50 pF,		20	ns
tPLH(S)	Propagation delay time, low- to high-level output, from strobe input G or S	See Figure 1			17	ns
tPHL(S)	Propagation delay time, high- to low-level output, from strobe input G or S				17	ns

PARAMETER MEASUREMENT INFORMATION

1.5 V

VOH

Vol

1.5 V

- B. Strobe input pulse is applied to Strobe 1G when inputs 1A–1B are being tested, to Strobe S when inputs 1A–1B or 2A–2B are being tested, and to Strobe 2G when inputs 2A–2B are being tested.
- C. C_I includes probe and jig capacitance.

1.5 V

D. All diodes are 1N916.

with PRR = 500 kHz.

 V_{OH}

 v_{OL}

Figure 1. Test Circuit and Voltage Waveforms

1.5 V

APPLICATION INFORMATION

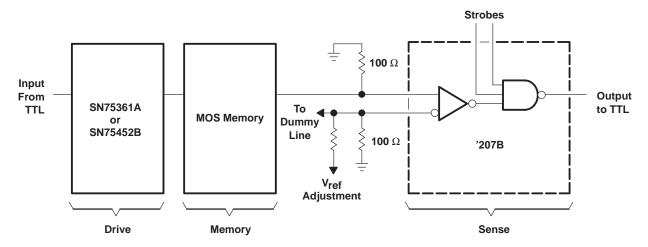
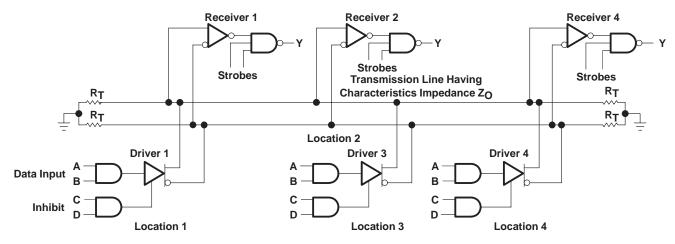



Figure 2. MOS Memory Sense Amplifier

Receivers are SN75207B; drivers are SN55109A, SN55110A, SN75110A, or SN75112.

Figure 3. Data-Bus or Parity-Line System

PRECAUTIONS: When only one receiver in a package is being used, at least one of the differential inputs of the unused receiver should be terminated at some voltage between -3 V and 3 V, preferably at GND. Failure to do so will cause improper operation of the unit being used because of common bias circuitry for the current sources of the two receivers. Strobe G of the unused channel should be grounded.

11-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
SN75207BD	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75207B	Samples
SN75207BDE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75207B	Samples
SN75207BDG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75207B	Samples
SN75207BN	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN75207BN	Samples
SN75207BNE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN75207BN	Samples
SN75207BNSR	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75207B	Samples
SN75207BNSRE4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75207B	Samples
SN75207BNSRG4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75207B	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

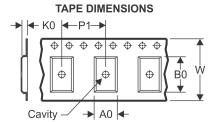
⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

PACKAGE OPTION ADDENDUM

11-Apr-2013

(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

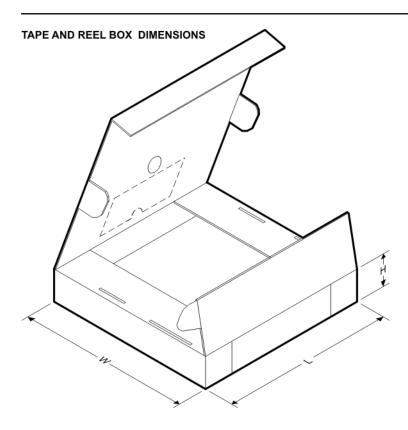

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 26-Jan-2013

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN75207BNSR	SO	NS	14	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

www.ti.com 26-Jan-2013

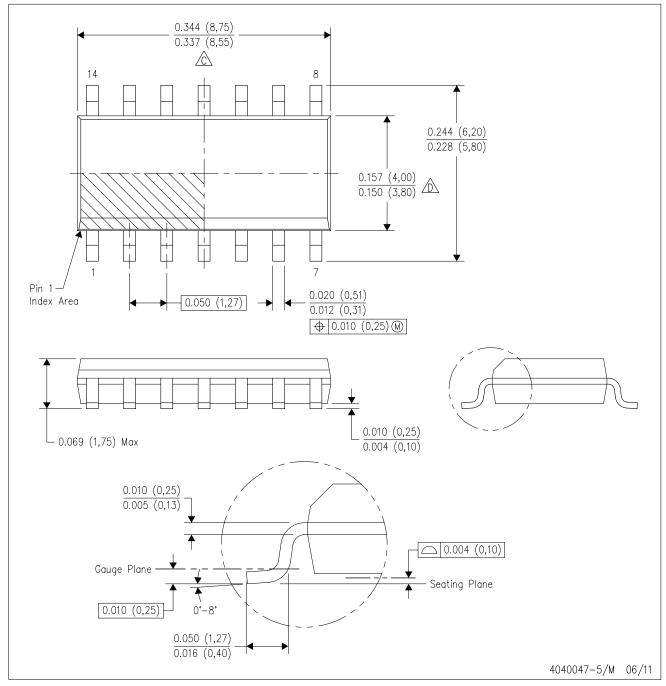
*All dimensions are nominal

	Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SI	N75207BNSR	SO	NS	14	2000	367.0	367.0	38.0

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

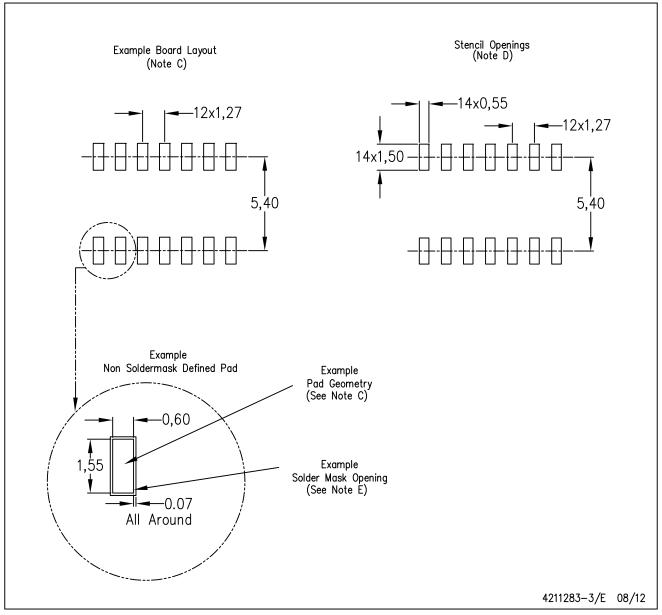
16 PINS SHOWN



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G14)

PLASTIC SMALL OUTLINE

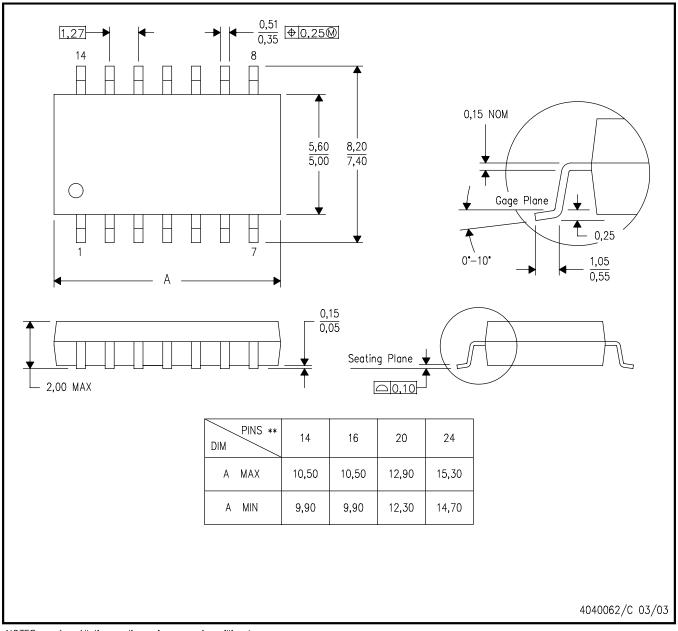


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.

D (R-PDSO-G14)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.



MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u>

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>