

SLLSEF1A-SEPTEMBER 2013-REVISED SEPTEMBER 2013

4242-V_{PK} Small-Footprint and Low-Power Quad Channel Digital Isolator

Check for Samples: ISO7142CC

FEATURES

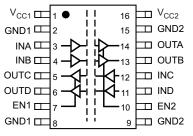
- Maximum Signaling Rate: 50 Mbps (with 5V Supplies)
- Robust Design With Integrated Noise Filter
- Low Power Consumption, Typical I_{CC} per Channel (with 3.3V Supplies):
 - 1.3 mA at 1 Mbps, 2.5 mA at 25 Mbps
- Wide Temperature Range: -55°C to 125°C
- 50 kV/µs Transient Immunity, Typical
- Long Life with SiO₂ Isolation Barrier
- Operates From 2.7 V, 3.3 V and 5 V Supply
- Small QSOP-16 Package

APPLICATIONS

- General-Purpose Isolation
 - Industrial Fieldbus
 - RS-232, RS-422, RS-485
 - Serial Peripheral Interface

SAFETY AND REGULATORY APPROVALS

- 2500 V_{RMS} Isolation for 1 minute per UL 1577 (Approved)
- 4242 V_{PK} Isolation per DIN EN 60747-5-2 (VDE 0884 Teil 2), 566 V_{PK} Working Voltage (Approved)
- CSA Component Acceptance Notice 5A (Approval Pending)
- IEC 60950-1 and IEC 61010-1 End Equipment Standards (Approval Pending)
- GB 4943.1-2011 and GB 8898:2011 CQC Certification (Approval Pending)


DESCRIPTION

ISO7142 provides galvanic isolation up to 2500 V_{RMS} for 1 minute per UL and 4242 V_{PK} per VDE. ISO7142 is a quad-channel isolator with two forward and two reverse-direction channels. This device is capable of maximum data rate of 50 Mbps with 5 V supplies and 40 Mbps with 3.3 V or 2.7 V supplies. ISO7142 has integrated filters on the inputs to support noise-prone applications.

Each isolation channel has a logic input and output buffer separated by a silicon dioxide (SiO_2) insulation barrier. Used in conjunction with isolated power supplies, this device prevents noise currents on a data bus or other circuits from entering the local ground and interfering with or damaging sensitive circuitry. This device has TTL input thresholds and can operate from 2.7 V, 3.3 V, and 5 V supplies.

DEVICE INFORMATION

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

ISO7142CC

SLLSEF1A-SEPTEMBER 2013-REVISED SEPTEMBER 2013

www.ti.com

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

			••••••	
INPUT V _{CC}	OUTPUT V _{CC}	INPUT (INx)	OUTPUT ENABLE (ENx)	OUTPUT (OUTx)
		Н	H or open	Н
	PU	L	H or open	L
PU	PU	Х	L	Z
		Open	H or open	Н
PD	PU	Х	H or open	Н
PD	PU	Х	L	Z
PU	PD	Х	Х	Undetermined

Table 1. FUNCTION TABLE⁽¹⁾

(1) PU = Powered Up ($V_{CC} \ge 2.7 V$); PD = Powered Down ($V_{CC} \le 2.1 V$); X = Irrelevant; H = High Level; L = Low Level; Z = High Impedance

AVAILABLE OPTIONS

PRODUCT	RATED ISOLATION	INPUT THRESHOLD	DEFAULT OUTPUT	MAX DATA RATE and INPUT FILTER	CHANNEL DIRECTION	ORDERING NUMBER
	(1)	1.5-V TTL		50 Mbps,	2 forward,	ISO7142CCDBQ (rail)
ISO7142CC	4242 V _{PK} ⁽¹⁾	(CMOS compatible)	High	with noise filter integrated	2 reverse	ISO7142CCDBQR (reel)

(1) See the REGULATORY INFORMATION section for detailed Isolation Ratings

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

PARAMETER				MIN	MAX	UNIT
Supply voltage ⁽²⁾	V _{CC1} , V _{CC2}	_{2C1} , V _{CC2}			6	V
Voltage	INx, OUTx, ENx				V _{CC} + 0.5	V
Output current	lo				±15	mA
	Human-body model	ESDA / JEDEC JS-001-2012			±4	kV
Electrostatic discharge	Field-induced charged device model	JEDEC JESD22-C101E	All pins		±1.5	kV
Maximum junction temperature	Тј				150	°C
Storage temperature	T _{STG}	T _{STG}			150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values except differential I/O bus voltages are with respect to the local ground terminal (GND1 or GND2) and are peak voltage values.

SLLSEF1A - SEPTEMBER 2013 - REVISED SEPTEMBER 2013

RECOMMENDED OPERATING CONDITIONS

PARAMETER		MIN	TYP	MAX	UNIT
V _{CC1} , V _{CC2}	Supply voltage	2.7		5.5	V
	High-level output current ($V_{CC} \ge 3.0 \text{ V}$)	-4			mA
I _{OH}	High-level output current (V _{CC} < 3.0 V)	-2			
I _{OL}	Low-level output current			4	mA
V _{IH}	High-level input voltage	2		V _{CC}	V
VIL	Low-level input voltage	0		0.8	V
	Input pulse duration ($V_{CC} \ge 4.5V$)	20			
t _{ui}	Input pulse duration ($V_{CC} < 4.5V$)	25			ns
4 / +	Signaling rate ($V_{CC} \ge 4.5V$)	0		50	Mana
1 / t _{ui}	Signaling rate (V _{CC} < 4.5V)	0		40	Mbps
TJ	Junction temperature			136	°C
T _A	Ambient temperature	-55	25	125	°C

THERMAL INFORMATION

	TUEDMA	L METRIC ⁽¹⁾	ISO7142CC	
	THERMA		DBQ (16 Pins)	UNIT
θ_{JA}	Junction-to-ambient thermal resistance		104.5	°C/W
$\theta_{JC(top)}$	Junction-to-case(top) thermal resista	57.8	°C/W	
θ_{JB}	Junction-to-board thermal resistance	46.8	°C/W	
Ψ _{JT}	Junction-to-top characterization para	meter	18.3	°C/W
Ψ_{JB}	Junction-to-board characterization pa	arameter	46.4	°C/W
$\theta_{JC(bottom)}$	Junction-to-case(bottom) thermal res	Junction-to-case(bottom) thermal resistance		°C/W
P _D	Device power dissipation	$V_{CC1} = V_{CC2} = 5.5 \text{ V}, T_J = 150^{\circ}\text{C}, C_L = 15 \text{ pF}$ Input a 25-MHz, 50% duty cycle square wave	170	mW

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

www.ti.com

ELECTRICAL CHARACTERISTICS

 V_{CC1} and V_{CC2} at 5 V ± 10% (over recommended operating conditions unless otherwise noted.)

PARAM	ETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V Lligh lovel output veltage		I _{OH} = -4 mA; see Figure 1	V_{CCx} ⁽¹⁾ – 0.5			V
V _{OH}	V _{OH} High-level output voltage	$I_{OH} = -20 \ \mu A$; see Figure 1	V_{CCx} ⁽¹⁾ – 0.1			V
V		I _{OL} = 4 mA; see Figure 1			0.4	V
V _{OL} Low-level output voltage	$I_{OL} = 20 \ \mu A$; see Figure 1			0.1	v	
V _{I(HYS)}	Input threshold voltage hysteresis			480		mV
I _{IH}	High-level input current	V _{IH} = V _{CC} at INx or ENx			10	
IIL	Low-level input current	$V_{IL} = 0 V$ at INx or ENx	-10			μA
CMTI	Common-mode transient immunity	$V_{I} = V_{CC}$ or 0 V; see Figure 4	25	70		kV/µs

(1) V_{CCx} is the supply voltage, V_{CC1} or V_{CC2} , for the output channel that is being measured.

SWITCHING CHARACTERISTICS

 V_{CC1} and V_{CC2} at 5 V ± 10% (over recommended operating conditions unless otherwise noted.)

PARAME	TER	TEST CONDITIONS	MIN	TYP	МАХ	UNIT
t _{PLH} , t _{PHL}	Propagation delay time		15	21	38	
PWD ⁽¹⁾	Pulse width distortion t _{PHL} – t _{PLH}	See Figure 1			3.5	
. (2)	Channel-to-channel output skew time				1.5	ns
t _{sk(0)} ⁽²⁾	(0)	Opposite-direction channels			6.5	
t _{sk(pp)} ⁽³⁾	Part-to-part skew time				14	
t _r	Output signal rise time			2.5		
t _f	Output signal fall time	See Figure 1		2.1		ns
t _{PHZ} , t _{PLZ}	Disable propagation delay, high/low-to-high impedance output			7	12	
t _{PZH}	Enable propagation delay, high impedance-to-high output	See Figure 2		6	12	ns
t _{PZL}	Enable propagation delay, high impedance-to-low output			12	23	us
t _{fs}	Fail-safe output delay time from input data or power loss	See Figure 3		8		μs
t _{GR}	Input glitch rejection time			9.5		ns

(1) Also known as pulse skew

 t_{sk(0)} is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads.

(3) t_{sk(pp)} is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals, and loads.

SUPPLY CURRENT

 V_{CC1} and V_{CC2} at 5 V ± 10% (over recommended operating conditions unless otherwise noted.)

PARAMETER	TEST CONDITIO	TEST CONDITIONS			MAX	UNIT
I _{CC1} , I _{CC2}	Disable	EN = 0 V		0.8	1.6	
I _{CC1} , I _{CC2}	DC to 1 Mbps			3.3	5	
I _{CC1} , I _{CC2}	10 Mbps	DC Signal: $V_I = V_{CC}$ or 0 V,		4.9	7	mA
I _{CC1} , I _{CC2}	25 Mbps	AC Signal: All channels switching with square wave clock input; $C_{I} = 15 \text{ pF}$		7.3	10	
I _{CC1} , I _{CC2}	50 Mbps			11.1	14.5	

www.ti.com

ELECTRICAL CHARACTERISTICS

V_{CC1} and V_{CC2} at 3.3 V ± 10% (over recommended operating conditions unless otherwise noted.)

PARAME	ETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		I _{OH} = -4 mA; see Figure 1	V_{CCx} ⁽¹⁾ – 0.5			V
V _{OH}	H High-level output voltage	$I_{OH} = -20 \ \mu A$; see Figure 1	V_{CCx} ⁽¹⁾ – 0.1			V
M	Low-level output voltage	I _{OL} = 4 mA; see Figure 1			0.4	V
V _{OL} Low-level output ve	Low-level output voltage	I _{OL} = 20 μA; see Figure 1			0.1	V
V _{I(HYS)}	Input threshold voltage hysteresis			460		mV
I _{IH}	High-level input current	$V_{IH} = V_{CC}$ at INx or ENx			10	
IIL	Low-level input current	V _{IL} = 0 V at INx or ENx	-10			μA
CMTI	Common-mode transient immunity	$V_{I} = V_{CC} \text{ or } 0 \text{ V}; \text{ see Figure 4}$	25	50		kV/µs

(1) V_{CCx} is the supply voltage, V_{CC1} or V_{CC2} , for the output channel that is being measured.

SWITCHING CHARACTERISTICS

 V_{CC1} and V_{CC2} at 3.3 V ± 10% (over recommended operating conditions unless otherwise noted.)

PARAMETER	R	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH} , t _{PHL}	Propagation delay time		16	25	46	
PWD ⁽¹⁾	Pulse-duration distortion t _{PHL} - t _{PLH}	See Figure 1			3	
		Same-direction Channels			2	ns
t _{sk(0)} ⁽²⁾	Channel-to-channel output skew time	Opposite-direction Channels			6.5	113
t _{sk(pp)} ⁽³⁾	Part-to-part skew time				21	
t _r	Output signal rise time			3		
t _f	Output signal fall time	See Figure 1		2.5	ns	
t _{PHZ} , t _{PLZ}	Disable propagation delay, from high/low to high-impedance output			9	14	
t _{PZH}	Enable propagation delay, from high- impedance to high output	See Figure 2		9	17	ns
t _{PZL}	Enable propagation delay, from high- impedance to low output			12	24	us
t _{fs}	Fail-safe output delay time from input data or power loss	See Figure 3		7		μs
t _{GR}	Input glitch rejection time			11		ns

(1) Also known as pulse skew

(2) t_{sk(0)} is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads.

(3) t_{sk(pp)} is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads.

SUPPLY CURRENT

 V_{CC1} and V_{CC2} at 3.3 V ± 10% (over recommended operating conditions unless otherwise noted.)

PARAMETER	TEST CONDITION	TEST CONDITIONS			MAX	UNIT
I _{CC1} , I _{CC2}	Disable	EN1 = EN2 = 0 V		0.5	1	
I _{CC1} , I _{CC2}	DC to 1 Mbps			2.5	4	
I _{CC1} , I _{CC2}	10 Mbps	DC signal: $V_1 = V_{CC}$ or 0 V		3.5	5	mA
I _{CC1} , I _{CC2}	25 Mbps	AC signal: All channels switching with square-wave clock input; $C_1 = 15 \text{ pF}$		5	7	
I _{CC1} , I _{CC2}	40 Mbps	···		6.5	10	

www.ti.com

STRUMENTS

EXAS

ELECTRICAL CHARACTERISTICS

V_{CC1} and V_{CC2} at 2.7 V (over recommended operating conditions unless otherwise noted.)

PARAME	TER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
M	Lligh lovel output voltage	I _{OH} = -2 mA; see Figure 1	V_{CCx} ⁽¹⁾ – 0.3			V	
V _{OH}	High-level output voltage	$I_{OH} = -20 \ \mu A$; see Figure 1	V_{CCx} ⁽¹⁾ – 0.1			V	
V		I _{OL} = 4 mA; see Figure 1			0.4	V	
V _{OL}	OL Low-level output voltage	I _{OL} = 20 μA; see Figure 1			0.1	V	
V _{I(HYS)}	Input threshold voltage hysteresis			360		mV	
I _{IH}	High-level input current	$V_{IH} = V_{CC}$ at INx or ENx			10		
IIL	Low-level input current	V _{IL} = 0 V at INx or ENx	-10			μA	
CMTI	Common-mode transient immunity	$V_{I} = V_{CC}$ or 0 V; see Figure 4	25	45		kV/µs	

(1) V_{CCx} is the supply voltage, V_{CC1} or V_{CC2} , for the output channel that is being measured.

SWITCHING CHARACTERISTICS

 V_{CC1} and V_{CC2} at 2.7 V (over recommended operating conditions unless otherwise noted.)

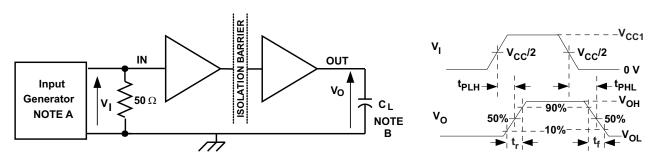
PARAMETE	R	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH} , t _{PHL}	Propagation delay time		18	28	50	
PWD ⁽¹⁾	Pulse-duration distortion t _{PHL} - t _{PLH}	See Figure 1			3	
		Same-direction Channels			3	ns
t _{sk(o)} ⁽²⁾	Channel-to-channel output skew time	Opposite-direction Channels			8.5	110
t _{sk(pp)} ⁽³⁾	Part-to-part skew time				24	
t _r	Output signal rise time			3.5		
t _f	Output signal fall time	See Figure 1		2.8		ns
t _{PHZ} , t _{PLZ}	Disable propagation delay, from high/low to high- impedance output			10	15	
t _{PZH}	Enable propagation delay, from high-impedance to high output	See Figure 2		10	19	ns
t _{PZL}	Enable propagation delay, from high-impedance to low output			12	23	us
t _{fs}	Fail-safe output delay time from input data or power loss	See Figure 3		7		μs
t _{GR}	Input glitch rejection time			12		ns

(1) Also known as pulse skew

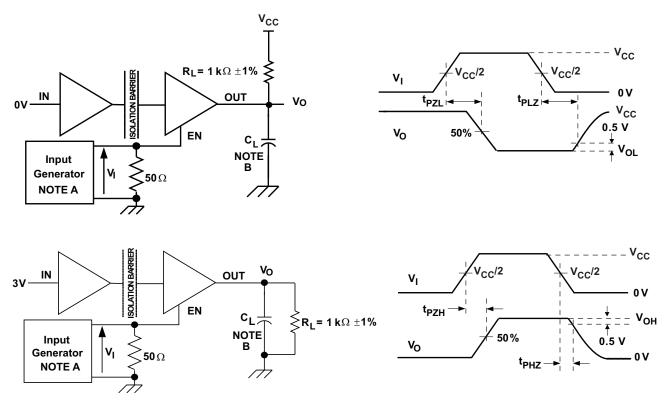
(2) $t_{sk(0)}$ is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads.

(3) t_{sk(pp)} is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals, and loads.

SUPPLY CURRENT

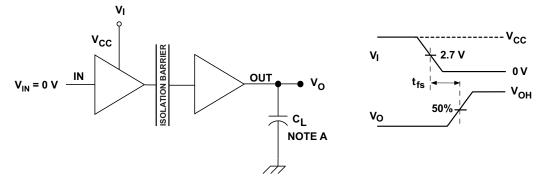

V_{a} and V_{a} at 2.7 V	(over recommended operating conditions unless otherwise noted.)
v_{CC1} and v_{CC2} at 2.7 v	(over recommended operating conditions unless otherwise noted.)

001 002	`	1 5				
PARAMETER	TEST CONDITI	ONS	MIN	TYP	MAX	UNIT
I _{CC1} , I _{CC2}	Disable	EN1 = EN2 = 0 V		0.4	0.8	
I _{CC1} , I _{CC2}	DC to 1 Mbps			2.2	3.5	
I _{CC1} , I _{CC2}	10 Mbps	DC signal: $V_I = V_{CC}$ or 0 V		3	4.2	mA
I _{CC1} , I _{CC2}	25 Mbps	AC signal: All channels switching with square-wave clock input; $C_{I} = 15 \text{ pF}$		4.2	5.5	
I _{CC1} , I _{CC2}	40 Mbps			5.4	7.5	


www.ti.com

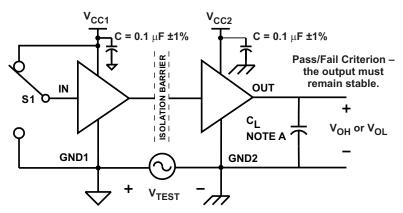
PARAMETER MEASUREMENT INFORMATION

- A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 50 kHz, 50% duty cycle, t_r \leq 3 ns, t_f \leq 3 ns, t_f \leq 3 ns, Z_O = 50 Ω . At the input, a 50- Ω resistor is required to terminate the input-generator signal. It is not needed in an actual application.
- B. $C_L = 15 \text{ pF}$ and includes instrumentation and fixture capacitance within ±20%.



- A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 50 kHz, 50% duty cycle, t_r \leq 3 ns, t_f \leq 3 ns, Z₀ = 50 Ω.
- B. $C_L = 15 \text{ pF}$ and includes instrumentation and fixture capacitance within ±20%.

Figure 2. Enable/Disable Propagation Delay-Time Test Circuit and Waveform


SLLSEF1A-SEPTEMBER 2013-REVISED SEPTEMBER 2013

PARAMETER MEASUREMENT INFORMATION (continued)

A. $C_L = 15 \text{ pF}$ and includes instrumentation and fixture capacitance within ±20%.

A. $C_L = 15 pF$ and includes instrumentation and fixture capacitance within ±20%.

SLLSEF1A-SEPTEMBER 2013-REVISED SEPTEMBER 2013

DEVICE INFORMATION

INSULATION AND SAFETY-RELATED SPECIFICATIONS

PARA	METER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
V _{IOTM}	Maximum transient overvoltage				4242	V _{PK}	
VIORM	Maximum working voltage				566	V _{PK}	
V	Isolation voltage per UL 1577	V _{TEST} = V _{ISO} , 60 sec (qualification)			2500	V _{RMS}	
V _{ISO}		V _{TEST} = 1.2 * V _{ISO} , 1 sec (100% production)			3000	V _{RMS}	
		After Input/Output safety test subgroup 2/3, $V_{PR} = V_{IORM} \times 1.2$, t = 10 s, Partial discharge < 5 pC			679		
V _{PR}	Input-to-output test voltage	Method a, After environmental tests subgroup 1, $V_{PR} = V_{IORM} \times 1.6$, t = 10 s, Partial discharge < 5 pC		906		V _{PK}	
		Method b1, 100% production test, $V_{PR} = V_{IORM} \times 1.875$, t = 1 s, Partial discharge < 5 pC			1061		
L(I01)	Minimum air gap (clearance)	Shortest terminal to terminal distance through air	3.7			mm	
L(102)	Minimum external tracking (creepage)	Shortest terminal to terminal distance across the package surface	3.7			mm	
	Minimum internal gap (internal clearance)	Distance through the insulation	0.014			mm	
	Pollution degree			2			
СТІ	Tracking resistance (comparative tracking index)	DIN IEC 60112 / VDE 0303 Part 1	≥400			V	
D (1)		V _{IO} = 500 V, T _A < 100°C		>10 ¹²		0	
R _{IO} ⁽¹⁾	Isolation resistance, input to output	$V_{IO} = 500 \text{ V}, \ 100^{\circ}\text{C} \le \text{T}_{A} \le \text{max}$		>10 ¹¹		Ω	
$C_{IO}\ ^{(1)}$	Barrier capacitance, input to output	V _I = 0.4 sin (2πft), f = 1 MHz		2.4		pF	
C _I ⁽²⁾	Input capacitance	$V_1 = V_{CC}/2 + 0.4 \text{ sin } (2\pi \text{ft}), \text{ f} = 1 \text{ MHz}, V_{CC} = 5 \text{ V}$		2		pF	

(1) All pins on each side of the barrier tied together creating a two-terminal device.

(2) Measured from input data pin to ground.

NOTE

Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed circuit board do not reduce this distance.

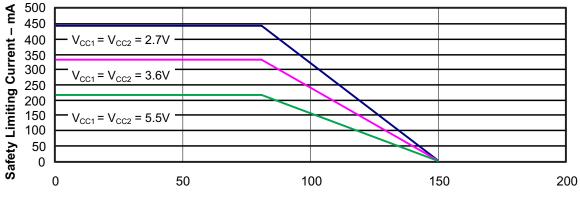
Creepage and clearance on a printed circuit board become equal in certain cases. Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these specifications.

PARAMETER	TEST CONDITIONS	SPECIFICATION
Basic Isolation Group	Material Group	Ш
	Rated mains voltage ≤ 150 V _{RMS}	I–IV
Installation classification	Rated mains voltage ≤ 300 V _{RMS}	I–III
	Rated mains voltage ≤ 400 V _{RMS}	I–II

Table 2. IEC 60664-1 RATINGS TABLE

REGULATORY INFORMATION

VDE	UL	CSA	CQC
Certified according to DIN EN 60747-5-2	Recognized under 1577 Component Recognition Program	Approved under CSA Component Acceptance Notice	Certified according to GB 4943.1-2011 and GB 8898:2011
Basic Insulation Maximum Transient Overvoltage, 4242 V _{PK} Maximum Working Voltage, 566 V _{PK}	Single protection, 2500 V_{RMS} ⁽¹⁾	Basic Insulation per IEC 60950-1 (2nd Ed.), and IEC 61010-1 (3rd Ed.)	Basic Insulation, Altitude ≤ 5000m, Tropical climate, 250 V _{RMS} maximum working voltage.
File number: 40016131	File number: E181974	File number: Pending	Report Number: Pending


(1) Production tested \geq 3000 Vrms for 1 second in accordance with UL 1577.

IEC SAFETY LIMITING VALUES

Safety limiting intends to prevent potential damage to the isolation barrier upon failure of input or output circuitry. A failure of the IO can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat the die and damage the isolation barrier, potentially leading to secondary system failures.

PARAMETER		TEST CO	TEST CONDITIONS			MAX	UNIT
			$\theta_{JA} = 104.5^{\circ}C/W, V_I = 5.5V, T_J = 150^{\circ}C, T_A = 25^{\circ}C$			217	
I _S	Safety input, output, or supply current	DBQ-16	$\theta_{JA} = 104.5^{\circ}C/W, V_I = 3.6V, T_J = 150^{\circ}C, T_A = 25^{\circ}C$			332	mA
			$\theta_{JA} = 104.5^{\circ}C/W, V_{I} = 2.7V, T_{J} = 150^{\circ}C, T_{A} = 25^{\circ}C$			443	
T_S	Maximum case temperature					150	°C

The safety-limiting constraint is the absolute-maximum junction temperature specified in the *Absolute Maximum Ratings* table. The power dissipation and junction-to-air thermal impedance of the device installed in the application hardware determines the junction temperature. The assumed junction-to-air thermal resistance in the *Thermal Information* table is that of a device installed on a high-K test board for leaded surface-mount packages. The power is the recommended maximum input voltage times the current. The junction temperature is then the ambient temperature plus the power times the junction-to-air thermal resistance.

Case Temperature – °C

Figure 5. DBQ-16 θ_{JC} Thermal Derating Curve

SLLSEF1A - SEPTEMBER 2013 - REVISED SEPTEMBER 2013

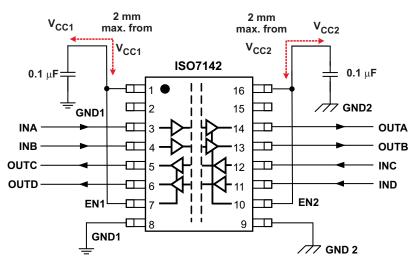


Figure 6. Typical Application Circuit for ISO7142

Note: For detailed layout recommendations, see Application Note SLLA284, Digital Isolator Design Guide.

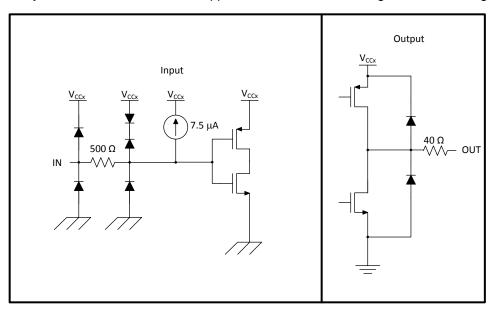
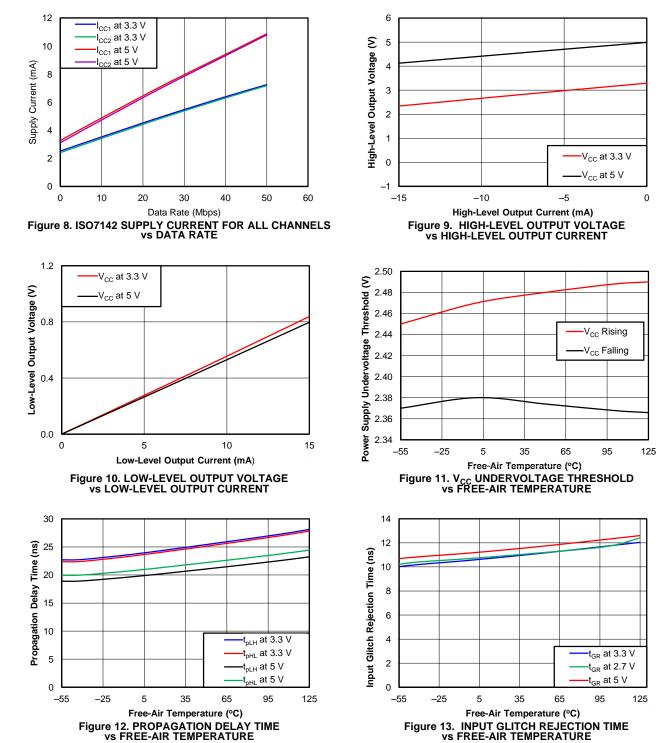



Figure 7. Device I/O Schematics

TEXAS INSTRUMENTS

www.ti.com

TYPICAL CHARACTERISTICS

ISO7142CC

SLLSEF1A-SEPTEMBER 2013-REVISED SEPTEMBER 2013

www.ti.com

TYPICAL CHARACTERISTICS (continued)

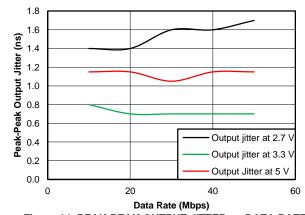


Figure 14. PEAK-PEAK OUTPUT JITTER vs DATA RATE

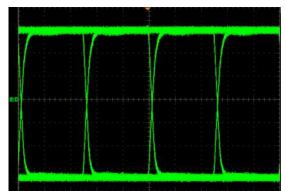


Figure 16. TYPICAL EYE DIAGRAM AT 40 MBPS, PRBS 2¹⁶ - 1, 3.3-V OPERATION

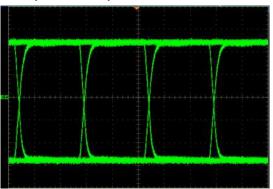


Figure 15. TYPICAL EYE DIAGRAM AT 40 MBPS, PRBS 2¹⁶ - 1, 2.7-V OPERATION

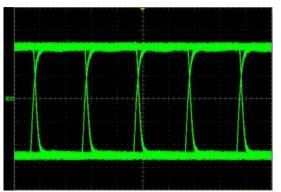


Figure 17. TYPICAL EYE DIAGRAM AT 50 MBPS, PRBS 2¹⁶ - 1, 5-V OPERATION

REVISION HISTORY

Cł	hanges from Original (September 2013) to Revision A	Page
•	Deleted the MIN value of –55°C from T _J in the RECOMMENDED OPERATING CONDITIONS table	3
•	Changed the TYP value of C ₁ From: 3.5 To: 2 pF in the INSULATION AND SAFETY-RELATED SPECIFICATIONS table	9
•	Changed the CSA column description for Basic Insulation	10
•	Changed Figure 7	11

www.ti.com

10-Nov-2013

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
ISO7142CCDBQ	ACTIVE	SSOP	DBQ	16	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	7142C	Samples
ISO7142CCDBQR	ACTIVE	SSOP	DBQ	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	7142C	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

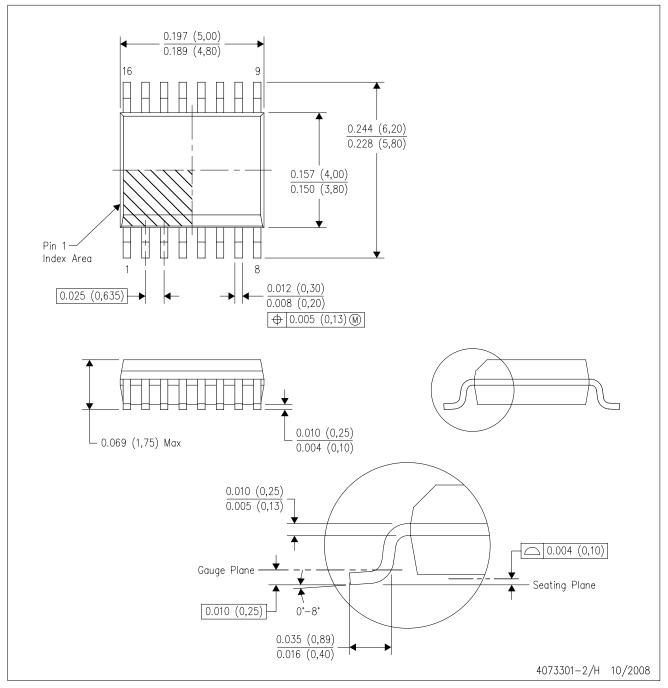
⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


PACKAGE OPTION ADDENDUM

10-Nov-2013

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

DBQ (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15) per side.

D. Falls within JEDEC MO-137 variation AB.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated