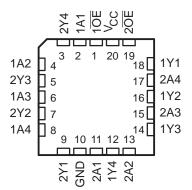
SN54BCT760, SN74BCT760 OCTAL BUFFERS/DRIVERS WITH OPEN-COLLECTOR OUTPUTS SCBS034B – JULY 1989 – REVISED NOVEMBER 1993

- Open-Collector Version of 'BCT244
- Open-Collector Outputs Drive Bus Lines or Buffer Memory Address Registers
- ESD Protection Exceeds 2000 V Per MIL-STD-883C Method 3015
- Packages Options Include Plastic Small-Outline (DW) Packages, Ceramic Chip Carriers (FK) and Flatpacks (W), and Standard Plastic and Ceramic 300-mil DIPs (J, N)

description

These octal buffers and line drivers are designed specifically to improve both the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters.


The 'BCT760 is organized as two 4-bit buffers/line drivers with separate output-enable (\overline{OE}) inputs. When \overline{OE} is low, the device passes data from the A inputs to the Y outputs. When \overline{OE} is high, the outputs are in the high-impedance state.

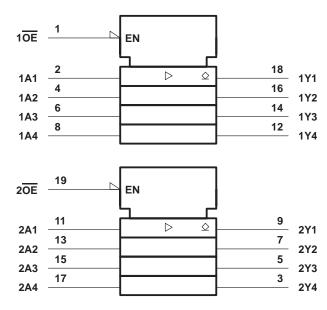
The SN54BCT760 is characterized for operation over the full military temperature range of -55° C to 125°C. The SN74BCT760 is characterized for operation from 0°C to 70°C.

SN54BCT760 J OR W PACKAGE										
SN74BCT760 DW OR N PACKAGE										

		= • • •)	
10E [1A1 [2Y4 [1A2 [2Y3 [1A3 [2Y2 [1A4 [2Y1]	1 2 3 4 5 6	20 19 18 17 16 15 14 13 12	V <u>CC</u> 20E 1Y1 2A4 1Y2 2A3 1Y3 2A2 1Y4
2Y1 [GND [9 10	12 11] 1Y4] 2A1

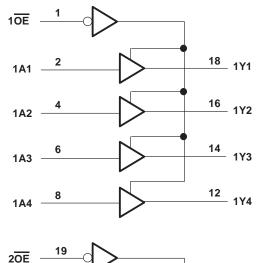
SN54BCT760 . . . FK PACKAGE (TOP VIEW)

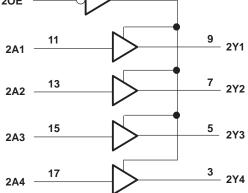
FUNCTION TABLE (each buffer)


(cuon bunch)											
INP	UTS	OUTPUT									
OE	Α	Y									
L	Н	Н									
L	L	L									
н	Х	н									

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SN54BCT760, SN74BCT760 **OCTAL BUFFERS/DRIVERS** WITH OPEN-COLLECTOR OUTPUTS


SCBS034B - JULY 1989 - REVISED NOVEMBER 1993


logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[‡]

Supply voltage range, V _{CC} Input voltage range, V _I (see Note 1)	\ldots – 0.5 V to 7 V
Input current range, I ₁	30 mA to 5 mA
Voltage range applied to any output in the disabled or power-off state, VO	$-$ 0.5 V to 5.5 V
Voltage range applied to any output in the high state, Vo	\ldots – 0.5 V to V _{CC}
Current into any output in the low state: SN54BCT760	96 mÅ
SN74BCT760	128 mA
Operating free-air temperature range: SN54BCT760	– 55°C to 125°C
SN74BCT760	0°C to 70°C
Storage temperature range	– 65°C to 150°C

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The negative input voltage rating may be exceeded if the input clamp current rating is observed.

SN54BCT760, SN74BCT760 OCTAL BUFFERS/DRIVERS WITH OPEN-COLLECTOR OUTPUTS

SCBS034B - JULY 1989 - REVISED NOVEMBER 1993

recommended operating conditions

		SN54BCT760			SN	74BCT7	60	UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
VCC	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.8			0.8	V
VOH	High-level output voltage			5.5			5.5	V
IIК	Input clamp current			-18			-18	mA
IOL	Low-level output current			48			64	mA
ТА	Operating free-air temperature	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	TEST CONDIT	IONS	SN	I54BCT7	60	SN	UNIT		
	TEST CONDIT	10115	MIN	TYP†	MAX	MIN	TYP†	MAX	UNIT
V _{CC} = 4.5 V,	lı = -18 mA				-1.2			-1.2	V
	I _{OL} = 48 mA			0.38	0.55				V
VCC = 4.5 V	I _{OL} = 64 mA						0.42	0.55	v
$V_{CC} = 5.5 V,$	VI = 7 V				0.1			0.1	mA
V _{CC} = 5.5 V,	VI = 2.7 V				20			20	μA
$V_{CC} = 5.5 V,$	$V_{ } = 0.5 V$				-1			-1	mA
V _{CC} = 4.5 V,	V _{OH} = 5.5 V				0.1			0.1	mA
		Outputs high		21	33		21	33	
V _{CC} = 5.5 V,	Outputs open	Outputs low		48	76		48	76	mA
		OE disabled		6	10		6	10	
V _{CC} = 5 V,	V _I = 2.5 V or 0.5		6			6		pF	
V _{CC} = 5 V,	V _I = 2.5 V or 0.5		10			10		pF	
	$V_{CC} = 4.5 V$ $V_{CC} = 5.5 V,$ $V_{CC} = 5.5 V,$ $V_{CC} = 5.5 V,$ $V_{CC} = 4.5 V,$ $V_{CC} = 5.5 V,$ $V_{CC} = 5.5 V,$ $V_{CC} = 5.5 V,$	$\label{eq:VCC} \begin{array}{c} V_{CC} = 4.5 \ V, & I_{I} = -18 \ \text{mA} \\ \\ V_{CC} = 4.5 \ V & \hline I_{OL} = 48 \ \text{mA} \\ \hline I_{OL} = 64 \ \text{mA} \\ \\ V_{CC} = 5.5 \ V, & V_{I} = 7 \ V \\ \\ V_{CC} = 5.5 \ V, & V_{I} = 2.7 \ V \\ \\ V_{CC} = 5.5 \ V, & V_{I} = 0.5 \ V \\ \\ V_{CC} = 4.5 \ V, & V_{OH} = 5.5 \ V \\ \\ \\ V_{CC} = 5.5 \ V, & Outputs \ open \\ \\ \\ V_{CC} = 5 \ V, & V_{I} = 2.5 \ V \ or \ 0. \end{array}$	$\begin{array}{c} V_{CC} = 4.5 \ V & \hline I_{OL} = 48 \ \text{mA} \\ \hline I_{OL} = 64 \ \text{mA} \\ \hline V_{CC} = 5.5 \ \text{V}, & V_{I} = 7 \ \text{V} \\ \hline V_{CC} = 5.5 \ \text{V}, & V_{I} = 2.7 \ \text{V} \\ \hline V_{CC} = 5.5 \ \text{V}, & V_{I} = 0.5 \ \text{V} \\ \hline V_{CC} = 4.5 \ \text{V}, & V_{OH} = 5.5 \ \text{V} \\ \hline V_{CC} = 5.5 \ \text{V}, & Outputs \ \text{open} \\ \hline \hline \begin{array}{c} Outputs \ \text{high} \\ \hline Outputs \ \text{low} \\ \hline \hline \overline{\text{OE}} \ \text{disabled} \\ \hline \end{array} \\ \hline V_{CC} = 5 \ \text{V}, & V_{I} = 2.5 \ \text{V} \ \text{or} \ 0.5 \ \text{V} \\ \hline \end{array}$	TEST CONDITIONS MIN $V_{CC} = 4.5 \text{ V}$ I _I = -18 mA $V_{CC} = 4.5 \text{ V}$ IOL = 48 mA $I_{OL} = 64 \text{ mA}$ IOL = 64 mA $V_{CC} = 5.5 \text{ V}$, $V_I = 7 \text{ V}$ V $V_{CC} = 5.5 \text{ V}$, $V_I = 2.7 \text{ V}$ V $V_{CC} = 5.5 \text{ V}$, $V_I = 0.5 \text{ V}$ V $V_{CC} = 4.5 \text{ V}$, $V_{OH} = 5.5 \text{ V}$ Outputs high $V_{CC} = 5.5 \text{ V}$, Outputs open Outputs high $V_{CC} = 5.5 \text{ V}$, $V_I = 2.5 \text{ V}$ or 0.5 V V	$\begin{tabular}{ c c c c } \hline TEST CONDITIONS & \hline MIN TYPT \\ \hline V_{CC} = 4.5 V, & I_I = -18 mA & & & & & & & & & & & & & & & & & & $	$\begin{tabular}{ c c c c c c c } \hline \mbox{MIN TYPT MAX} \\ \hline \mbox{V}_{CC} = 4.5 \ \mbox{V} & I_I = -18 \ \mbox{mA} & -1.2 \\ \hline \mbox{V}_{CC} = 4.5 \ \mbox{V} & I_{OL} = 48 \ \mbox{mA} & 0.38 & 0.55 \\ \hline \mbox{I}_{OL} = 64 \ \mbox{mA} & 0.38 & 0.55 \\ \hline \mbox{I}_{OL} = 64 \ \mbox{mA} & 0.38 & 0.55 \\ \hline \mbox{V}_{CC} = 5.5 \ \mbox{V} & \mbox{V}_I = 7 \ \mbox{V} & 0.1 \\ \hline \mbox{V}_{CC} = 5.5 \ \mbox{V} & \mbox{V}_I = 2.7 \ \mbox{V} & 0.1 \\ \hline \mbox{V}_{CC} = 5.5 \ \mbox{V} & \mbox{V}_I = 0.5 \ \mbox{V} & -11 \\ \hline \mbox{V}_{CC} = 5.5 \ \mbox{V} & \mbox{V}_I = 0.5 \ \mbox{V} & 0.1 \\ \hline \mbox{V}_{CC} = 5.5 \ \mbox{V} & \mbox{Outputs open} & \end{tabular} & \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c } \hline TEST CONDITIONS & \hline MIN $$TYP† $$MAX $$MIN$ \\ \hline VCC = 4.5 V, $$I_I = -18 mA $$-1.2 $ \\ \hline U_{CC} = 4.5 V, $$I_{OL} = 48 mA $$0.38 $$0.55 $\\ \hline I_{OL} = 64 mA $$0.38 $$0.55 $\\ \hline U_{CC} = 5.5 V, $$V_I = 7 V$ $$0.1 $\\ \hline V_{CC} = 5.5 V, $$V_I = 7 V$ $$0.1 $\\ \hline V_{CC} = 5.5 V, $$V_I = 2.7 V$ $$0.1 $\\ \hline V_{CC} = 5.5 V, $$V_I = 0.5 V$ $$0.1 $\\ \hline V_{CC} = 4.5 V, $$V_{OH} = 5.5 V$ $$0.1 $\\ \hline V_{CC} = 5.5 V, $$V_{OH} = 5.5 V$ $$0.1 $\\ \hline V_{CC} = 5.5 V, $$Outputs open $$ $$0tputs high $$21 $$33 $\\ \hline 0utputs high $$21 $$33 $\\ \hline 0utputs low $$48 $$76 $\\ \hline \hline \overline{OE} $ disabled $$6 $$10 $\\ \hline V_{CC} = 5 V, $$V_I = 2.5 V $$ 0.5 V$ $$ $$6 $\\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c c } \hline TEST CONDITIONS & \hline MIN $$TYPT$ $$MAX$ $$MIN $$TYPT$ $$MIN $$TYPT$ $$MAX$ $$MIN $$TYPT$ $$MIN $$TYPT$ $$MAX$ $$MIN $$TYPT$ $$\\ \hline V_{CC} = 4.5 V, $$I_1 = -18 mA $$-1.2$ $$\\ \hline U_{CC} = 4.5 V, $$I_0 = 64 mA $$0.38$ $$0.55$ $$\\ \hline I_{0L} = 64 mA $$0.38$ $$0.55$ $$\\ \hline U_{CC} = 5.5 V, $$V_1 = 7 V$ $$0.1$ $$\\ \hline V_{CC} = 5.5 V, $$V_1 = 2.7 V$ $$0.1$ $$\\ \hline V_{CC} = 5.5 V, $$V_1 = 0.5 V$ $$$0.1$ $$\\ \hline V_{CC} = 5.5 V, $$V_1 = 0.5 V$ $$$0.1$ $$\\ \hline V_{CC} = 5.5 V, $$V_1 = 0.5 V$ $$$0.1$ $$\\ \hline V_{CC} = 5.5 V, $$Outputs open $$ $$Outputs high $$21$ $$33$ $$21$ $$\\ \hline Outputs high $$21$ $$33$ $$21$ $$\\ \hline Outputs low $$48$ $$76$ $$48$ $$\\ \hline OE $$ $disabled $$6$ $$10$ $$6$ $$\\ \hline V_{CC} = 5 V, $$V_1 = 2.5 V $$or 0.5 V$ $$\\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c c } \hline \mbox{TEST CONDITIONS} & \begin{tabular}{ c c c c c c c } \hline \mbox{MIN TYPT MAX} & \begin{tabular}{ c c c c c c c } \hline \mbox{MIN TYPT MAX} & \begin{tabular}{ c c c c c c c } \hline \mbox{MIN TYPT MAX} & \begin{tabular}{ c c c c c c c } \hline \mbox{MIN TYPT MAX} & \begin{tabular}{ c c c c c c c } \hline \mbox{MIN TYPT MAX} & \begin{tabular}{ c c c c c c c } \hline \mbox{MIN TYPT MAX} & \begin{tabular}{ c c c c c c c } \hline \mbox{MIN TYPT MAX} & \begin{tabular}{ c c c c c c c c } \hline \mbox{MIN TYPT MAX} & \begin{tabular}{ c c c c c c c c } \hline \mbox{MIN TYPT MAX} & \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

[†] All typical values are at V_{CC} = 5 V, $T_A = 25^{\circ}C$.

switching characteristics (see Note 2)

PARAMETER	FROM (INPUT)	ТО (OUTPUT)	V _{CC} = 5 V, C _L = 50 pF, R _L = 500 Ω, T _A = 25°C			V _{CC} = 4.5 V to 5.5 V, C _L = 50 pF, R _L = 500 Ω, T _A = MIN to MAX [‡]				UNIT
			′BCT760			SN54BCT760		SN74BCT760		
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
^t PLH	0.000	v	6.3	8	9.5	6.3	11.1	6.3	10	
^t PHL	Any A	ř	2.1	4.3	6.5	2.1	7.7	2.1	7.2	ns
^t PLH	OE	v	8.6	13	15.2	8.6	18.7	8.6	17.5	200
^t PHL		r	3.2	6.2	8.9	3.2	10.4	3.2	9.9	ns

[‡] For conditions shown as MIN or MAX, use the appropriate values specified under recommended operating conditions. NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

25-Sep-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins			Lead/Ball Finish		Op Temp (°C)	Device Marking	Samples
5962-9093801M2A	(1) ACTIVE	LCCC	FK	20	Qty 1	(2) TBD	POST-PLATE	(3) N / A for Pkg Type	-55 to 125	(4/5)	Samples
										9093801M2A SNJ54BCT 760FK	Samples
5962-9093801MRA	ACTIVE	CDIP	J	20	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-9093801MR A SNJ54BCT760J	Samples
5962-9093801MSA	ACTIVE	CFP	W	20	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	5962-9093801MS A SNJ54BCT760W	Samples
SN54BCT760J	ACTIVE	CDIP	J	20	1	TBD	A42	N / A for Pkg Type	-55 to 125	SN54BCT760J	Samples
SN74BCT760DW	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	BCT760	Samples
SN74BCT760DWE4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	BCT760	Samples
SN74BCT760DWG4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	BCT760	Samples
SN74BCT760DWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	BCT760	Samples
SN74BCT760DWRE4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	BCT760	Samples
SN74BCT760DWRG4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	BCT760	Samples
SN74BCT760N	ACTIVE	PDIP	Ν	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74BCT760N	Samples
SN74BCT760NE4	ACTIVE	PDIP	Ν	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74BCT760N	Samples
SN74BCT760NSR	ACTIVE	SO	NS	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	BCT760	Samples
SN74BCT760NSRE4	ACTIVE	SO	NS	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	BCT760	Samples
SN74BCT760NSRG4	ACTIVE	SO	NS	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	BCT760	Samples
SNJ54BCT760FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962-	Samples

25-Sep-2013

Orderable Device	Status	Package Type		Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)		(3)		(4/5) 9093801M2A SNJ54BCT 760FK	_
SNJ54BCT760J	ACTIVE	CDIP	J	20	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-9093801MR A SNJ54BCT760J	Samples
SNJ54BCT760W	ACTIVE	CFP	W	20	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	5962-9093801MS A SNJ54BCT760W	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM

25-Sep-2013

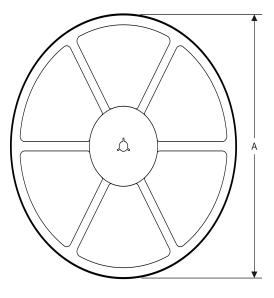
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

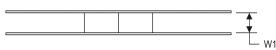
OTHER QUALIFIED VERSIONS OF SN54BCT760, SN74BCT760 :

- Catalog: SN74BCT760
- Enhanced Product: SN74BCT760-EP, SN74BCT760-EP
- Military: SN54BCT760

NOTE: Qualified Version Definitions:

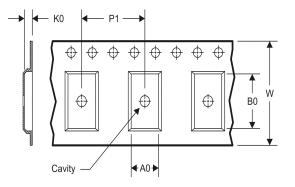
- Catalog TI's standard catalog product
- Enhanced Product Supports Defense, Aerospace and Medical Applications
- Military QML certified for Military and Defense Applications


PACKAGE MATERIALS INFORMATION


www.ti.com

TAPE AND REEL INFORMATION

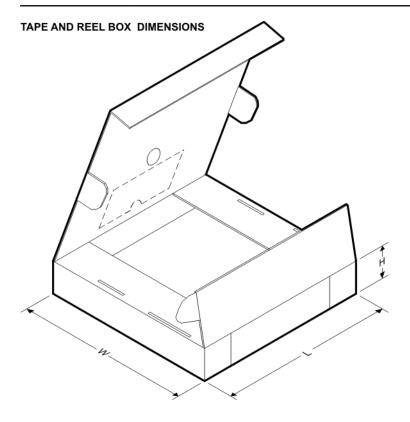
REEL DIMENSIONS


Texas Instruments

TAPE AND REEL INFORMATION

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

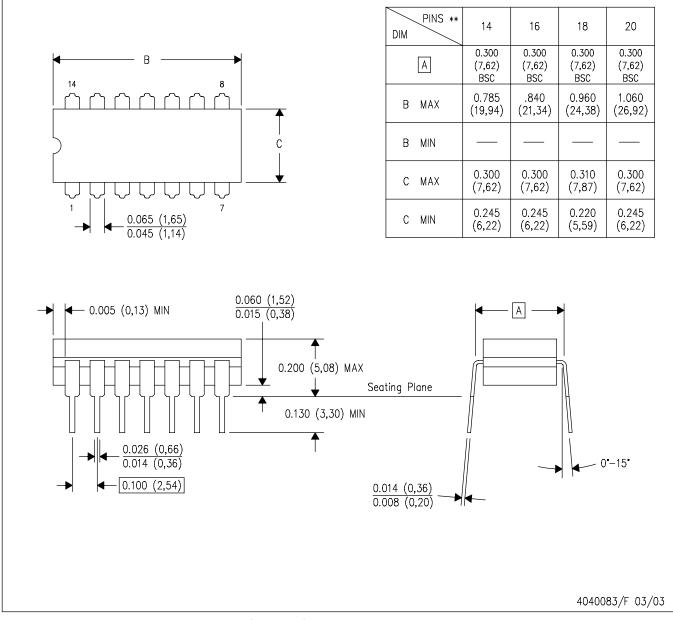

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74BCT760DWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.0	2.7	12.0	24.0	Q1
SN74BCT760NSR	SO	NS	20	2000	330.0	24.4	8.2	13.0	2.5	12.0	24.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

14-Jul-2012

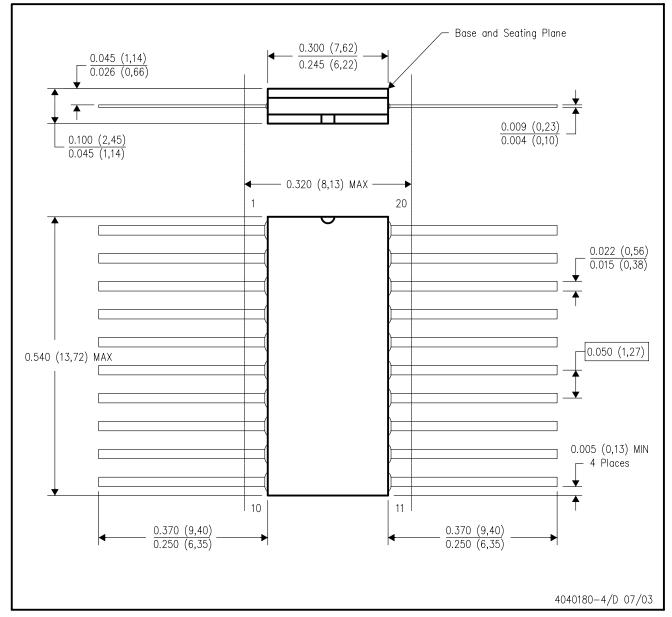


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74BCT760DWR	SOIC	DW	20	2000	367.0	367.0	45.0
SN74BCT760NSR	SO	NS	20	2000	367.0	367.0	45.0

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE

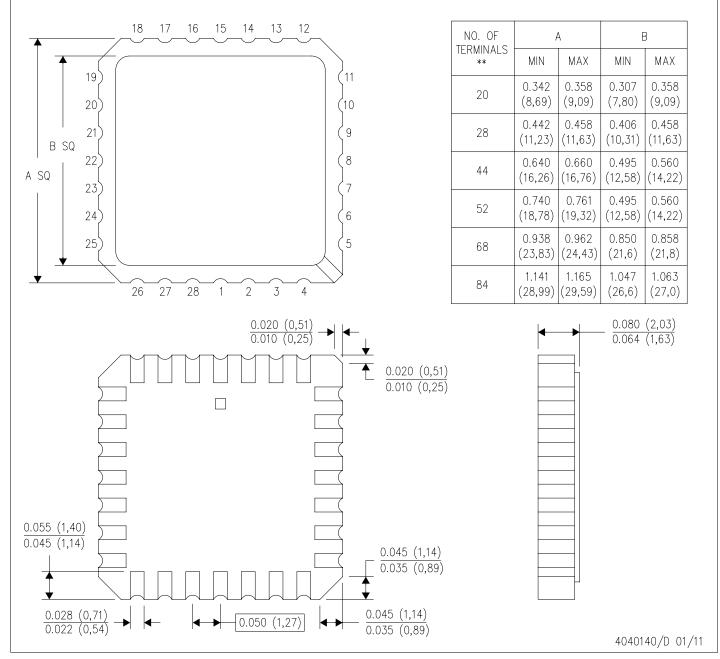


NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

W (R-GDFP-F20)

CERAMIC DUAL FLATPACK



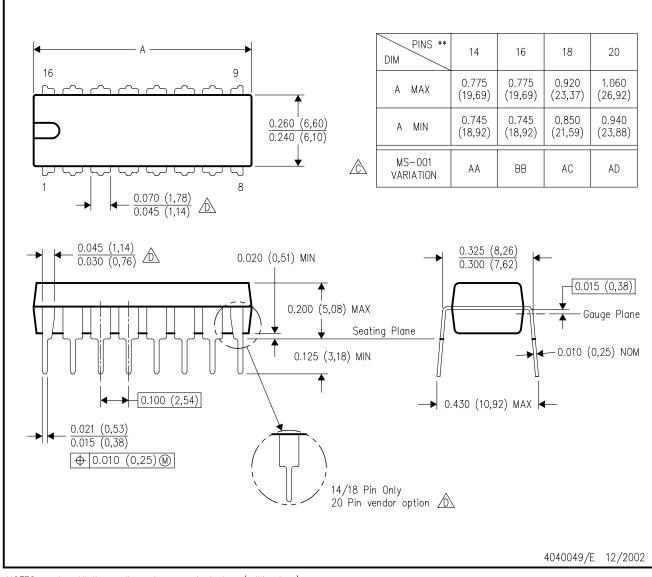
- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a ceramic lid using glass frit.
 - D. Index point is provided on cap for terminal identification only.
 - E. Falls within Mil-Std 1835 GDFP2-F20

LEADLESS CERAMIC CHIP CARRIER

FK (S-CQCC-N**) 28 TERMINAL SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

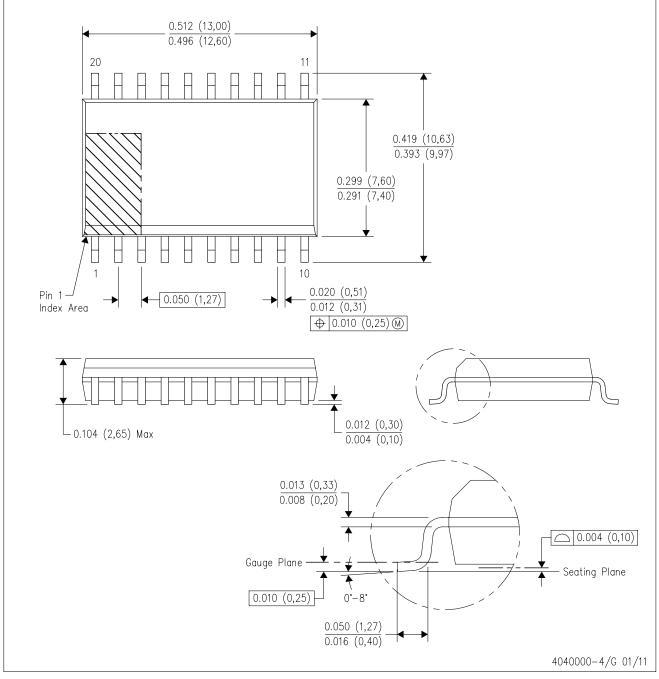
B. This drawing is subject to change without notice.


- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

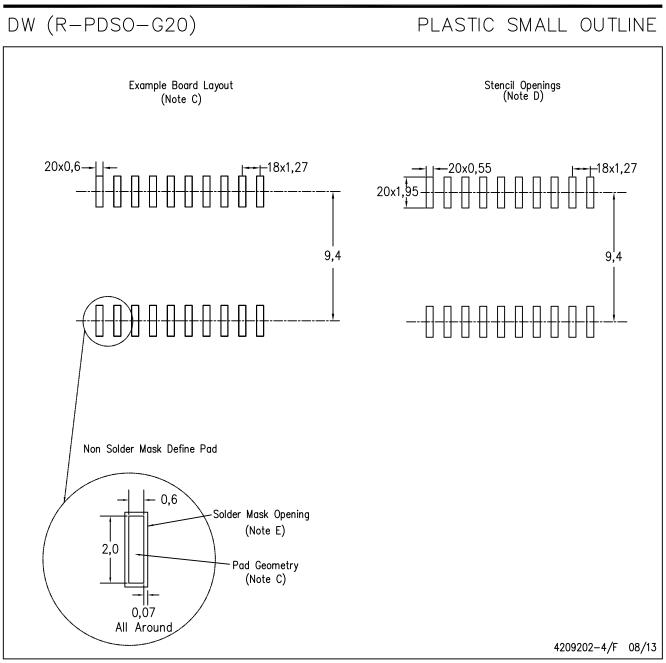

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

DW (R-PDSO-G20)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.


B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-013 variation AC.

LAND PATTERN DATA

NOTES:

A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Refer to IPC7351 for alternate board design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0°-10° Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconnectivity		

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated