
SCBS176N - NOVEMBER 1991 - REVISED JUNE 2001

- Compatible With IEEE Std 1194.1-1991 (BTL)
- TTL A Port, Backplane Transceiver Logic (BTL) B Port
- Open-Collector B-Port Outputs Sink 100 mA
- High-Impedance State During Power Up and Power Down
- BIAS V<sub>CC</sub> Minimizes Signal Distortion During Live Insertion or Withdrawal
- B-Port Biasing Network Preconditions the Connector and PC Trace to the BTL High-Level Voltage
- TTL-Input Structures Incorporate Active Clamping to Aid in Line Termination



#### description

The SN74FB2031 is a 9-bit transceiver designed to translate signals between TTL and backplane transceiver logic (BTL) environments. The device is designed specifically to be compatible with IEEE Std 1194.1-1991.

The  $\overline{B}$  port operates at BTL-signal levels. The open-collector  $\overline{B}$  ports are specified to sink 100 mA. Two output enables (OEB and  $\overline{OEB}$ ) are provided for the  $\overline{B}$  outputs. When OEB is low,  $\overline{OEB}$  is high, or V<sub>CC</sub> is less than 2.1 V, the  $\overline{B}$  port is turned off.

The A port operates at TTL signal levels. The A outputs reflect the inverse of the data at the  $\overline{B}$  port when the A-port output enable (OEA) is high. When OEA is low or V<sub>CC</sub> is less than 2.1 V, the A outputs are in the high-impedance state.

Pins are allocated for the four-wire IEEE Std 1149.1 (JTAG) test bus, although currently there are no plans to release a JTAG-featured version. TMS and TCK are not connected and TDI is shorted to TDO.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



Copyright © 2001, Texas Instruments Incorporated

SCBS176N - NOVEMBER 1991 - REVISED JUNE 2001

#### description (continued)

BIAS V<sub>CC</sub> establishes a voltage between 1.62 V and 2.1 V on the BTL outputs when V<sub>CC</sub> is not connected.

BG  $V_{\mbox{CC}}$  and BG GND are the supply inputs for the bias generator.

#### **ORDERING INFORMATION**

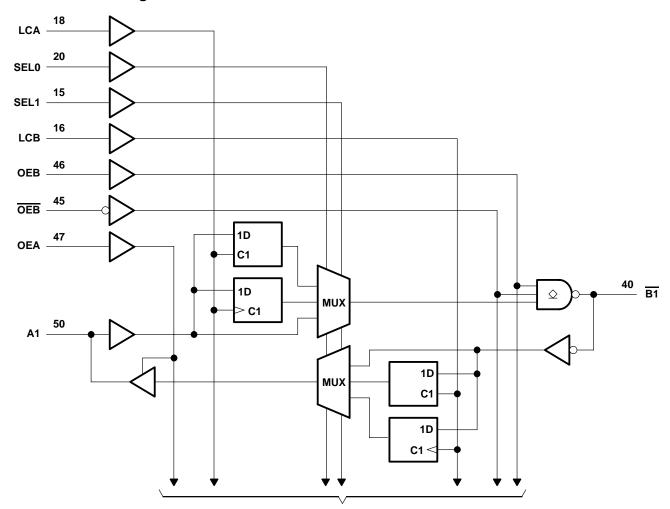
| Τ <sub>Α</sub> | <u> </u> |      | ORDERABLE<br>PART NUMBER | TOP-SIDE<br>MARKING |  |
|----------------|----------|------|--------------------------|---------------------|--|
| 0°C to 70°C    | QFP – RC | Tube | SN74FB2031RC             | FB2031              |  |

<sup>†</sup>Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

#### **Function Tables**

#### TRANSCEIVER

|     | INPUTS |     | FUNCTION                                                   |  |  |  |
|-----|--------|-----|------------------------------------------------------------|--|--|--|
| OEA | OEB    | OEB | FUNCTION                                                   |  |  |  |
| L   | Н      | L   | A data to B bus                                            |  |  |  |
| н   | L      | Х   | B data to A bus                                            |  |  |  |
| н   | Х      | Н   | B data to A bus                                            |  |  |  |
| Н   | Н      | L   | $\overline{A}$ data to B bus, $\overline{B}$ data to A bus |  |  |  |
| L   | L      | Х   | Isolation                                                  |  |  |  |
| L   | Х      | Н   | 1501811011                                                 |  |  |  |


#### STORAGE MODE

| LCA, LCB               | RESULT          |
|------------------------|-----------------|
| 0                      | Transparent     |
| 1                      | Latches latched |
| ↑ Flip-flops triggered |                 |

| SEL1 | SEL0 | MUX<br>A→B | MUX<br>B→A |
|------|------|------------|------------|
| 0    | 0    | Latch      | Latch      |
| 0    | 1    | Through    | Through    |
| 1    | 0    | Flip-flop  | Flip-flop  |
| 1    | 1    | Flip-flop  | Latch      |



SCBS176N - NOVEMBER 1991 - REVISED JUNE 2001



#### functional block diagram

**To Eight Other Channels** 

#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)<sup>†</sup>

| Supply voltage range, $V_{CC}$<br>Input voltage range, $V_{I}$ : Except $\overline{B}$ port<br>$\overline{B}$ port<br>Voltage range applied to any $\overline{B}$ output in the disabled or power-off state, $V_{O}$<br>Voltage range applied to any output in the high state, $V_{O}$<br>Input clamp current, $I_{IK}$ : Except $\overline{B}$ port<br>Current applied to any single output in the low state, $I_{O}$ : A port | 1.2 V to 7 V<br>-1.2 V to 3.5 V<br>-0.5 V to 3.5 V<br>-0.5 V to V <sub>CC</sub><br>40 mA<br>18 mA |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Package thermal impedance, $\theta_{JA}$ (see Note 1)<br>Storage temperature range, $T_{stq}$                                                                                                                                                                                                                                                                                                                                   | 200 mA<br>44°C/W                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                   |

<sup>†</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The package thermal impedance is calculated in accordance with JESD 51-7.



SCBS176N - NOVEMBER 1991 - REVISED JUNE 2001

#### recommended operating conditions (see Note 2)

|                                                                   |                                 |               | MIN  | NOM | MAX  | UNIT |  |
|-------------------------------------------------------------------|---------------------------------|---------------|------|-----|------|------|--|
| V <sub>CC</sub> ,<br>BIAS V <sub>CC</sub> ,<br>BG V <sub>CC</sub> | BG V <sub>CC</sub>              |               | 4.5  | 5   | 5.5  | V    |  |
| Maria                                                             | High-level input voltage        | B port        | 1.62 |     | 2.3  | v    |  |
| VIH                                                               | High-level liput voltage        | Except B port | 2    |     |      | v    |  |
| Mu                                                                | Low lovel input veltage         | B port        | 0.75 |     | 1.47 | v    |  |
| VIL                                                               | Low-level input voltage         | Except B port |      |     | 0.8  | v    |  |
| ЮН                                                                | High-level output current       | A port        |      |     | -3   | mA   |  |
|                                                                   | Low lovel output ourrest        | A port        |      |     | 24   | mA   |  |
| IOL                                                               | Low-level output current B port |               |      |     | 100  | ША   |  |
| Т <sub>А</sub>                                                    | Operating free-air temperature  |               | 0    |     | 70   | °C   |  |

NOTE 2: To ensure proper device operation, all unused inputs must be terminated as follows: A and control inputs to V<sub>CC</sub>(5 V) or GND, and B inputs to GND only. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

## electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

|                  | PARAMETER                          | TEST                                        | CONDITIONS               | MIN  | түр† | MAX  | UNIT |
|------------------|------------------------------------|---------------------------------------------|--------------------------|------|------|------|------|
| Ver              | B port                             | $V_{CC} = 4.5 V,$                           | lj = -18 mA              |      |      | -1.2 | V    |
| VIK              | Except B port                      | $V_{CC} = 4.5 V,$                           | l <sub>l</sub> = –40 mA  |      |      | -0.5 | v    |
| VOH              | A port                             | $V_{CC} = 4.5 V,$                           | I <sub>OH</sub> = -3 mA  | 2.5  | 3.3  |      | V    |
|                  | A port                             | $V_{CC} = 4.5 V,$                           | I <sub>OL</sub> = 24 mA  |      | 0.35 | 0.5  |      |
| VOL              | -                                  | V <sub>CC</sub> = 4.5 V                     | I <sub>OL</sub> = 80 mA  | 0.75 |      | 1.1  | V    |
|                  | B port                             | VCC = 4.5 V                                 | I <sub>OL</sub> = 100 mA |      |      | 1.15 |      |
| lj               | Except B port                      | V <sub>CC</sub> = 5.5 V,                    | V <sub>I</sub> = 5.5 V   |      |      | 50   | μA   |
| Iн‡              | Except B port                      | V <sub>CC</sub> = 5.5 V,                    | V <sub>I</sub> = 2.7 V   |      |      | 50   | μA   |
| . +              | Except B port                      | V <sub>CC</sub> = 5.5 V,                    | V <sub>I</sub> = 0.5 V   |      |      | -50  |      |
| IIL‡             | B port                             | V <sub>CC</sub> = 5.5 V,                    | V <sub>I</sub> = 0.75 V  |      |      | -100 | μA   |
| IOZH             | A port                             | $V_{CC} = 2.1 \text{ V to } 5.5 \text{ V},$ | V <sub>O</sub> = 2.7 V   |      |      | 50   | μA   |
| I <sub>OZL</sub> | A port                             | V <sub>CC</sub> = 2.1 V to 5.5 V,           | V <sub>O</sub> = 0.5 V   |      |      | -50  | μA   |
| IOZPU            | A port                             | $V_{CC} = 0$ to 2.1 V,                      | $V_{O}$ = 0.5 V to 2.7 V |      |      | 50   | μA   |
| IOZPD            | A port                             | V <sub>CC</sub> = 2.1 V to 0,               | $V_{O}$ = 0.5 V to 2.7 V |      |      | -50  | μΑ   |
| ЮН               | B port                             | $V_{CC} = 0$ to 5.5 V,                      | V <sub>O</sub> = 2.1 V   |      |      | 100  | μA   |
| los§             | A port                             | V <sub>CC</sub> = 5.5 V,                    | VO = 0                   | -30  |      | -150 | mA   |
|                  | A port to B port                   |                                             |                          |      |      | 78   |      |
| ICC              | B port to A port                   | V <sub>CC</sub> = 5.5 V,                    | IO = 0                   |      |      | 78   | mA   |
| Ci               | -                                  | V <sub>I</sub> = 0.5 V or 2.5 V             |                          |      | 4.5  |      | pF   |
|                  | A port                             | V <sub>O</sub> = 0.5 V or 2.5 V             |                          |      | 8.5  |      |      |
| Cio              | B port per<br>IEEE Std 1194.1-1991 | V <sub>CC</sub> = 0 to 5.5 V                |                          |      |      | 6    | pF   |

<sup>†</sup> All typical values are at  $V_{CC} = 5 \text{ V}$ ,  $T_A = 25^{\circ}\text{C}$ .

 $\ddagger$  For I/O ports, the parameters IIH and IIL include the off-state output current.

§ Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.



SCBS176N - NOVEMBER 1991 - REVISED JUNE 2001

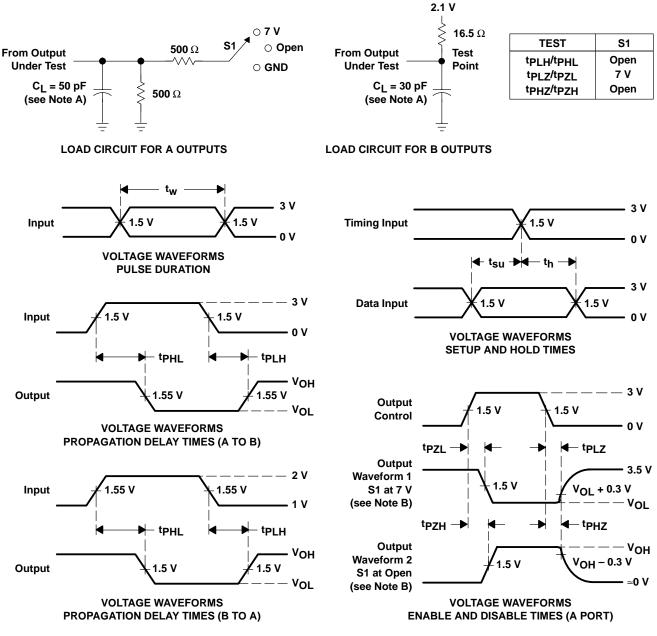
#### live-insertion specifications over recommended operating free-air temperature range

| PAR   | AMETER               |                                    | TEST CONDITIONS                                                                                                 |                                         |      | MAX | UNIT |
|-------|----------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------|------|-----|------|
|       |                      | $V_{CC} = 0$ to 4.5 V              | $V_{\rm B} = 0 \text{ to } 2 \text{ V},$ $V_{\rm I} (\text{BIAS V}_{\rm CC}) = 4.5 \text{ V to } 5.5 \text{ V}$ |                                         |      | 450 | A    |
| СС (Ы | AS V <sub>CC</sub> ) | $V_{CC} = 4.5 V \text{ to } 5.5 V$ | $v_{\rm B} = 0.02 v,$                                                                                           | V (BIAS VCC) = 4.5 V 10 5.5 V           |      | 10  | μA   |
| VO    | B port               | $V_{CC} = 0,$                      | $V_{I}$ (BIAS $V_{CC}$ ) = 5 V                                                                                  |                                         | 1.62 | 2.1 | V    |
|       |                      | $V_{CC} = 0,$                      | V <sub>B</sub> = 1 V,                                                                                           | $V_I$ (BIAS $V_{CC}$ ) = 4.5 V to 5.5 V | -1   |     |      |
| ю     | B port               | $V_{CC} = 0$ to 5.5 V,             | OEB = 0 to 0.8 V                                                                                                |                                         |      | 100 | μA   |
|       |                      | $V_{CC} = 0$ to 2.2 V,             | OEB = 0 to 5 V                                                                                                  |                                         |      | 100 |      |

# timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

|          |                            |            |                  | MIN | MAX | UNIT |
|----------|----------------------------|------------|------------------|-----|-----|------|
| fclock   | Clock frequency            |            |                  |     | 150 | MHz  |
| tw       | Pulse duration             | LCA or LCB | LCA or LCB       |     |     | ns   |
|          |                            |            | Data before LCA↑ | 1.4 |     |      |
|          | Saturatima                 | Clock mode | Data before LCB↑ | 2.8 |     | -    |
| ۲su      | t <sub>SU</sub> Setup time | Latch mode | Data before LCA↑ | 1.1 |     | ns   |
|          |                            | Laten mode | Data before LCB↑ | 2.4 |     |      |
|          |                            | Clock mode | Data after LCA↑  | 0.6 |     |      |
| <b>.</b> |                            | Clock mode | Data after LCB↑  | 0   |     | -    |
| th       |                            | Latch mode | Data after LCA↑  | 0.9 |     | ns   |
|          |                            | Laten mode | Data after LCB↑  | 0   |     |      |




SCBS176N - NOVEMBER 1991 - REVISED JUNE 2001

# switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

| PARAMETER                        | FROM<br>(INPUT)                             | TO<br>(OUTPUT) | V (<br>T | CC = 5 \<br>A = 25°C | /,<br>; | MIN | МАХ | UNIT |
|----------------------------------|---------------------------------------------|----------------|----------|----------------------|---------|-----|-----|------|
|                                  |                                             | (001F01)       | MIN      | TYP                  | MAX     |     |     |      |
| f <sub>max</sub>                 |                                             |                | 150      |                      |         | 150 |     | MHz  |
| <sup>t</sup> PLH                 | А                                           | B              | 3.7      | 4.5                  | 5.9     | 3.2 | 6.6 | ns   |
| <sup>t</sup> PHL                 | (through mode)                              | В              | 2.9      | 4                    | 5.7     | 2.6 | 5.9 | 115  |
| <sup>t</sup> PLH                 | А                                           | B              | 4.1      | 5                    | 6.5     | 3.6 | 7.3 | ns   |
| <sup>t</sup> PHL                 | (transparent)                               | В              | 3.3      | 4.5                  | 6.1     | 3   | 6.5 | 115  |
| <sup>t</sup> PLH                 | LCA                                         | B              | 4.5      | 5.4                  | 7       | 3.9 | 7.8 | ns   |
| <sup>t</sup> PHL                 | LUA                                         | В              | 4        | 5.1                  | 6.7     | 3.4 | 7.4 | 115  |
| <sup>t</sup> PLH                 | LCB                                         | А              | 2.8      | 3.7                  | 4.7     | 1.9 | 6   | ns   |
| <sup>t</sup> PHL                 | LCB                                         | A              | 2.5      | 3.4                  | 4.9     | 1.8 | 5.5 | 115  |
| <sup>t</sup> PLH                 | SEL1 or SEL0                                | А              | 2.5      | 3.8                  | 5.3     | 1.9 | 6.3 | ns   |
| <sup>t</sup> PHL                 | SELT OF SELO                                | ~              | 2.2      | 3.5                  | 5.1     | 1.6 | 5.6 | 115  |
| <sup>t</sup> PLH                 | SEL1 or SEL0                                | B              | 4.1      | 5.3                  | 6.9     | 3.7 | 7.8 |      |
| <sup>t</sup> PHL                 |                                             | D              | 3.7      | 5.2                  | 6.9     | 3.3 | 7.7 | ns   |
| <sup>t</sup> PLH                 | B                                           | A              | 3.1      | 4                    | 5.6     | 2.2 | 7.1 | ns   |
| <sup>t</sup> PHL                 | (through mode)                              |                | 2.6      | 3.4                  | 4.9     | 1.4 | 5.7 |      |
| <sup>t</sup> PLH                 | B                                           | А              | 3.3      | 4.2                  | 5.9     | 2.4 | 7.6 |      |
| <sup>t</sup> PHL                 | (transparent)                               | A              | 2.8      | 3.9                  | 5.5     | 1.8 | 6.3 | ns   |
| <sup>t</sup> PLH                 |                                             | B              | 3.7      | 4.6                  | 6.1     | 3.2 | 6.7 |      |
| <sup>t</sup> PHL                 | OEB or OEB                                  | В              | 2.9      | 4.3                  | 5.8     | 2.5 | 6.4 | ns   |
| <sup>t</sup> PZH                 | OEA                                         | А              | 2.3      | 3.1                  | 4.5     | 1.6 | 5   | ns   |
| <sup>t</sup> PZL                 | OEA                                         | A              | 1.9      | 2.7                  | 4.1     | 1.6 | 4.4 | 115  |
| <sup>t</sup> PHZ                 | OEA                                         | ٨              | 2.2      | 3.1                  | 4.5     | 1.5 | 5.2 |      |
| <sup>t</sup> PLZ                 | UEA                                         | A              | 2.5      | 3.3                  | 4.9     | 2   | 5.2 | ns   |
| t <sub>sk(p)</sub>               | A                                           | B              |          | 0.5                  |         |     |     |      |
| <sup>t</sup> sk(p)<br>Pulse skew | B                                           | А              |          | 0.3                  |         |     |     | ns   |
| <sup>t</sup> sk(o)               | A                                           | В              |          | 0.2                  |         |     |     |      |
| Output skew                      | B                                           | А              |          | 0.3                  |         |     |     | ns   |
|                                  | Transition time, B outputs (1.3             | V to 1.8 V)    | 0.6      | 2                    | 2.8     | 0.4 | 2.9 |      |
| t <sub>t</sub>                   | Transition time, $\overline{A}$ outputs (10 |                | 0.5      | 3.5                  | 4.7     | 0   | 5.4 | ns   |
| <sup>t</sup> (pr)                | B-port input pulse rejection                | ,              | 1        |                      |         | 1   |     | ns   |



SCBS176N - NOVEMBER 1991 - REVISED JUNE 2001



#### PARAMETER MEASUREMENT INFORMATION

NOTES: A. C<sub>L</sub> includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
  C. All input pulses are supplied by generators having the following characteristics: TTL inputs: PRR ≤ 10 MHz, Z<sub>O</sub> = 50 Ω, t<sub>r</sub> ≤ 2.5 ns,
- $t_f \le 2.5 \text{ ns}$ ; BTL inputs: PRR  $\le 10 \text{ MHz}$ ,  $Z_O = 50 \Omega$ ,  $t_f \le 2.5 \text{ ns}$ ,  $t_f \le 2.5 \text{ ns}$ .

D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms



#### **IMPORTANT NOTICE**

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, license, warranty or endorsement thereof.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation or reproduction of this information with alteration voids all warranties provided for an associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Resale of TI's products or services with <u>statements different from or beyond the parameters</u> stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products. www.ti.com/sc/docs/stdterms.htm

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2001, Texas Instruments Incorporated