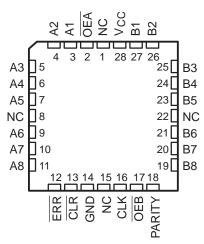

- State-of-the-Art *EPIC-IIB™* BiCMOS Design **Significantly Reduces Power Dissipation**
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Latch-Up Performance Exceeds 500 mA Per **JEDEC Standard JESD-17**
- Typical V_{OLP} (Output Ground Bounce) < 1 V at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$
- High-Drive Outputs (-32-mA IOH, 64-mA IOI)
- **Parity Error Flag With Parity** Generator/Checker
- Register for Storage of the Parity Error Flag
- **Package Options Include Plastic** Small-Outline (DW) Packages, Ceramic Chip Carriers (FK), and Plastic (NT) and Ceramic (JT) DIPs

description


The 'ABT833 8-bit to 9-bit parity transceivers are designed for communication between data buses. When data is transmitted from the A bus to the B bus, a parity bit is generated. When data is transmitted from the B bus to the A bus with its corresponding parity bit, the open-collector parity-error (ERR) output indicates whether or not an error in the B data has occurred. The output-enable (OEA and OEB) inputs can be used to disable the device so that the buses are effectively isolated. The 'ABT833 provide true data at their outputs.

A 9-bit parity generator/checker generates a parity-odd (PARITY) output and monitors the parity of the I/O ports with the \overline{ERR} flag. \overline{ERR} is clocked into the register on the rising edge of the clock (CLK) input. The error flag register is cleared with a low pulse on the clear (CLR) input. When both OEA and OEB are low, data is transferred from the A bus to the B bus and inverted parity is generated. Inverted parity is a forced error condition that gives the designer more system diagnostic capability.

SN54ABT833 . . . JT PACKAGE SN74ABT833... DW OR NT PACKAGE (TOP VIEW)

SN54ABT833...FK PACKAGE (TOP VIEW)

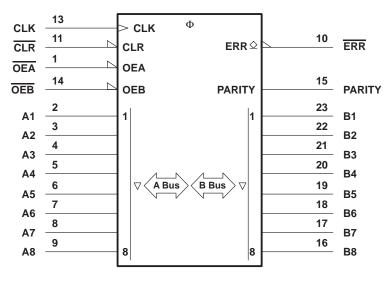
NC - No internal connection

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC-IIB is a trademark of Texas Instruments Incorporated

description (continued)

To ensure the high-impedance state during power up or power down, $\overline{\text{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.


The SN54ABT833 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ABT833 is characterized for operation from -40°C to 85°C.

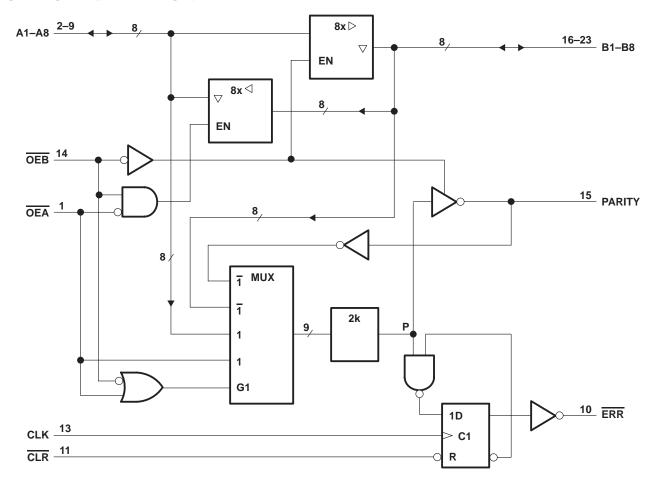
FUNCTION TABLE

	INPUTS							UT AND I/O		
OEB	OEA	CLR	CLK	$\begin{array}{c} \text{Ai} \\ \Sigma \text{ OF H's} \end{array}$	Bi† Σ OF H's	Α	В	PARITY	ERR‡	FUNCTION
L	Н	Х	Х	Odd Even	NA	NA	Α	L H	NA	A data to B bus and generate parity
Н	L	Н	1	NA	Odd Even	В	NA	NA	H L	B data to A bus and check parity
Х	Х	L	Х	Х	Х	Х	NA	NA	Н	Check error-flag register
н	н	H L H	No↑ No↑ ↑	X X Odd Even	Х	Z	Z	Z	NC H H L	Isolation§
L	L	Х	Х	Odd Even	NA	NA	Α	H L	NA	A data to B bus and generate inverted parity

NA = not applicable, NC = no change, X = don't care

logic symbol¶

[¶] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the DW, JT, and NT packages.

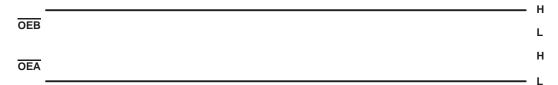


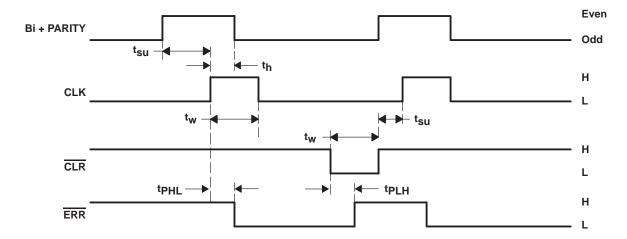
[†]Summation of high-level inputs includes PARITY along with Bi inputs.

[‡] Output states shown assume ERR was previously high.

[§] In this mode, ERR (when clocked) shows inverted parity of the A bus.

logic diagram (positive logic)


Pin numbers shown are for the DW, JT, and NT packages.


ERROR-FLAG FUNCTION TABLE

INPUTS		INTERNAL TO DEVICE	OUTPUT PRE-STATE	OUTPUT ERR	FUNCTION
CLR	CLK	POINT P	ERR _{n-1} †	EKK	
Н	1	Н	Н	Н	
Н	\uparrow	X	L	L	Sample
Н	\uparrow	L	X	L	
L	Х	Х	Х	Н	Clear

†The state of ERR before any changes at CLR, CLK, or point P

error-flag waveforms

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	\dots -0.5 V to 7 V
Input voltage range, V _I (except I/O ports) (see Note 1)	\dots -0.5 V to 7 V
Voltage range applied to any output in the high or power-off state, V _O	–0.5 V to 5.5 V
Current into any output in the low state, IO: SN54ABT833	96 mA
SN74ABT833	128 mA
Input clamp current, I _{IK} (V _I < 0)	–18 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Package thermal impedance, θ _{JA} (see Note 2): DW package	81°C/W
NT package	67°C/W
Storage temperature range, T _{stq}	. -65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
 - 2. The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51, except for through-hole packages, which use a trace length of zero.

recommended operating conditions (see Note 3)

		SN54AE	3T833	SN74A	3T833	UNIT	
			MIN	MAX	MIN	MAX	UNIT
VCC	Supply voltage		4.5	5.5	4.5	5.5	V
VIH	High-level input voltage		2	h	2		V
VIL	Low-level input voltage			0.8		0.8	V
VI	Input voltage		0	Vcc	0	VCC	V
Vон	High-level output voltage	ERR	74	5.5		5.5	V
IOH	High-level output current	Except ERR	27/	-24		-32	mA
loL	Low-level output current		⁷ 0į	48		64	mA
Δt/Δν	Input transition rise or fall rate	Outputs enabled	Q	5		5	ns/V
TA	Operating free-air temperature		- 55	125	-40	85	°C

NOTE 3: Unused pins (input or I/O) must be held high or low to prevent them from floating.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CON	T	A = 25°(;	SN54A	BT833	SN74A	BT833	UNIT	
PAI	RAMETER	TEST CON	IDITIONS	MIN	TYP†	MAX	MIN	MAX	MIN	MAX	UNII
VIK		V _{CC} = 4.5 V,	$I_{I} = -18 \text{ mA}$			-1.2		-1.2		-1.2	V
		$V_{CC} = 4.5 \text{ V},$	$I_{OH} = -3 \text{ mA}$	2.5			2.5		2.5		
\/~	All outputs	$V_{CC} = 5 V$,	$I_{OH} = -3 \text{ mA}$	3			3		3		V
VOH	except ERR	V _{CC} = 4.5 V	$I_{OH} = -24 \text{ mA}$	2			2				V
		VCC = 4.5 V	$I_{OH} = -32 \text{ mA}$	2*					2		
\/a:		V _{CC} = 4.5 V	I _{OL} = 24 mA			0.55		0.55			V
VOL		VCC = 4.5 V	I _{OL} = 64 mA			0.55*				0.55	٧
V _{hys}					100						mV
ЮН	ERR	V _{CC} = 4.5 V,	V _{OH} = 5.5 V			20		20		20	μΑ
١.	Control inputs	V _{CC} = 5.5 V,	V _I = V _{CC} or GND			±1		#		±1	μA
11	A or B ports	vCC = 5.5 v,	AL = ACC OLGIAD			±100		±100		±100	μΑ
Ι _Ι L	A or B ports	$V_{CC} = 0$,	V _I = GND			-50		– 50		-50	μΑ
loz _H ‡		V _{CC} = 5.5 V,	V _O = 2.7 V			50	<i></i>	50		50	μΑ
loz _L ‡		V _{CC} = 5.5 V,	V _O = 0.5 V			-50	22	-50		-50	μΑ
l _{off}		$V_{CC} = 0$,	V_I or $V_O \le 4.5 \text{ V}$			±100	70,			±100	μΑ
ICEX		V _{CC} = 5.5 V, V _O = 5.5 V	Outputs high			50	Q	50		50	μΑ
IO§		V _{CC} = 5.5 V,	V _O = 2.5 V	-50	-100	-200¶	-50	-200¶	-50	-200¶	mA
		V _{CC} = 5.5 V,	Outputs high		1	250		250		250	μΑ
Icc	A or B ports	$I_{O} = 0$,	Outputs low		24	38¶		38¶		38¶	mA
		$V_I = V_{CC}$ or GND	Outputs disabled		0.5	250		250		250	μΑ
	Data innuta	V _{CC} = 5.5 V, One input at 3.4 V,	Outputs enabled			1.5		1.5		1.5	mA
∆lcc#	Data inputs	Other inputs at V _{CC} or GND	Outputs disabled			50		50		50	μА
	Control inputs	V _{CC} = 5.5 V, One inpu Other inputs at V _{CC} or				1.5		1.5		1.5	mA
Ci	Control inputs	V _I = 2.5 V or 0.5 V			4.5						pF
C _{io}	A or B ports	V _O = 2.5 V or 0.5 V			10.5						pF

^{*} On products compliant to MIL-PRF-38535, this parameter does not apply.

[†] All typical values are at $V_{CC} = 5 \text{ V}$.

[‡] The parameters I_{OZH} and I_{OZL} include the input leakage current.

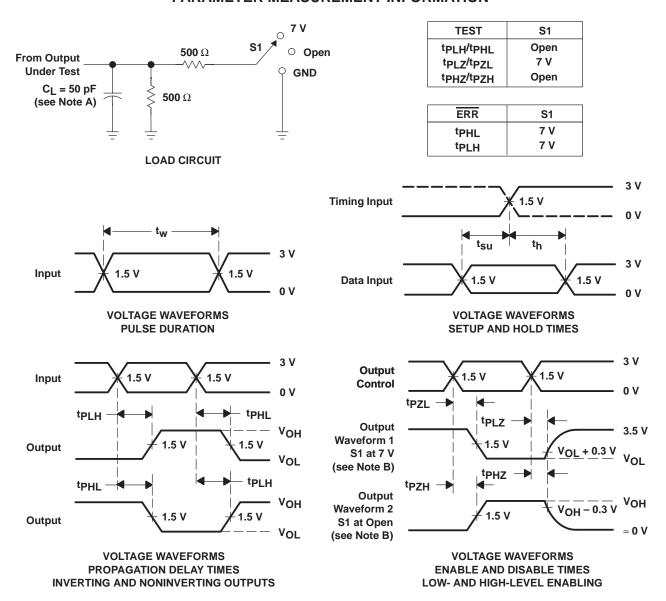
[§] Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

[¶] These limits may vary among suppliers.

[#]This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

			V _{CC} = T _A = 2	= 5 V, 25°C	SN54A	BT833	SN74A	BT833	UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
	Pulse duration	CLK high or low	3		3	1/2	3		ns
t _W	ruise duration	CLR low	3		3 04		3		115
		B or PARITY high	9.8		9.8	ζ	9.8		
t _{su}	Setup time before CLK↑	B or PARITY low	8.1		8.1		8.1		ns
		CLR	2		0 2		2		
th	Hold time after CLK↑	B or PARITY	0		0		0		ns


switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TO (OUTPUT) V _{CC} = 5 V, T _A = 25°C			SN54A	BT833	SN74A	UNIT	
	(INFOT)	(0011-01)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
^t PLH	A or B	B or A	1.2	2.8	4.8	1.2	5.4	1.2	5.3	ns
t _{PHL}	AUIB	BUIA	1	3	4.8‡	1	5.4	1	5.3‡	
^t PLH	А	PARITY	2.1	5.5	9.5	2.1	11.3	2.1	11.2	ns
^t PHL	A	FANITI	2.5	5.3	9.7	2.5	11,1	2.5	11	119
^t PZH	ŌĒ	PARITY	2.6	6.2	8.5	2.6	10.6	2.6	10.5	ns
t _{PZL}		FARITI	2.6‡	5.8	8.6	2.6‡ 4	10.1	2.6‡	10	110
^t PLH	CLR	ERR	1	3.2	4.8‡	(e)	5.3	1	5.2	no
t _{PHL}	CLK	EKK	1.2‡	2.8	5.7	1.2‡	6.3	1.2‡	6.2	ns
^t PZH		A, B, or PARITY	1	3.7	5.8‡	S 1	6.6	1	6.5‡	
^t PZL	ŌĒ	A, B, OI PARTIT	1.3‡	3.8	5.8	1.3‡	6.6	1.3‡	6.5‡	ns
^t PHZ	ŌĒ	A, B, or PARITY	1.9‡	4.4	7.3	1.9‡	8	1.9‡	7.9	
t _{PLZ}	OE .	A, D, ULPARIT	2.2‡	4.4	7.7	2.2‡	8.2	2.2‡	8.1	ns

 $[\]overline{\dagger}$ All typical values are at $V_{CC} = 5 \text{ V}$.

[‡]These limits may vary among suppliers.

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50 \Omega$, $t_r \leq$ 2.5 ns, $t_f \leq$ 2.5 ns
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

www.ti.com 21-Mar-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing			(2)		(3)		(4)	
SN74ABT833DW	ACTIVE	SOIC	DW	24	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	ABT833	Samples
SN74ABT833DWE4	ACTIVE	SOIC	DW	24	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	ABT833	Samples
SN74ABT833DWG4	ACTIVE	SOIC	DW	24	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	ABT833	Samples
SN74ABT833DWR	OBSOLETE	SOIC	DW	24		TBD	Call TI	Call TI	-40 to 85	ABT833	
SN74ABT833DWRE4	ACTIVE	SOIC	DW	24		TBD	Call TI	Call TI	-40 to 85		Samples
SN74ABT833DWRG4	OBSOLETE	SOIC	DW	24		TBD	Call TI	Call TI	-40 to 85		
SN74ABT833NT	ACTIVE	PDIP	NT	24	15	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	SN74ABT833NT	Samples
SN74ABT833NTE4	ACTIVE	PDIP	NT	24	15	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	SN74ABT833NT	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

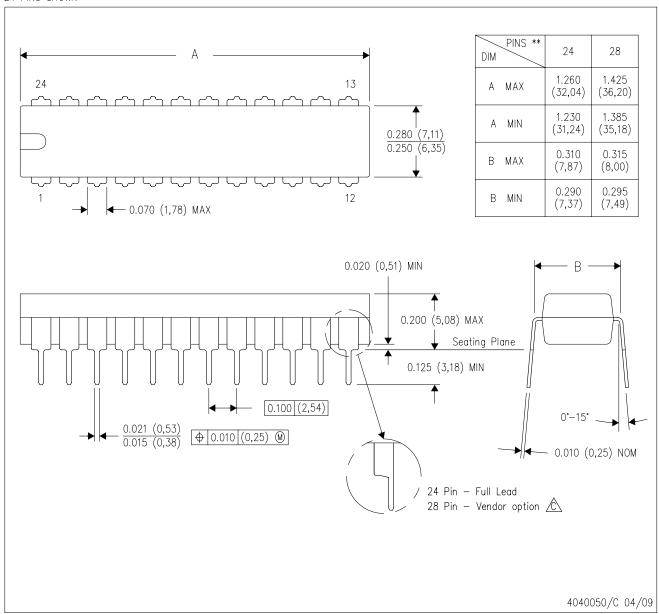
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ Only one of markings shown within the brackets will appear on the physical device.

PACKAGE OPTION ADDENDUM

21-Mar-2013


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

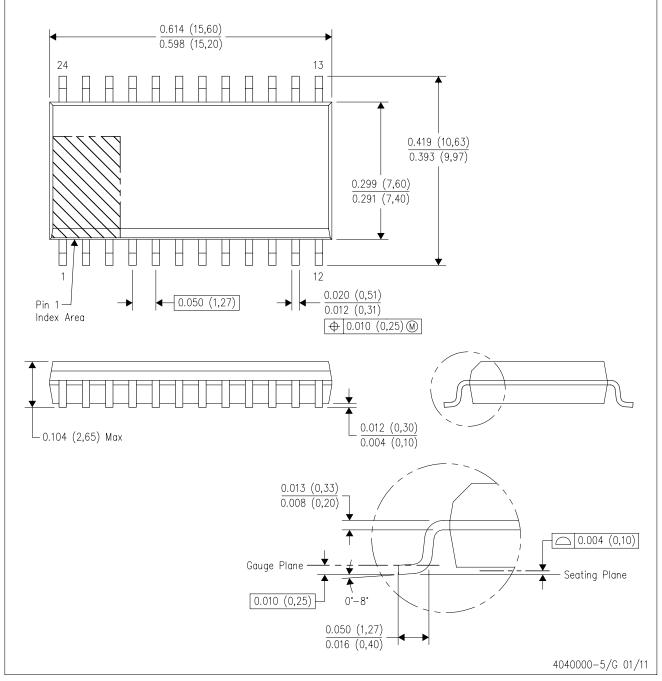
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

NT (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

24 PINS SHOWN

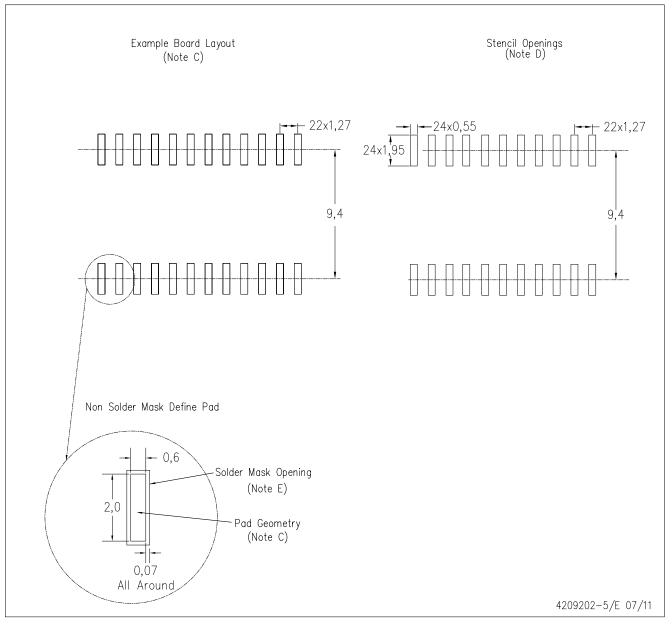
NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.


B. This drawing is subject to change without notice.

The 28 pin end lead shoulder width is a vendor option, either half or full width.

DW (R-PDSO-G24)

PLASTIC SMALL OUTLINE


NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AD.

DW (R-PDSO-G24)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Refer to IPC7351 for alternate board design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>