

1

AFE5801 8-Channel Variable Gain Amplifier (VGA) with Octal High-Speed ADC

The AFE5801EVM is an evaluation tool designed for the ultrasound analog front-end (AFE) device AFE5801. In order to deserialize the outputs of AFE5801, an ADSDeSer-50EVM or TSW1250EVM is needed during the evaluation.

Contente

		Contents	
1	Introdu	uction	3
	1.1	AFE5801EVM Kit Contents	3
	1.2	Features	3
	1.3	Power Supplies	3
	1.4	Indicators	3
2	Board	Configuration	5
	2.1	Board Connections Overview	5
	2.2	I/O and Power Connectors	6
	2.3	Jumpers and Setup	6
	2.4	Test Points	9
3	Board	Operation	9
	3.1	Software Installation and Operation	9
	3.2	USB Driver Installation	9
	3.3	GUI Startup	11
	3.4	Hardware Setup	14
	3.5	Clock Selection	14
	3.6	Data Analysis	15
4	Schem	natics, Layout, and, Bill of Materials	16
	4.1	Schematics	16
	4.2	PCB Layout	22
	4.3	Bill of Materials	30
5	Typica	Il Performance	32
Appen	dix A	TSW1250 for Evaluating AFE5801	33
Appen	dix B	TSW1100 for Evaluating AFE5801	43
		List of Figures	

1	AFE5801EVM LED Locations	4
2	AFE5801EVM TOP View	5
3	AFE5801EVM BOTTOM View	5
4	Locations of Jumpers, Headers and Switches on the AFE5801EVM	7
5	Default Setup for Jumpers	8
6	Found New Hardware Wizard Screen	9
7	Found New Hardware Wizard (Next) Screen	10
8		10
9	AFE5801EVM USB SPI Interface for General Registers	11
10	AFE5801EVM USB SPI Fixed Gain Mode	12
11	AFE5801EVM USB SPI Interface for Variable Gain Mode	13

Windows XP is a trademark of Microsoft Corporation.

12	Typical AFE5801 Bench Setup:	14
13	Clock Selection Jumper Configurations: (a) Transformer (default); (b) Single-ended Clock; (c) Future CLK Input Option Based on U1. Both (b) and (c) Configurations Need Some Modifications on the PCB	14
14	Schematic Page 1	16
15	Schematic Page 2	17
16	Schematic Page 3	18
17	Schematic Page 4	19
18	Schematic Page 5	20
19	Schematic Page 6	21
20	Top Layer Signal	22
21	Inner Layer 1 Ground	23
22	Inner Layer 2 Signal	24
23	Inner Layer 3 Power	25
24	Inner Layer 4 Ground	26
25	Bottom Layer Signal	27
26	Top Silk Screen Layer	28
27	Bottom Silk Screen Layer	29
28	Typical Performance of AFE5801. (a) Fixed Gain Mode; (b) Variable Gain Mode	32
29	Connection Between TSW1250EVM and AFE5801	33
30	Connection of the Instruments	33
31	AFE5801EVM GUI - RUN Mode	34
32	AFE5801 EVM GUI - START Button	35
33	AFE5801EVM GUI - Variable Gain	36
34	AFE5801EVM GUI - Setting Fixed Gain	37
35	User Interface: Initial Setup Screen	38
36	User Interface: Step-by-Step Setup	38
37	User Interface: Frequency Load Value to Signal Generator	39
38	User Interface: Final Setup Screen	39
39	User Interface: Single FFT Format	40
40	User Interface: Time Domain Format	41
41	Plot of Saved Sample Data	41
42	TSW1100 Interface	45
43	Analysis of Non-Coherent Sampled Data. (a) No window applied; (b) Hanning window applied.	46

List of Tables

1	Channel-to-Channel Matching Between the AFE5801EVM and ADSDeSER-50EVM	14
---	---	----

2

1 Introduction

AFE5801 includes an 8-channel voltage-Controlled-Amplifier (VCA) with digital control and an 8-channel 65MSPS analog-to-digital converter (ADC). The outputs of the ADC are 8-channel LVDS outputs which should be deserialized by the ADSDeSer-50EVM or TSW1250EVM. The AFE5801EVM provides an easy way to examine the performances and functionalities of AFE5801.

1.1 AFE5801EVM Kit Contents

The AFE5801EVM kit contains the following:

- AFE5801 EVM board
- USB cable
- CD-ROM containing
 - AFE5801 EVM User's Guide (this document)
 - GUI software

1.2 Features

- Characterize AFE5801
- Provide 8-channel LVDS outputs from the ADC
- Compatible to the standard TI LVDS deserializer ADSDeSer-50EVM or TSW1250EVM
- Communicate with PC through USB interface
- Power Management provides multiple power supplies for AFE5801 and other devices.

1.3 Power Supplies

The AFE5801EVM requires only +5V power supplies for operation.

1.4 Indicators

The AFE5801EVM has 4 LEDs on the board as shown in Figure 1. Their states demonstrate the normal operation of AFE5801EVM.

- LED 1: U1 status indicator. Its ON state indicates the clock management chip U1 works well if U1 is installed.
- LED 3 and 2 (RED): 1.8VD and 1.8VA power supply indicators. ON state indicates that the AFE5801 is powered correctly.
- LED 4 (GREEN): +3.3V power supply indicator. ON state indicates that the AFE5801 is powered correctly.

3

Introduction

Figure 1. AFE5801EVM LED Locations

5

2 Board Configuration

This chapter describes the locations and functionalities of inputs, outputs, jumpers, test points of the AFE5801EVM in detail.

2.1 Board Connections Overview

Figure 2. AFE5801EVM TOP View

Figure 3. AFE5801EVM BOTTOM View

Board Configuration

2.2 I/O and Power Connectors

The positions and functions of the AFE5801EVM connectors are discussed in this section.

- Analog Inputs Ch1~Ch8 (J1~J8): Single-end analog signal is converted to differential signals by • transformer.
- Low Jitter CLK Source Input (J11): This input accepts clocks with low jitter noise, such as HP8644 output. 20~50MHz 50% duty cycle clock with 1~2Vrms amplitude can be used. When J11 is used, make sure shunts P4, P5, P6 are removed.
- CLK output (J10): The output of either the U1 output or the on-board 40MHz oscillator output depending on jumper P4's connection.
- External CLK Input (J9): ADC Clock input, such as FPGA outputs. FPGA outputs must be processed • by U1. Otherwise, the ADC of AFE5801 will not achieve satisfactory performance.
- +5V PWR connector(P10): Power supply input
- USB input (P11): USB interface to control the AFE5801. ٠
- LVDS Outputs Ch1~Ch8 (P13): Differential LVDS data outputs. •

2.3 Jumpers and Setup

6

The board has been set to default mode. Detailed description can be found in Figure 4 and Figure 5.

Board Configuration

7

Figure 4. Locations of Jumpers, Headers and Switches on the AFE5801EVM

Figure 5. Default Setup for Jumpers

- P1: SPI interface for U1
- P2, P3: AFE5801 ADC clock input selection: transformer-based differential clock, single-ended LVCMOS clock, or future clock option (needs U1 to support). Default is to use transformer-based differential clock.
- P4: Select jitter-cleaned clock or non-jitter-cleaned clock. Default is to use non-jitter-cleaned clock (i.e., on-board 40MHz clock).
- P5: Use on-board 40MHz clock. Default is that the on-board clock is used.
- P6: Power on on-board 40MHz clock generator. Default is on.
- P8: Debug port for monitoring ADS SPI signals.
- P9: USB interface enable. Default is on.
- Regulated power supply outputs (P12, P7): 1.8VA, 1.8VD, and 3.3V. P12 and P7 can be configured as power supply input as well if users would like to skip the on-board regulators. Remove the ferrite beads L1, L2, L3, L7 and L24,
- SW1: Reset switch for AFE5801.

9

www.ti.com

2.4 Test Points

Multiple Test Points are provided on the EVM. Refer to the attached schematics for more information.

3 Board Operation

This chapter describes how to operate the AFE5801EVM for evaluation. Both software and hardware installation and operation are discussed.

3.1 Software Installation and Operation

The AFE5801EVM comes with a software install CD; run setup.exe to install the software.

3.2 USB Driver Installation

- Connect the USB port of EVM to your PC.
- If the driver has not been installed then the message "Windows Found New Hardware" will appear. The Wizard as the following picture will launch.
- · Select "No, not this time" from the options. Press Next button

Found New Hardware Wiz	ard
round New Hardware Wiz	Welcome to the Found New Hardware Wizard Windows will search for current and updated software by looking on your computer, on the hardware installation CD, or on the Windows Update Web site (with your permission) Read our privacy policy Can Windows connect to Windows Update to search for software? O Yes, this time only O Yes, now and givery time I connect a device Image: No, not this time
	Click Next to continue

Figure 6. Found New Hardware Wizard Screen

· Select "Install from a list or specific location (Advanced)" as shown below and then click "Next".

Figure 7. Found New Hardware Wizard (Next) Screen

- Select "Search for the best driver in these locations" and enter the file path for ("C:\Program ٠ Files\AFE5801\CDM 2.04.06 WHQL Certified ") in the combo-box or browse to it by clicking the browse button. Once the file path has been entered in the box, click next to proceed.
- If Windows XP™ is configured to warn when unsigned (non-WHQL certified) drivers are about to be ٠ installed, the following screen will be displayed unless installing a Microsoft WHQL certified Driver. Click on "Continue Anyway" to continue with the installation. If Windows XP is configured to ignore file signature warnings, no message will appear.

Figure 8.

3.3 GUI Startup

- Launch GUI from XP Window
- Start → All Programs\AFE5801EVM\AFE5801
- Several different screens appear displaying the different modes (Figure 9 through Figure 11)

Figure 9. AFE5801EVM USB SPI Interface for General Registers.

Board Operation

neral Register TGC Register		AFE5801	Ver 0.1 Build Date: 3/30/2009
GAIN MODE Fixed			Load Reg Value from a specified file
Fixed Gain O	Variable Gain Non-Uniform Gain Start_Gain (dB) 0	SYNC OFF Uniform_Gain_Slope	Load Reg Value Reg_value file reg_value1.txt
INTERP_DISABLE	Start_Index 250 Stop_Index 250	Hold_Gain_Time 0	file jo
T <u>GC_Reg_EN</u> Read Only			
Init for TSW1250	Address 154 Data 24 Write		
	1		

Figure 10. AFE5801EVM USB SPI Fixed Gain Mode

Figure 11. AFE5801EVM USB SPI Interface for Variable Gain Mode

When AFE5801EVM is powered on, all registers have been set to their default modes. Refer to the datasheet for all default settings. It is recommended to restart the SPI software when AFE5801 is powered on in order to synchronize the AFE5801 register settings to the software displays.

Users also can fill out Address Bytes and Data Bytes and press ENTER to configure each register.

Typical Configuration

- From Figure 9 press "Init for TSW1250" button
- Select TAB "TGC Register" Figure 10 will appear
- From Figure 11, press "Variable" button to get into fixed gain mode
- From Figure 10 enter 30 in the "Coarse Gain(dB)" field then press "Write" button.

3.4 Hardware Setup

As mentioned before, Xilinx DeSerializer ADSDeSER-50EVM or TSW1250EVM is required. Please see details in the corresponding application notes on how to use the either of these EVMs. An example bench setup is shown in Figure 12. Band-pass filters are required for signal source in order to ensure the correct SNR measurements of the AFE5801.

Figure 12. Typical AFE5801 Bench Setup:

The channel order of the AFE5801 outputs is not exactly the same as the one of ADS527x outputs. As a result, the channel number on the ADSDeSER-50EVM or AFE5801EVM might be misleading. Table 1 provides channel-to-channel sequence matching between the ADSDeSER-50EVM and AFE5801EVM.

TADIE T. GIAIMEI-10-GHAMEI MAIGHING DELWEEN LIE AFEJOUTEVIM ANG ADJDEJER-JUEVI
--

AFE	FCLK	CH1	CH2	CH3	CH4	CH5	CH6	CH7	CH8	LCLK
Xilinx	FCLK	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	LCLK

For example, when an analog signal is input at CH1 on the AFE5801EVM, the corresponding 12-bit digital output will be seen at CH8 on the ADSDeSER-50EVM when the AFE5801 is configured as 8-channel mode.

3.5 Clock Selection

AFE5801 is typically clocked through a transformer-based circuit. Other options are also available if needed as shown in Figure 13.

Figure 13. Clock Selection Jumper Configurations: (a) Transformer (default); (b) Single-ended Clock; (c) Future CLK Input Option Based on U1. Both (b) and (c) Configurations Need Some Modifications on the PCB.

The clock source of the EVM could be the on-board clock 40MHz, HP8644 low jitter clock source, or external clock source. The best performance of this EVM is achieved when low-jitter clock source HP8644 is used. The P4, P5, P6 should be removed in order to disable the on-board clock.

When HP8644 or similar clock sources are not available, the on-board 40MHz clock is also a desirable source. The jumpers P4, 5, 6 should be configured as Figure 13 shows (i.e., default setup for AFE5801EVM). In this mode, the transform-based differential clock is used.

3.6 Data Analysis

Based on the data file acquired by a logic analyzer, the performance of AFE5801 can be evaluated.

In Appendix A, we provide one solution (TI TSW1250 EVM) to analyze the data file using the PC. Appendix B provides an alternate solution (TI TSW1100 software) to analyze the data file captured by a logic analyzer. Coherent sampling is recommended if the input and sampling clock are phase locked. Due to the frequency accuracy requirement of coherence sampling, two HP8644s for generating ADC clock and analog signal are required. For most users, this may not be feasible. Data analysis based on windowing is a more suitable approach.

Schematics, Layout, and, Bill of Materials

This chapter provides the schematics and layout of the AFE5801EVM as well as the bill of materials.

4.1 **Schematics**

4

Figure 14. Schematic Page 1

Schematics, Layout, and, Bill of Materials

Figure 17. Schematic Page 4

Schematics, Layout, and, Bill of Materials

INPUT CHANNELS C71 0.1uF C58 0.1uF R76 Oohms R48 Oohms CHSP сн1р T5 C70 0.1uF Τ1 R74 25.5ohms C57 0.1uf R46 25.5ohms 1% ADTT1-1 ADTT1-1 J5 C94 0.1uF л 🛪 BIAS2 <u>S</u> C56 BIAS1 Sec. R40 (UNINSTALLED PART C95 0.1uF R36 (UNINSTALLED PART аĿ 0.1uF CİÖI R75 25.50hms C102 0.1uF UNINSTALLED R47 - C60 10.1uF] 0.1u UNINSTALLED 25.5ohms 1% C72 0.1uF R49 Oohms C59 0.1uF CH1N 41 R77 Oohms R72 Oohms C62 0.1uF C74 0.1uF R52 Oohms СН2Р CH6P -11-T2 T6 C73 0.1uF C61 0.1uF R50 R70 25.5ohm: ADTT1-1 ADTT1-1 C82 25.5ohms 1% C93 0.1uF JZ X BIAS1 J6 C92 0.1uF <u>}</u> 0.1uF ه ال \diamond R37 (UNINSTALLED PART R41 (UNINSTALLED PART ļ ļ C103 0.1uF R71 R51 25.50 C83 0.1uF CİÓO 0.1uF UNINSTALLED UNINSTALLED 25.5ohms Т C63 0.1uF C75 0.1uF CH2N 41 4 R53 oohms R73 0ohms R68 0ohms R56 0ohms C65 0.1uF C77 0.1uF снэр +тэ C64 0.1uF R54 25.50hms 1% C76 0.1uf ADTT1-1 R66 25.5ohms 1% ADTT1-JB 🖓 +BIAS1 C84 0.1uF <u>}</u> J7 Ж 6 0 ر چ ∧ BIAS2 R38 R42 UNINSTALLED PART C104 R55 25.501 1% UNINSTALLED PART C85 R67 25.5oh 1% C99 0.1uF - C91 - 0.1uF 0.1uF UNINSTALLED UNINSTALLED C66 0.1uF C78 0.1uF СНЭМ R57 0ohms R60 0ohms R69 0ohms R64 0ohms 41 C68 0.1uF C80 0.1uF CH4P Т4 т8 C79 0.1uF C67 0.1uF R58 25.5ohms 1% R62 25.5ohm 1% ADTT1-1 ADTT1-1 C88 J4 >= 41 J8 ≻́ 41 C86 0.1uF وملكر -☆ BIAS1 0.1uF ⇔ <u>BIA</u>S2 R39 (UNINSTALLED PART (UNINSTALLED PART) чE 4 ļ C105 R59 25.5ohms 1% R63 25.5ohms 1% ⊥C87 ⊤0.1uF ⊥C89 ⊤0.1uF 0.1uF UNINSTALLED 0.1uF UNINSTALLED Ŧ C69 0.1uF C81 0.1uF R61 Oohms R65 0ohms

Figure 19. Schematic Page 6

4.2 PCB Layout

A six-layer printed-circuit board is used:

- Top Layer, signal ٠
- Inner Layer 1, ground
- Inner Layer 2, signal
- Inner Layer 3, power
- Inner Layer 4, ground .
- Bottom Layer, signal
- Top Silk Screen Layer
- Bottom Silk Screen Layer ٠

Figure 20. Top Layer Signal

Copyright © 2009–2011, Texas Instruments Incorporated

Figure 21. Inner Layer 1 Ground

Figure 22. Inner Layer 2 Signal

Figure 23. Inner Layer 3 Power

Figure 24. Inner Layer 4 Ground

Figure 25. Bottom Layer Signal

Schematics, Layout, and, Bill of Materials

Figure 26. Top Silk Screen Layer

Figure 27. Bottom Silk Screen Layer

4.3 Bill of Materials

ITEM	MFG	MFG PART#	REF DES	VALUE or FUNCTION
1		UNINSTALLED	C98–C105	Capacitor, SMT, 0402 Uninstalled
2	Kemet	C0402C104K8PAC	C1–C5, C8, C9, C12, C13, C16, C17, C19, C20, C24–C28, C31–C44, C46, C48–C53, C56–C95, C107–C114	Capacitor, SMT, 0402, Ceramic, 0.1µF, 10V, 10%, X5R
3	Murata	GRM155R60J225ME15D	C23	Capacitor, SMT, 0402, Ceramic, 2.2 µF, 6.3V, 20%, X5R
4	Panasonic	ECJ-1VB0J475K	C29	Capacitor, SMT, 0603, Ceramic, 4.7 µF, 6.3V, 10%, X5R
5	Panasonic	ECJ-1VB1A105K	C54, C55, C96, C106	Capacitor, SMT, 0603, Ceramic, 1.0 µF, 10V, 10%, X5R
6	Taiyo Yuden	JMK107BJ106MA-T	C21, C22	Capacitor, SMT, 0603, Ceramic, 10 µF, 6.3V, 20%, X5R
7	Murata	GRM31CR60J476ME19B	C30	Capacitor, SMT, Ceramic, 1206, 47 µF, 6.3V, 20%, X5R
8	Vishay Sprage	293D106X5035D2T	C97, C115	Capacitor, TAN, SMT, 10uF, 35V, ±5%, –55~85C
9	AVX	TPSC226K016R0375	C6, C7, C10, C11, C14, C15, C18, C45, C47	10%, 16V, 22µF
10	Samtec	SMA-J-P-X-ST-EM1	J1–J9	SMA Jack, Edge mount, 062PCB, Brass/Gold, Straight, 50 Ω
11	Samtec	SMA-J-P-H-ST-TH1	J10–J12	SMA Coax straight PCB Jack, SMT, 175TL, 50 Ω , Gold
12	KYCON	KMBX-SMT-5S-S-3OTR	P11	USB Connectors MINI-USB B-Type SCKT
13	Samtec	QTH-040-01-L-D-DP-A	P13	Connector, SMT, 80P, 0,5mm, FEM, DIFF Pair, Receptacle, 168H
14	Epson Toyocom	HF-372A	F1	(Customer Supply) Crystal filter miniature radio Equipment/IF
15	ТІ	CDCE62005	U1	CDCE62005 UNINSTALLED. TI supply
16	Not Installed	PAD0201(UN)	EP2, EP3	(Uninstalled Part) Empty pad, SMT, 0201
17	Murata	BLM15BD102SN1D	L9–L20	Ferrite bead, SMT, 0402, $1k\Omega$, 200 mA
18	Murata	BLM18EG601SN1D	L8	Ferrite bead, SMT, 0603,600 Ω at 100 MHz, 25%, 800 mA
19	Steward	HI0805R800R-00	L1–L7, L21, L22, L24–L26	Ferrite, SMT, 0805, 80 Ω at 100 MHz, 5 A
20	Steward	LI1206H151R-00	L23	Ferrite, SMT, 1206, 150 Ω at 100 MHz, 0.8 A
21	Molex	39357-0002	P10	Header, THRU, Power, 2P, 3.5MM, Eurostyle
22	Samtec	SSQ-104-02-F-D	P1	Header, THU, 8P, 2X4, 100LS, FEM, VERT, 194TL
23	Samtec	TSW-103-08-G-D	P2, P3	Header, THU, 6P, 2X3, male, dual row, 100LS, 200TL
24	Tyco Electronics	103321-2	P6, P9	Header w/shunt, 2P, 100LS
25	Molex	22-23-2021-P	P7	MALE, 2PIN, 0.100CC w/ friction lock
26	Mill-Max	350-10-103-00-006	P4, P5	Header, THU, MAL, 0.1LS, 3P, 1X3, 284H, 110TL
27	Molex	22-23-2041	P12	4P, VERT, Friction lock
28	Samtec	TSW-108-05-G-S	P8	Header, THU, 8P, 1X8, male, single row, 100LS, 130TL
29	ТІ	TPS79618DCQR	U5	Ultralow-noise HI PSRR Fast RF 1-A LDO Linear regulator, 1.8V
30	ТІ	TPS79633DCQR	U4	Ultralow-noise HI PSRR Fast RF 1-A LDO Linear regulator, 3.3V
31	ТІ	TPS79318DBV	U3 (UNINSTALLED)	1.8V,Ultralow-noise HI PSRR Fast RF 200 mA LDO Linear regulator
32	Future Technology Device Int.	FT245RL	U6	USB FIFO IC Incorporate FTDICHIP-ID Security dongle
33	Any	JUMPER,2P 0.100cc	EP5, EP6	Installed any brand 2PIN THU Jumper
34	Any	JUMPER,3P 0.100cc 123	P14, P15	Installed jumper, THU, 3P 0.100cc, 123
35	Panasonic	LNJ308G8PRA	LED1, LED4	LED, SMT, 0603, pure green, 2.03V
36	Panasonic	LNJ808R8ERA	LED2, LED3	LED, SMT, 0603, orange, 1.8V

AFE5801 8-Channel Variable Gain Amplifier (VGA) with Octal High-Speed ADC

Schematics, Layout, and, Bill of Materials

ITEM	MFG	MFG PART#	REF DES	VALUE or FUNCTION
37	ECS	ECS-3953M-400-BN	U2	OSC, SMT, 3.3V, 50ppm, -40~85C, 5nS, 40.000 MHz
38	Vishay	CRCW04021002F100	R28, R29, R30	Resistor, SMT, 0402, 10K, 1/16W, 1%, 100ppm
39	Panasonic	ERJ-2GE0R00X	R8, R10–R12, R15, R19, R20, R32, R44, R45, R48, R49, R52, R53, R56, R57, R60, R61, R64, R65, R68, R69, R72, R73, R76, R77, R79, R80	Resistor/jumper,SMT, 0402, 0 Ω, 5%, 1/16W
40	Panasonic	ERJ-2GEJ0000(UN)	R5, R7, R9, R14, R17, R18	(UNINSTALLED PART)
41	Panasonic	ERJ-2GEJ131	R21, R22	Resistor, SMT, 0402, thick film, 5%, 1/16W, 130
42	Panasonic	ERJ-2GEJ49R9(UN)	R25, R36–R43	(UNINSTALLED PART)
43	Panasonic	ERJ-2GEJ820	R23, R24	Resistor, SMT, 0402, thick film, 5%, 1/16W, 82
44	Panasonic	ERJ-2RKF1000X	R2, R3	Resistor, SMT, 0402, 100 Ω, 1%, 1/16W
45	Panasonic	ERJ-2RKF1001X	R4	Resistor, SMT, 0402, 1.00K, 1%, 1/16W
46	Panasonic	ERJ-2RKF25R5X	R46, R47, R50, R51, R54, R55, R58, R59, R62, R63, R66, R67, R70, R71, R74, R75	Resistor, SMT, 0402, 25.5 Ω, 1%, 1/16W
47	Panasonic	ERJ-2RKF3320X	R1, R6, R16	Resistor, SMT, 0402 332 Ω, 1%, 1/16W
48	Panasonic	ERJ-2RKF49R9X	R26, R27, R33	Resistor, SMT, 0402, 49.9 Ω, 1%, 1/16W
49	Panasonic	ERJ-3GSYJ100	R78	Resistor, SMT, 0603, 5%, 1/10W, 10
50	Vishay	CRCW08051002F	R31, R34, R35	Resistor, SMT, 0805, thick film, 1%, 1/8W, 10.0K
51	Panasonic	ERJ-6RQF5R1V	R13	Resistor, SMT, 0805, 1%, 1/8W, 5.1 Ω
52	Panasonic	ERJ-1GE0R00C	EP1, EP4	Resistor, SMT, 0201, thick film, 0 Ω , 5%,0 Ω Jumper, 1/20W
53	AFE5801	AFE5801	DUT1	AFE5801 Analog Front End. TI supplied.
54	ITT Industries	PTS635SK25SM	SW1	Switch, SMT, 2P, SPST-NO, 2.5mm Height, MOM, rectangular, 0.05A, 12V
55	Keystone Electronics	5005	TP1	Testpoint, THU, compact, 0.125LS, 130TL, red
56	Keystone Electronics	5006	TP2–TP6	Testpoint, THU, compact, 0.125LS, 130TL, black
57	Mini-Circuits	ADTT1-1	T1–T8	RF Transformer 0.03–300 MHz
58	Mini-Circuits	ADT1-6T	Т9	RF Transformer wideband, 0.03–125 MHz
59	PEM	KFS2-M2.5	PEM NUTS	UNINSTALLED
60	AMP	531220-2	P6, P9	SHUNT JUMPER 2POS

5 Typical Performance

This chapter provides some typical performance of the AFE5801EVM to assist users to verify their setup. A typical performance plot of the AFE5801 is shown in Figure 28 with 30dB digital gain setting.

(a)

(b)

Figure 28. Typical Performance of AFE5801. (a) Fixed Gain Mode; (b) Variable Gain Mode

Appendix A TSW1250 for Evaluating AFE5801

A.1 Introduction

This application report goes through the steps of evaluating the AFE501 using the TSW1250EVM.

A.2 Hardware Setup

Figure 29. Connection Between TSW1250EVM and AFE5801

Figure 30. Connection of the Instruments

A.3 Launch AFE5801 GUI

From PC click Start Menu \rightarrow All Programs \rightarrow Texas Instruments \rightarrow AFE5801EVM USB SPI \rightarrow AFE5801EVM USB SPI

The GUI may be running if the following screen appears:

Figure 31. AFE5801EVM GUI - RUN Mode

In case the GUI is not running, then press the START button of the GUI to run it.

Figure 32. AFE5801 EVM GUI - START Button

- Commands to the AFE5801 GUI:
- 1. Click Init for TSW1250 to set the proper condition to work with TSW1250EVM.
- 2. Go to "TGC Register " Tab.
- 3. Press Variable button to change the mode to Fixed.

General Register TGC Register	AFE5801	Ver 0.1 Build Date: 3/30/2009
GAIN MOLE Variable Fixed Gain (a) Coarse gain(dB) 6 Fine Gain(dB) 0	Variable Gain Non-Uniform Gain Start_Gain (dB) 0 Start_Index 250 Stop_Index 250	Load Reg Value from a specified file Load Reg Value Reg_value file reg_value1.txt REG_VALUE 0
IGC_Reg_EN Read Only Init for TSW1250 EXIT	Address Data Data Write AFE58X1EVM : OK	

Figure 33. AFE5801EVM GUI - Variable Gain

4. Type 30 and press Write button.

Figure 34. AFE5801EVM GUI - Setting Fixed Gain

At this stage the AFE5801 is ready.

A.4 Launch TSW1250 GUI

• Graphics User Interface (GUI)

TSW1250 provides a GUI for users to evaluate the performance of the device. When GUI is started, the screen of the following figure appears. There are five groups of the GUI:

- 1. Toolbar
- 2. Message Window
- 3. Device Specific Selections
- 4. Test Parameters
- 5. Central Pane and result data

Items 1, 3, and 4 are used to set up test conditions.

Items 2 and 5 are test results and status.

For details, see the TSW1250 User's Guide included in the CD.

Launch TSW1250 GUI

www.ti.com

Figure 35. User Interface: Initial Setup Screen

Test Condition

Perform the steps in the order indicated in the following figure to set the test conditions:

Device GUI	1. Select AFE5801								
🕀 Texas Instrument		т	SW 12	50 GUI					
TI ADC Selection	2. Enter 40M			indow Rectangular 💌					
	3 Enter 2M	Domain				Single Tone	FFT		_
Test Parameters		FF	te.				AC Results	Value	Unit Codes
40M ADC Input Fragoency (F 2(1	=c)					没 + ••	SINAD SFDR SFDR w/o 2,3 THD ENOB	3930 1324.70 2055.08 2055.00 2445.01	Codes Codes Codes Codes Codes
I6384	4. Select 16384						Time Domain Min Max St. Dev. News		
Auto Calculation of Coherent Input Prequence	5 Uncheck and then		7				Frequency Amplitude Distortion HD2 UD3		
lessage TSW1250 found on COM 1 wire serial 12bit framin	Check To calculate						HD4 HD5 Marker #1		
Firmware Ver= 1.03 Software Version = 1.04	coherent Frequency		1:	•			ADC Setup FFT Length Sample Rate BW Start BW End		
	-125.0-, i 24 34	4M 5M 6M 7	i am∕ sm⁄i ⊥ Freque	อ่พ 11่พ 12่พ 13่า ncy (Hz)	n เล่พ เร่พ เล่พ	17่ฟ 18่ฟ 19่ฟ 20่ฟ			
				Ver	1.04 8-25-2009 Build Da	we - 08/27/2009 9/23	3/2009 3:26:10 PM	ą	EADY

Figure 36. User Interface: Step-by-Step Setup

After completing the five steps indicated, the following figure appears:

Figure 37. User Interface: Frequency Load Value to Signal Generator

Take the ADC Input frequency, and set the frequency of the signal generator to the noted ADC Input frequency.

Set the Amplitude of the signal generator to -18 to -20 dBm (input amplitude should be between -1dBFS to -3dbFS)

Set the Frequency of the Clock Generator to 40 MHz.

Set the Amplitude of the Clock Generator to 13 dBm.

Figure 38. User Interface: Final Setup Screen

Now the user can select the test channel, select the test type by choosing the Single Tone Tab, or Time Domain Tab, and begin testing.

Single Tone FFT

The Single Tone FFT test is shown in Figure 39. The larger central pane displays the FFT power spectrum, whereas the calculated statistics are grouped into categories on the right of the screen. Settings and inputs relevant to the test are entered in drop-down menus or text input boxes on the left portion of the window.

Figure 39. User Interface: Single FFT Format

Time Domain

The Time Domain test is shown in Figure 40. The larger central pane displays the raw sampled data whereas the calculated statistics are grouped into categories on the right of the screen. Settings and inputs relevant to the test are entered in drop-down menus or text input boxes on the left portion of the window.

Figure 40. User Interface: Time Domain Format

• EXCEL

The raw test sampled data can be saved to a file and processed by EXCEL or some other software.

Appendix B TSW1100 for Evaluating AFE5801

B.1 Introduction

This appendix describes the use of TSW1100 software to analyze data files acquired by logic analyzers.

As mentioned before, coherent sampling is recommended when HP8644s are used. The calculation of coherent sampling rate and signal frequency can be found in the TSW1100 user manual at following website:

http://focus.ti.com/docs/toolsw/folders/print/tsw1100.html

Users can set the calculated frequencies for signal generators; acquire ADC data through a logic analyzer; and save the data as a txt file. Typical data file captured by logic analyzer should be modified to the following format (i.e., containing only one column):

Introduction

www.ti.com

The AFE5801 performance analysis can be done as follows:

• First of all, some header information should be added to the modified logic analyzer data file as per the following. Example files were included in the TSW1100 software package. Time, sampling rate, frequency, and 2's complement should be modified based on your setup. An example data file is listed below.

TSW1000 2/12/2007 12:38 Bits =12 Sampling Rate =40000000.000 Frequency in =1998291.0156 2s complement =No Data Format =Decimal Raw Captured Data: 1981

The TI chip should be selected as TSW1000 in the interface shown in Figure 42.

and the second se		18-	
TEXAS INS	TRUMENTS		
ADC Characteristics		0	
Chip () TSW1000	Number of Bits 12	-18-	
	2's Complement? OFF		
Waveform (Fin)	Clock (Fs)	-28-	
equency 1.99829102M Hz Sampling 40M Hz		-38-	
		-48-	
Capture	Capture Statistics	-50	
Data () Read from File	INT - May 3241		
Capture 2	Trigge Me P40	-68- 2	
Samples in File (Ns) 65536	dbF5 -4.67	-78-	
FFT Comp	outations	-88	
nd Harmonic 66.87 dBFS	SFDR 53.99 dBc	-98-	
rd Harmonic 58.67 dBFS	THD 57.98 dBFS		
th Harmonic 87.93 dBFS	SNR 62.91 dBFS	-180- Wilder and Marker and a same and the set of the state of the state of the set of t	المتحصين المارية والمتحد المتحد الألفين المتحدية المحمد المالية المقاد المارية والمقدما المراج
th Harmonic 75.65 dBFS	SNRD 56.77 dBFS	-118-	
lighest Spur 58.67 dBc	ENOB 9.138 bits		
Noise Ir	ntegration		ի հարինիներինը նուլել է որ է որ անություններին
Start Freq 0	(1 - 4)	8 1M 2M 3M 4M 5M 6M 7M 8M 9M 10	M 11M 12M 13M 14M 15M 16M 17M 18M 19M 20
Stop Freq 0 Inbe ADC	and Power 0 dBm	Power Spectrum 🗸 Plot Ocquire Data	Readback Progress 🔴 Save Data 🔴 Exil
stup Save File About			Status Message
Plot Y-Axis 0 dBFS	Remote control o Lab Instrument:	OFF S Calculate and use YES S FFT Window Type	None TSW1100 not detected. If using the TI Capture Card, please
Axis Mapping Linear		Calculate and use YES & # of Harmonia	cs in SNR 5 exit and ensure it's powered on and recognized in the Hardware Device
		5	Mode Manager before restarting application

Figure 42. TSW1100 Interface

- Finally, users should click *Acquire Data* button, select the txt file with header information, and see the analysis results.
- The 2s complement setting can be changed in the software based on your setting.

TSW1100 also supports to analyze non-coherent sampled data. However some artifacts may be noticed during analysis. Appropriate FFT window must be applied to the data.

Users could follow the steps described above to get the non-windowed analysis results first as show in Figure 43(a). After appropriate FFT window applied, the correct analysis results is shown in Figure 43(b). Note that some DC artifact is noticed in (b).

Figure 43. Analysis of Non-Coherent Sampled Data. (a) No window applied; (b) Hanning window applied.

EVALUATION BOARD/KIT IMPORTANT NOTICE

Texas Instruments (TI) provides the enclosed product(s) under the following conditions:

This evaluation board/kit is intended for use for **ENGINEERING DEVELOPMENT**, **DEMONSTRATION**, **OR EVALUATION PURPOSES ONLY** and is not considered by TI to be a finished end-product fit for general consumer use. Persons handling the product(s) must have electronics training and observe good engineering practice standards. As such, the goods being provided are not intended to be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including product safety and environmental measures typically found in end products that incorporate such semiconductor components or circuit boards. This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and therefore may not meet the technical requirements of these directives or other related directives.

Should this evaluation board/kit not meet the specifications indicated in the User's Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge.

EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.

Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI's environmental and/or safety programs, please contact the TI application engineer or visit www.ti.com/esh.

No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used.

FCC Warning

This evaluation board/kit is intended for use for **ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION PURPOSES ONLY** and is not considered by TI to be a finished end-product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment in other environments may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.

EVM WARNINGS AND RESTRICTIONS

It is important to operate this EVM within the supply voltage range of +5V.

Exceeding the specified input range may cause unexpected operation and/or irreversible damage to the EVM. If there are questions concerning the input range, please contact a TI field representative prior to connecting the input power.

Applying loads outside of the specified output range may result in unintended operation and/or possible permanent damage to the EVM. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative.

During normal operation, some circuit components may have case temperatures greater than . The EVM is designed to operate properly with certain components above as long as the input and output ranges are maintained. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors. These types of devices can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during operation, please be aware that these devices may be very warm to the touch.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2009-2011, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com	Wireless	www.ti.com/wireless-apps
RF/IF and ZigBee® Solutions	www.ti.com/lprf		

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated