

www.ti.com

SN65EPT21

SLLS970-NOVEMBER 2009

3.3-V Differential PECL/LVDS to TTL Translator

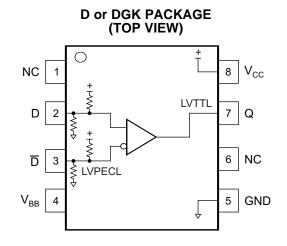
Check for Samples: SN65EPT21

FEATURES

- 1 ns Propagation Delay
- F_{max} > 300MHz
- Operating Range: V_{CC} = 3.0 V to 3.6 V with GND = 0 V
- 24-mA TTL Output
- Built-In Temperature Compensation
- Drop-In Compatible to the MC10EPT21, MC100EPT21

APPLICATIONS

- Data and Clock Transmission Over Backplane
- Signaling Level Conversion for Clock or Data


DESCRIPTION

The SN65EPT21 is a differential PECL-to-TTL translator. It operates on +3.3 V supply and ground only. The device includes circuitry to maintain inputs at Vcc/2 when left open.

The V_{BB} pin is a reference voltage output for the device. When the device is used in single-ended mode, the unused input should be tied to V_{BB}. This reference voltage can also be used to bias the input when it is ac coupled. When it is used, place a 0.01µF decoupling capacitor between V_{CC} and V_{BB}. Also limit the sink/source current to < 0.5 mA to V_{BB}. Leave V_{BB} open when it is not used.

The SN65EPT21 is housed in an industry standard SOIC-8 package and is also available in an optional TSSOP-8 package.

PIN ASSIGNMENT(Add pullup on BOTH inputs)

Table 1. Pin Descriptions

r	1
PIN	FUNCTION
Q	LVTTL/LVCMOS Output
D, D	Differential LVPECL/LVDS/CML Input
V _{CC}	Positive Supply
V _{BB}	Output Reference Voltage
GND	Ground
NC	No Connect
EP	(DFN8 only) Thermal exposed pad must be connected to a sufficient thermal conduit. Electrically connect to the most negative supply (GND) or leave unconnected, floating open.

ORDERING INFORMATION⁽¹⁾

PART NUMBER	PART MARKING	PACKAGE	LEAD FINISH
SN65EPT21D/DR	EPT21	SOIC	NiPdAu
SN65EPT21DGK/DGKR	SSSI	MSOP	NiPdAu

(1) Leaded device options are not initially available; contact a sales representative for further details.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SN65EPT21

SLLS970-NOVEMBER 2009

www.ti.com

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

PARAMETER	CONDITIONS	VALUE	UNIT			
Absolute PECL mode supply voltage	$V_{CC} (GND = 0 V)$	3.8	V			
Sink/source current, V _{BB}		±0.5	mA			
PECL input voltage	$GND = 0 V, V_1 \le V_{CC}$	0 to 3.8	V			
Operating temperature range		-40 to 85	°C			
Storage temperature range						

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATINGS

PACKAGE	CIRCUIT BOARD MODEL	POWER RATING T _A < 25°C (mW)	THERMAL RESISTANCE, JUNCTION-TO-AMBIENT NO AIRFLOW	DERATING FACTOR T _A > 25°C (mW/°C)	POWER RATING T _A = 85°C (mW)
SOIC	Low-K	719	139	7	288
	High-K	840	119	8	336
MSOP	Low-K	469	213	5	188
	High-K	527	189	5	211

THERMAL CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)

	PARAME	MIN	TYP	MAX	UNIT	
θ_{JB}	Junction-to-board thermal resistance	SOIC		79		°C/W
		MSOP		120		
θ_{JC}	Junction-to-case thermal resistance	SOIC		98		°C/W
		MSOP		74		

KEY ATTRIBUTES

CHARACTERISTICS		VALUE								
Internal input pull-down resistor		50 kΩ								
Internal input pull-up resistor	ernal input pull-up resistor									
Moisture sensitivity level	Level 1						Ire sensitivity level Level 1			
Flammability rating (oxygen index: 28	to 34)	UL 94 V-0 at 0.125 in								
Electrostatic discharge	Human body model	2 kV								
	Charged-device model	2 kV								
	Machine mode	200 V								
Meets or exceeds JEDEC Spec EIA/J	ESD78 latchup test									

www.ti.com

PECL DC CHARACTERISTICS

At $V_{CC} = 3.3$ V, GND = 0.0 V (unless otherwise noted)⁽¹⁾ (2)

	PARAMETER	TEST CONDITIONS	$T_A = -40^{\circ}C$			T _A = 25°C			T _A = 85°C			
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
V _{IH}	High-level input voltage, single-ended		2075		2420	2075		2420	2075		2420	mV
V _{IL}	Low-level input voltage, single-ended		1355		1675	1355		1675	1355		1675	mV
V_{BB}	Output reference voltage		1910	2009	2160	1910	2034	2160	1910	2026	2160	mV
V _{IHCM} R	High-level input voltage, common-mode range, differential	See ⁽³⁾	1.2		3.3	1.2		3.3	1.2		3.3	V
I _{IH}	High-level input current				150			150			150	μΑ
IIL	Low-level input current		-150			-150			-150			μA

(1) The device will meet the specifications after thermal balance has been established when mounted in a socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are assured only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

Input parameters vary 1:1 with V_{CC} . $V_{IHCMR(min)}$ varies 1:1 with GND, $V_{IHCMR(max)}$ varies 1:1 with V_{CC} . V_{IHCMR} range is referenced to the most positive side of the differential (3)input signal

TTL DC CHARACTERISTICS

At V_{CC} = 3.3 V, GND = 0.0, T_A = -40°C to 85°C (unless otherwise noted)⁽¹⁾

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
I _{CCH}	Power supply current	Output is HIGH	5	9	20	mA
I _{CCL}	Power supply current	Output is LOW	8	7.5	26	mA
V _{OH}	High-level output voltage	I _{OH} = -3.0 mA	2.4	3.05		V
V _{OL}	Low-level output voltage	IOL = 24 mA		0.32	0.5	V
I _{OS}	Output short circuit current		-180	-100	-80	mA

The device will meet the specifications after thermal balance has been established when mounted in a socket or printed circuit board (1)with maintained transverse airflow greater than 500 lfpm. Electrical parameters are assured only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

AC CHARACTERISTICS

At V_{CC} = 3.0 V to 3.6 V, GND = 0.0 V (unless otherwise noted)^{(1) (2)}

	PARAMETER	TEST CONDITIONS	T∠	. = −40°	C	TA	= 25°C	;	T,	UNIT		
		TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
f _{MAX}	Maximum switching frequency (Figure 1–Figure 3)		300			300			300			MHz
t _{PLH}	Propagation delay	At 1.5 V	1000	1394	1800	1000	1444	1800	1000	1481	1800	ps
t _{PHL}	Propagation delay	At 1.5 V	1000	1140	1900	1000	1280	1900	1000	1421	1900	ps
t _{JITTER}	Random clock jitter (RMS)			2.25	5		3.2	5		3.4	5	ps
t _{SKEW}	Duty Cycle Skew ⁽³⁾			94	250		78	250		62	250	ps
t _{SKPP}	Part-to-Part Skew ⁽³⁾				500			500			500	ps
V _{PP}	Input swing	See (4)	150		1200	150		1200	150		1200	mV
t _r /t _f	Output rise/fall times	Q, Q (0.8V - 2.0V))	250	500	900	250	500	900	250	500	900	ps

(1) The device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are assured only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

 R_L = 500 Ω to GND and C_L = 20 pF to GND. See Figure 4. Measured with 750mV, 50% duty cycle clock source

Skews are measured between outputs under identical transitions (3)

(4) $V_{\text{PP(min)}}$ is minimum input swing for which ac parameters are assured.

Copyright © 2009, Texas Instruments Incorporated

SLLS970-NOVEMBER 2009

www.ti.com

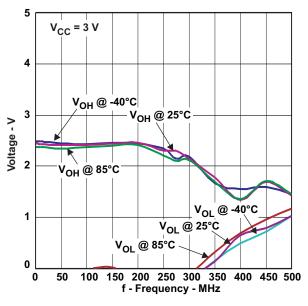


Figure 1. Maximum Switching Frequency V_{CC}= 3.0 V

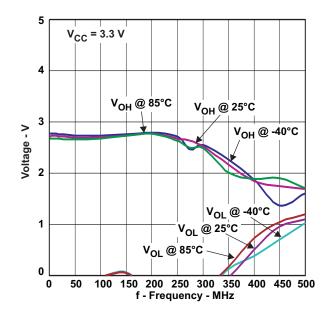


Figure 2. Maximum Switching Frequency V_{CC}= 3.3 V

SLLS970-NOVEMBER 2009

www.ti.com

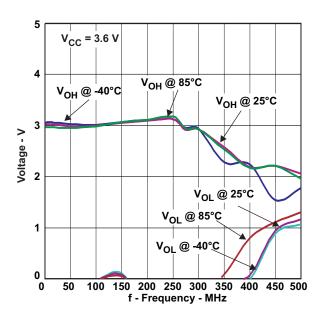
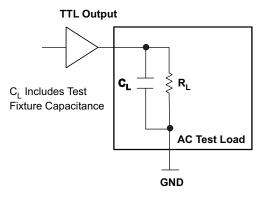



Figure 3. Maximum Switching Frequency V_{CC}= 3.6 V

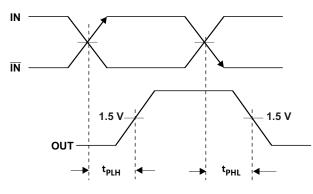


Figure 5. Output Propagation Delay

SLLS970-NOVEMBER 2009

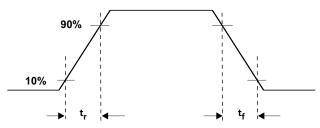


Figure 6. Output Rise and Fall Times

18-Oct-2013

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
SN65EPT21D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	EPT21	Samples
SN65EPT21DGK	ACTIVE	VSSOP	DGK	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	SSSI	Samples
SN65EPT21DGKR	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU Call TI	Level-1-260C-UNLIM	-40 to 85	SSSI	Samples
SN65EPT21DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	EPT21	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

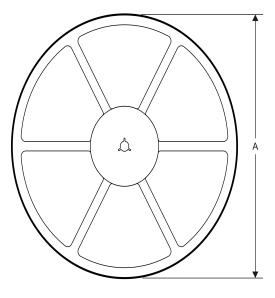
⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

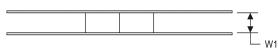
www.ti.com

18-Oct-2013

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

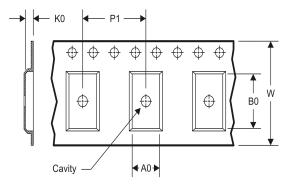
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


PACKAGE MATERIALS INFORMATION


www.ti.com

TAPE AND REEL INFORMATION

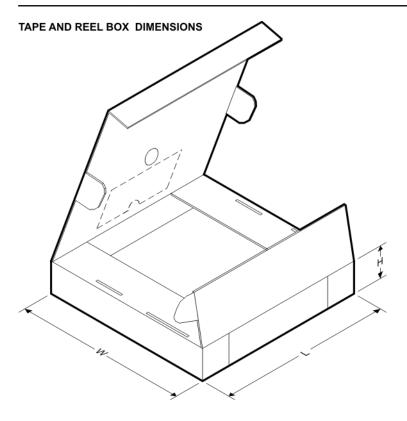
REEL DIMENSIONS


Texas Instruments

TAPE AND REEL INFORMATION

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

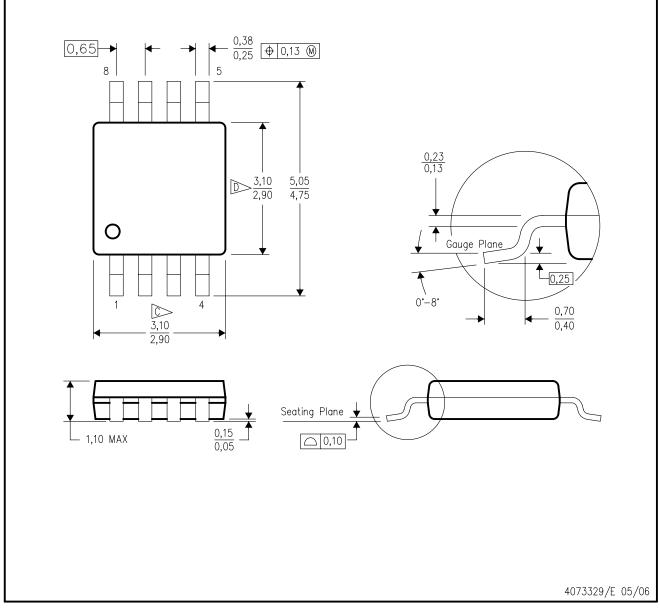

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN65EPT21DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
SN65EPT21DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

16-Aug-2012



*All dimensions are nominal

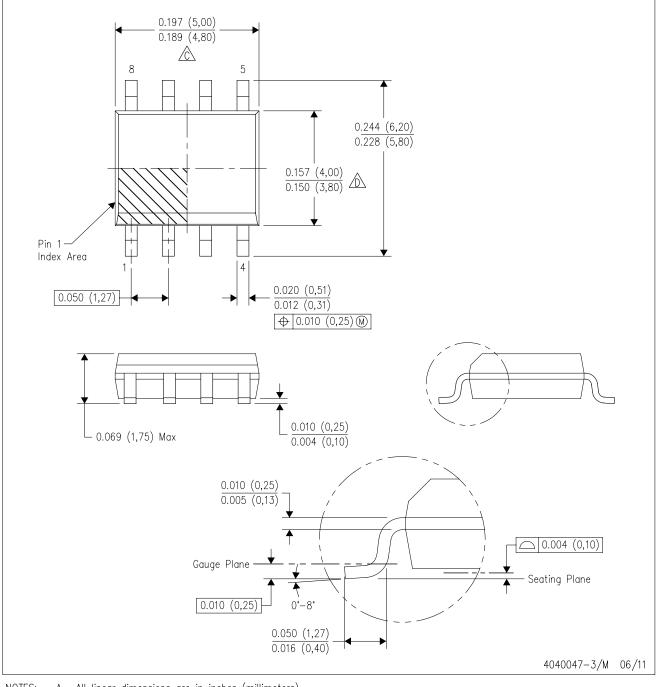
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN65EPT21DGKR	VSSOP	DGK	8	2500	367.0	367.0	35.0
SN65EPT21DR	SOIC	D	8	2500	367.0	367.0	35.0

DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

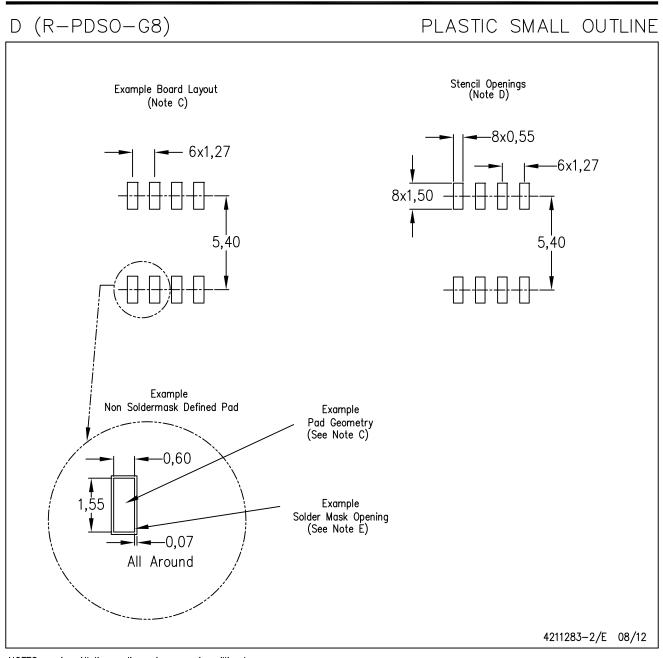
NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.


Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.

- D Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

D (R-PDSO-G8)


PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications			
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive		
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications		
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers		
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps		
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy		
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial		
Interface	interface.ti.com	Medical	www.ti.com/medical		
Logic	logic.ti.com	Security	www.ti.com/security		
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense		
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video		
RFID	www.ti-rfid.com				
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com		
Wireless Connectivity	www.ti.com/wirelessconnectivity				

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated