

MSP430F5324 Device Erratasheet

1 Revision History

✓ The check mark indicates that the issue is present in the specified revision.

The revision of the device can be identified by the revision letter on the Package Markings or by the HW_ID located inside the TLV structure of the device

Errata Number		Y	↑	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
ADC25	√	✓	✓	✓
BSL7	✓	✓	✓	✓
BSL12	✓			
CPU26	✓	✓	✓	✓
CPU27	✓	✓	✓	✓
CPU28	✓	✓	✓	✓
CPU29	✓	✓	✓	✓
CPU30	✓	✓	✓	✓
CPU31	✓	✓	✓	✓
CPU32	✓	✓	✓	✓
CPU33 CPU34	✓	✓	✓	✓
CPU34	✓	✓	✓	✓
CPU35	✓	✓	✓	✓
CPU37	✓	✓	✓	✓
CPU39	✓	✓	✓	✓
CPU40	✓	✓	✓	✓
CPU43	✓	✓	✓	✓
DMA4	✓	✓	✓	✓
DMA8	✓	✓	✓	✓
DMA10	✓	✓	✓	√
EEM9	✓	✓	✓	√
EEM11	✓	✓	✓	✓
EEM13	✓	✓	✓	✓
EEM14	✓	✓	✓	✓
EEM15	✓	✓	✓	√
EEM16	✓	✓	✓	✓
EEM17	✓	✓	✓	✓
EEM19	✓	✓	✓	✓
EEM17 EEM19 EEM21 EEM23 FLASH33 FLASH34	✓	✓		✓
EEM23	✓	✓	✓	✓
FLASH33	✓	✓	✓	✓
FLASH34	✓	✓	✓	✓
JIAG20	✓	✓	✓	✓
LDO1			✓	✓

Revision History www.ti.com

•				
Errata Number	V	Y	V V V V V V V V V V V V V V V V V V V	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
MPY1	✓	✓	✓	✓
PMAP1	✓	✓	✓	✓
PMM9	✓	✓	✓	✓
PMM11	✓	✓	✓	✓
PMM12	✓	✓	✓	✓
PMM14	✓	✓	✓	✓
PMM15	✓	✓	✓	✓
DMM18	✓	✓	✓	✓
PMM20	✓	✓	✓	✓
PMM20 PORT15 PORT16 PORT19	✓	✓	✓	✓
PORT16	✓	✓	✓	✓
PORT19	✓	✓	✓	✓
RTC3 RTC6	✓	✓	✓	✓
RTC6	✓	✓	✓	✓
SYS16 SYS18	✓	✓	✓	✓
SYS18	✓	✓	✓	✓
TAB23 UCS6	✓	✓	✓	✓
UCS6			✓	✓
UCS7 UCS9	✓	✓	✓	✓
UCS9	✓	✓	✓	✓
UCS11	✓	✓	✓	✓
USCI26	✓	✓	✓	✓
USCI30	✓	✓	✓	✓
USCI31	✓	✓	✓	✓
USCI34	✓	✓	✓	✓
USCI35	✓	✓	✓	✓
WDG4	√	✓	✓	✓

www.ti.com Package Markings

2 **Package Markings**

PN80

LQFP (PN), 80 Pin

YM = Year and Month Date Code LLLL = LOT Trace Code

= Assembly Site Code

= DIE Revision

= PIN 1

Rev#

YM = Year and Month Date Code

LLLL = LOT Trace Code S

= Assembly Site Code

= DIE Revision

= PIN 10

RGC64

QFN (RGC), 64 pin

 $\circ_{M430Fxxx}$

TI YMS LLLL # ΤI = TI

YM = Year and Month Date Code

LLLL = LOT Trace Code

S = Assembly Site Code = DIE Revision

#

= PIN 1

0 M430Fxxxx

> TI YMS # LLLL G4

ΤI = TI

YM = Year and Month Date Code

LLLL = LOT Trace Code S = Assembly Site Code

= DIE Revision

= PIN 1

 $MSP430^{TM}$

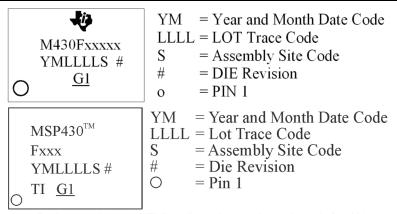
Fxxx TI YMS# LLLL G4

= Year and Month Date Code

= Assembly Site Code = Die Revision

LLLL = Lot Trace Code

= Pin 1


Note: Package marking with "TM" applies only to devices released after 2011.

ZQE80

BGA (ZQE), 80 pin

TLV Hardware Revision www.ti.com

Note: Package marking with "TM" applies only to devices released after 2011.

3 TLV Hardware Revision

Die Revision	TLV Hardware Revision
Rev I	18h
Rev H	17h
Rev G	16h
Rev F	15h

Further guidance on how to locate the TLV structure and read out the HW_ID can be found in the device User's Guide.

4 Detailed Bug Description

ADC25 ADC12 A Module

Function Write to ADC12CTL0 triggers ADC12 when CONSEQ = 00

Description

If ADC conversions are triggered by the Timer_B module and the ADC12 is in single-channel single-conversion mode (CONSEQ = 00), ADC sampling is enabled by write access to any bit(s) in the ADC12CTL0 register. This is contrary to the expected

behavior that only the ADC12 enable conversion bit (ADC12ENC) triggers a new ADC12

sample.

Workaround When operating the ADC12 in CONSEQ=00 and a Timer B output is selected as the

sample and hold source, temporarily clear the ADC12ENC bit before writing to other bits in the ADC12CTL0 register. The following capture trigger can then be re-enabled by

setting ADC12ENC = 1.

BSL7 BSL Module

Function BSL does not start after waking up from LPMx.5

Description When waking up from LPMx.5 mode, the BSL does not start as it does not clear the

Lock I/O bit (LOCKLPM5 bit in PM5CTL0 register) on start-up.

Workaround 1. Upgrade the device BSL to the latest version (see Creating a Custom Flash-Based

Bootstrap Loader (BSL) Application Note - SLAA450 for more details)

OR

2. Do not use LOCKLPM5 bit (LPMx.5) if the BSL is used but cannot be upgraded.

BSL12 BSL Module

Function BSL invoke

Description When externally invoking BSL according SLAU319 chapter 1.3.3. a critical setup time

may not be met. In this case the BSL will not start. The pass/fail condition is

temperature-dependent, where if a unit passes at a certain temperature, it will always

pass at the same or higher temperature condition.

Workaround

1. Invoke the BSL from the application code and ensure VCore is set to level 2 or 3 prior

to BSL entry.

OR

2. Update the device BSL. The CustomBSL source code implements the fix for this errata in versions 1.00.05.00 and newer. The CustomBSL package can be download at

Custom BSL package

CPU26 CPUXv2 Module

Function CALL SP does not behave as expected

Description When the intention is to execute code from the stack, a CALL SP instruction skips the

first piece of data (instruction) on the stack. The second piece of data at SP+2 is used as

the first executable instruction.

Workaround Write the op code for a NOP as the first instruction on the stack. Begin the intended

subroutine at address SP + 2.

CPU27 CPUXv2 Module

Function Program Counter (PC) is corrupted during the context save of a nested interrupt

Description When a low power mode is entered within an interrupt service routine that has enabled

nested interrupts (by setting the GIE bit), and the instruction that sets the low power mode is directly followed by a RETI instruction, an incorrect value of PC + 2 is pushed to the stack during the context save. Hence, the RETI instruction is not executed on return

from the nested interrupt and the PC becomes corrupted.

Workaround Insert a NOP or __no_operation() intrinsic function between the instruction that sets the

lower power mode and the RETI instruction.

CPU28 CPUXv2 Module

Function PC is corrupted when using certain extended addressing mode combinations

Description An extended memory instruction that modifies the program counter executes incorrectly

when preceded by an extended memory write-back instruction under the following conditions:

First instruction:

2-operand instruction, extended mode using (register,index), (register,absolute), OR

(register,symbolic) addressing modes

Second instruction:

2-operand instruction, extended mode using the (indirect,PC), (indirect auto-

increment, PC), OR (indexed [with ind 0], PC) addressing modes

Example:

BISX.A R6,&AABCD

ANDX.A @R4+,PC

Workaround 1. Insert a NOP or a __no_operation() intrinsic function between the two instructions

Or

2. Do not use an extended memory instruction to modify the PC

CPU29 CPUXv2 Module

Function Using a certain instruction sequence to enter low power mode(s) affects the instruction

width of the first instruction in an NMI ISR

DescriptionIf there is a pending NMI request when the CPU enters a low power mode (LPMx) using an instruction of Indexed source addressing mode, and that instruction is followed by a

20-bit wide instruction of Register source and destination addressing modes, the first

instruction of the ISR is executed as a 20-bit wide instruction.

Example:

main:

...

MOV.W [indexed],SR; Enter LPMx

MOVX.A [register], [register]; 20-bit wide instruction

...

ISR_start:

MOV.B [indexed], [register]; ERROR - Executed as a 20-bit instruction!

Note: [] indicates addressing mode

Workaround

1. Insert a NOP or a __no_operation() intrinsic function following the instruction that enters the LPMx using indexed addressing mode

OR

2. Use a NOP or a __no_operation() intrinsic function as first instruction in the ISR

OR

3. Do not use the indexed mode to enter LPMx

CPU₃₀

CPUXv2 Module

Function

ADDA, SUBA, CMPA [immediate], PC behave as if immediate value were offset by -2

Description

The extended address instructions ADDA, SUBA, CMPA in immediate addressing mode are represented by 4-bytes of opcode (see the MSP430F5xx Family User's Guide MSP430F5xx Family User's Guide for more details). In cases where the program counter (PC) is used as the destination register only 2 bytes of the current instruction's 4-byte opcode are accounted for in the PC value. The resulting operation executes as if the immediate value were offset by a value of -2.

Ideal: ADDA #Immediate-4, PC

...is equivalent to...

Actual: ADDA #Immediate-2, PC

** NOTE: The MOV instruction is not affected **

Workaround

1) Modify immediate value in software to account for the offset of 2.

OR

2) Use extended 20-bit instructions (addx.a, subx.a, cmpx.a).

CPU31

CPUXv2 Module

Function

SP corruption

Description

When the instruction PUSHX.A is executed using the indirect auto-increment mode with the stack pointer (SP) as the source register [PUSHX.A @SP+] the SP is consequently corrupted. Instead of decrementing the value of the SP by four, the value of the SP is replaced with the data pointed to by the SP previous to the PUSHX.A instruction execution.

Workaround

None. The compiler will not generate a PUSHX.A instruction that involves the SP.

CPU32

CPUXv2 Module

Function

CALLA PC executes incorrectly

Description

When the instruction CALLA PC is executed, the program counter (PC) that is pushed onto the stack during the context save is incorrectly offset by a value of -2.

Workaround

None. The compiler will not generate a CALLA PC instruction.

CPU33

CPUXv2 Module

Function

CALLA [indexed] may corrupt the program counter

Description

When the Stack Pointer (SP) is used as the destination register in the CALLA index(Rdst) instruction and is preceded by a PUSH or PUSHX instruction in any of the following addressing modes: Absolute, Symbolic, Indexed, Indirect register or Indirect auto increment, the "index" of the CALLA instruction is not sign extended to 20-bits and is always treated as a positive value. This causes the Program Counter to be set to a wrong address location when the index of the CALLA instruction represents a negative offset.

NOTE:

- 1. This erratum only applies when the instruction sequence is: PUSH or PUSHX followed by CALLA index(SP)
- 2. This erratum does not apply if the PUSH or PUSHX instruction is used in the Register or Immediate addressing mode
- 3. This erratum only applies when SP is used as the destination register in the CALLA index(Rdst) instruction

Workaround

Place a "NOP" instruction in between the PUSH or PUSHX and the CALLA index(SP) instructions.

NOTE: This bug has no compiler impact as the compiler will not generate a CALLA instruction that uses indexed addressing mode with the SP.

CPU34

CPUXv2 Module

Function

CPU may be halted if a conditional jump is followed by a rotate PC instruction

Description

If a conditional jump instruction (JZ, JNZ, JC, JNC, JN, JGE, JL) is followed by an Address Rotate instruction on the PC (RRCM, RRAM, RLAM, RRUM) and the jump is not performed, the CPU is halted.

Workaround

Insert a NOP between the conditional jump and the rotate PC instructions.

CPU35

CPUXv2 Module

Function

Instruction BIT.B @Rx,PC uses the wrong PC value

Description

The BIT(.B/.W) instruction in indirect register addressing mode uses the wrong PC value. This instruction is represented by 2 bytes of opcode. If the Program Counter (PC) is used as the destination register, the 2 opcode bytes of the current BIT instruction are not accounted for. The resulting operation executes the instruction using the wrong PC value and this affects the results in the Status Register (SR).

Workaround

None.

Note: The compiler will not generate a BIT instruction that uses the PC as an operand.

CPU37

CPUXv2 Module

Function

Wrong program trace display in the debugger while using conditional jump instructions

Description

The state storage window displays an incorrect sequence of instructions when:

1. Conditional jump instructions are used to form a software loop

AND

2. A false condition on the jump breaks out of the loop

In such cases the trace buffer incorrectly displays the first instruction of the loop as the instruction that is executed immediately after exiting the loop.

Example:

Actual Code:

mov #4,R4

LABEL mov #1,R5

dec R4

inz LABEL

mov #2.R6

nop

State Storage Window Displays:

LABEL mov #1,R5

dec R4

inz LABEL

mov #1,R5

nop

Workaround

None

Note: This erratum affects the trace buffer display only. It does not affect code execution in debugger or free run mode

CPU39

CPUXv2 Module

Function

PC is corrupted when single-stepping through an instruction that clears the GIE bit

Description

Single-stepping over an instruction that clears the General Interrupt Enable bit (for example DINT or BIC #GIE,SR) when the GIE bit was previously set may corrupt the PC. For example, the DINT or BIC #GIE,SR is a 2-byte instruction. Single stepping through this instruction increments the PC by a value of 4 instead of 2 thus corrupting

the next PC value.

Note: This erratum applies to debug mode only.

Workaround

Insert a NOP or no operation() intrinsic immediately after the line of code that clears the GIE bit.

CPU₄₀

CPUXv2 Module

Function

PC is corrupted when executing jump/conditional jump instruction that is followed by instruction with PC as destination register or a data section

Description

If the value at the memory location immediately following a jump/conditional jump instruction is 0X40h or 0X50h (where X = don't care), which could either be an instruction opcode (for instructions like RRCM, RRAM, RLAM, RRUM) with PC as destination register or a data section (const data in flash memory or data variable in

RAM), then the PC value is auto-incremented by 2 after the jump instruction is executed; therefore, branching to a wrong address location in code and leading to wrong program execution.

For example, a conditional jump instruction followed by data section (0140h).

@0x8012 Loop DEC.W R6

@0x8014 DEC.W R7

@0x8016 JNZ Loop

@0x8018 Value1 DW 0140h

Workaround

In assembly, insert a NOP between the jump/conditional jump instruction and program code with instruction that contains PC as destination register or the data section.

CPU43 **CPUXv2 Module**

Function

Halt operation in debug mode may cause unintended behavior

Description

In certain cases when using the 'Halt CPU' function available via the IDE (CCS or IAR), on continuing code execution after a halt, the program counter may skip an instruction.

Pausing and resuming code execution after a breakpoint works as expected and is not affected by the erratum.

NOTE: This erratum only affects debug mode.

Workaround

None.

DMA4

DMA Module

Function

Corrupted write access to 20-bit DMA registers

Description

When a 20-bit wide write to a DMA address register (DMAxSA or DMAxDA) is interrupted by a DMA transfer, the register contents may be unpredictable.

Workaround

1. Design the application to guarantee that no DMA access interrupts 20-bit wide accesses to the DMA address registers.

OR

2. When accessing the DMA address registers, enable the Read Modify Write disable bit (DMARMWDIS = 1) or temporarily disable all active DMA channels (DMAEN = 0).

OR

3. Use word access for accessing the DMA address registers. Note that this limits the values that can be written to the address registers to 16-bit values (lower 64K of Flash).

DMA8

DMA Module

Function

DMA can corrupt values on write-access to program stack

Description

If the DMA controller makes a write access to the stack while executing one of the

following instructions, the data that is written may be corrupted.

CALLA [REG | IDX | SYM | ABS | IND | INA | IMM] PUSHX.A [IDX | SYM | ABS | IND | IMM | INA]

PUSHX.A [REG] PUSHM.A [REG] POPM.A [REG]

Note: [...] denotes an addressing mode

Workaround

Do not declare function-scope variables. Declare all variables that are intended to be modified by the DMA as global- or file-scope such that they are allocated in the data section of RAM and not on the program stack.

DMA10 DMA Module

Function DMA interrupting CPU wait state might cause peripheral module into unknown state.

Description When the CPU accesses a module that is capable of stalling the CPU with a wait

mechanism, if a DMA interrupts the instruction during the CPU stall, the module might be

caused into an unknown state.

The affected modules (if present on the device) that can stall CPU are: FRAM controller

in manual timing mode, MPY, CRC, USB, and RF1A.

As an example a wrong result can be read by DMA from MPY result register because

the DMA does not wait until MPY operation is finished.

Workaround Disable DMA when using affected modules.

EEM9 EEM Module

Function Combined triggers on the PUSH instruction may be missed

Description When the PUSH instruction is used in any addressing mode except register or

immediate modes, a combined trigger may be missed when its conditions are defined by a PUSH instruction fetch and a successful match of the value being pushed onto stack.

Workaround None

EEM11 EEM Module

Function Conditional register write trigger fails while executing rotate instructions

Description A conditional register write trigger will fail to generate the expected breakpoint if the

trigger condition is a result of executing one of the following rotate instructions:

RRUM, RRCM, RRAM and RLAM.

Workaround None

NOTE: This erratum applies to debug mode only.

EEM13 EEM Module

Function Halting the debugger does not return correct PC value when in LPM

DescriptionWhen debugging, if the device is in any low power mode and the debugger is halted, the

program counter update by the debugger is corrupted. The debugger is unable to halt at

the correct location.

Workaround None.

NOTE: This erratum applies to debug mode only.

EEM14 EEM Module

Function Single-step or breakpoint on module registers with WAIT capability may not work

Description In debug mode, the CPU clock is driven independently from the wait inputs of device modules (i.e., MULT, USB, RF1A, CRC). As a result, an EEM halt on an access to the

module data registers (breakpoint or single-step) may show incorrect results due to

incomplete execution.

Workaround Do not single-step through a data register access that holds the CPU to provide a valid

result. Place breakpoints after the affected register is accessed and sufficient clock

cycles have been provided.

NOTE: This erratum applies to debug mode only.

EEM15 EEM Module

Function Read or write to RF1A, CRC, MULT and USB RAM may be corrupted when debugging

Description When performing read or write operations on modules that require CPU wait cycles (i.e.

when accessing CRC, RF1A, MULT and USB RAM) setting a breakpoint on or single

stepping through the operation could corrupt the result.

Workaround None

NOTE: This erratum applies to debug mode only.

EEM16 EEM Module

Function The state storage display does not work reliably when used on instructions with CPU

Wait cycles.

DescriptionWhen executing instructions that require wait states; the state storage window updates incorrectly. For example a flash erase instruction causes the CPU to be held until the

erase is completed i.e. the flash puts the CPU in a wait state. During this time if the state storage window is enabled it may incorrectly display any previously executed instruction

multiple times.

www.ti.com

Workaround

Do not enable the state storage display when executing instructions that require wait states. Instead set a breakpoint after the instruction is completed to view the state storage display.

NOTE:

This erratum affects debug mode only.

EEM17 EEM Module

Wrong Breakpoint halt after executing Flash Erase/Write instructions **Function**

Description Hardware breakpoints or Conditional Address triggered breakpoints on instructions that

follow Flash Erase/Write instructions, stops the debugger at the actual Flash Erase/Write instruction even though the flash erase/write operation has already been executed. The hardware/conditional address triggered breakpoints that are placed on either the next two single opcode instructions OR the next double opcode instruction that follows the

Flash Erase/Write instruction are affected by this erratum.

None. Use other conditional/advanced triggered breakpoints to halt the debugger right Workaround

after Flash erase/write instructions.

NOTE: This erratum affects debug mode only.

EEM19 EEM Module

Function DMA may corrupt data in debug mode

When the DMA is enabled and the device is in debug mode, the data transferred by the Description

DMA may be corrupted when a breakpoint is hit or when the debug session is halted.

Workaround None. Do not set a breakpoint during a DMA transfer.

> NOTE: This erratum applies to debug mode only.

EEM21 EEM Module

Function LPMx.5 debug limitations

Debugging the device in LPMx.5 mode might wake the device up from LPMx.5 mode Description

inadvertently, and it is possible that the device enters a lock-up condition; that is, the

device cannot be accessed by the debugger any more.

Follow the debugging steps in Debugging MSP430 LPM4.5 SLAA424. Workaround

EEM23 EEM Module

Function EEM functions do not work reliably when modules using wait cycles are enabled

When modules using wait states (USB, MPY,CRC and FRAM controller in manual Description

mode) are enabled the EEM may not perform profile counter and state storage functions

reliably.

Workaround

Do not enable profile counter and state storage functions when modules using wait states are enabled.

NOTE: This erratum affects debug mode only.

FLASH33 FLASH Module

Function Flash erase/program with fsystem <160kHz causes code execution to fail

DescriptionA flash erase or flash program operation with the system frequency (fsystem) <160kHz causes the program execution (executing out of main or info memory) that follows to fail.

Workaround Make sure the fsystem >160kHz before doing a flash erase or program operation.

FLASH34 FLASH Module

Function Concurrent flash read during bank erase fails

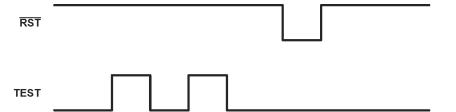
Description Code residing in flash cannot be executed during a bank erase.

Workaround Place the code to be executed during bank erase in RAM.

JTAG20 JTAG Module

Function BSL does not exit to application code

DescriptionThe methods used to exit the BSL per MSP430 Programming Via the Bootstrap Loader


(SLAU319) are invalid.

Workaround To exit the BSL one of the following methods must be used.

- A Power cycle

or

- Toggle the TEST pin twice when nRST is high and then pull nRST low.

Note: This sequence is not subject to timing constraints and the appropriate level transitions are sufficient to trigger an exit from BSL mode.

LDO1 LDO Module

Function LDOI detection may fail after power-up

Description

In rare cases, the internal 3.3-V LDO enabled MSP430 devices may experience a failure in the bandgap that aids in detecting the presence of sufficient LDO input voltage on the LDOI pin. Two primary effects of this are:

- 1. The LDOBGVBV bit fails to show the presence of a valid voltage on the LDOI pin.
- 2. The integrated 3.3-V LDO fails to start.

Workaround

This error state can be "reset" by clearing all the bits in the LDOPWRCTL register, which (among other actions) disables the internal 3.3-V LDO regulator. They can then be set again normally, and the device functions properly.

However, if the integrated 3.3-V LDO (the output of the LDOO pin) is used to power the device DVCC pin, and if the rare bandgap error occurs, the CPU fails to power up, because the internal 3.3-V LDO fails to start. The problem might be resolved by cycling power to the LDOI pin. The bandgap failure is also known to occur more often with slow DVCC ramps (>200 ms); for example, when there is excessive capacitance on the DVCC pin, in excess of what the LDO specification allows. However, the only sure way to prevent the problem from occurring is to avoid making DVCC power reliant on LDOO.

MPY1

MPY32 Module

Function

Save and Restore feature on MPY32 not functional

Description

The MPY32 module uses the Save and Restore method which involves saving the multiplier state by pushing the MPY configuration/operand values to the stack before using the multiplier inside an Interrupt Service Routine (ISR) and then restoring the state by popping the configuration/operand values back to the MPY registers at the end of the ISR. However due to the erratum the Save and Restore operation fails causing the write operation to the OP2H register right after the restore operation to be ignored as it is not preceded by a write to OP2L register resulting in an invalid multiply operation.

Workaround

None. Disable interrupts when writing to OP2L and OP2H registers.

Note: When using the C-compiler, the interrupts are automatically disabled while using the MPY32

PMAP1

PMAP Module

Function

Port Mapping Controller does not clear unselected inputs to mapped module.

Description

The Port Mapping Controller provides the logical OR of all port mapped inputs to a module (Timer, USCI, etc). If the PSEL bit (PxSEL.y) of a port mapped input is cleared, then the logic level of that port mapped input is latched to the current logic level of the input. If the input is in a logical high state, then this high state is latched into the input of the logical OR. In this case, the input to the module is always a logical 1 regardless of the state of the selected input.

Workaround

1. Drive input to the low state before clearing the PSEL bit of that input and switching to another input source.

or

2. Use the Port Mapping Controller reconfiguration feature, PMAPRECFG, to select inputs to a module and map only one input at a time.

PMM9

PMM Module

Function

False SVSxIFG events

Description

The comparators of the SVS require a certain amount of time to stabilize and output a correct result once re-enabled; this time is different for the Full Performance versus the Normal mode. The time to stabilize the SVS comparators is intended to be accounted for by a built-in event-masking delay of 2 us when Full Performance mode is enabled.

However, the comparators of the SVS in Full Performance mode take longer than 2 us to stabilize so the possibility exists that a false positive will be triggered on the SVSH or SVSL. This results in the SVSxIFG flags being set and depending on the configuration of SVSxPE bit a POR can also be triggered.

Additionally when the SVSxIFGs are set, all GPIOs are tri-stated i.e. floating until the SVSx comparators are settled.

The SVS IFG's are falsely set under the following conditions:

- 1. Wakeup from LPM2/3/4 when SVSxMD = 0 (default setting) && SVSxFP=1. The SVSx comparators are disabled automatically in LPM2/3/4 and are then re-enabled on return to active mode.
- 2. SVSx is turned on in full performance mode (SVSxFP=1).
- 3. A PUC/POR occurs after SVSx is disabled. After a PUC or POR the SVSx are enabled automatically but the settling delay does not get triggered. Based on SVSxPE bit this may lead to POR events until the SVS comparator is fully settled.

Workaround

For each of the above listed conditions the following workarounds apply:

- 1. If the Full Performance mode is to be enabled for either the high- or low-side SVS comparators, the respective SVSxMD bits must be set (SVSxMD = 1) such that the SVS comparators are not temporarily shut off in LPM2/3/4. Note that this is equivalent to a 2 uA (typical) adder to the low power mode current, per the device-specific datasheet, for each SVSx that remains enabled.
- 2. The SVSx must be turned on in normal mode (SVSxFP=0). It can be reconfigured to use full performance mode once the SVSx/SVMx delay has expired.
- 3. Ensure that SVSH and SVSL are always enabled.

PMM11

PMM Module

Function

MCLK comes up fast on exit from LPM3 and LPM4

Description

The DCO exceeds the programmed frequency of operation on exit from LPM3 and LPM4 for up to 6 us. This behavior is masked from affecting code execution by default: SVSL and SVML run in normal-performance mode and mask CPU execution for 150 us on wakeup from LPM3 and LPM4. However, when the low-side SVS and the SVM are disabled or are operating in full-performance mode (SVMLE = 0 and SVSLE = 0, or SVMLFP = 1 and SVSLFP = 1) AND MCLK is sourced from the internal DCO running over 4 MHz, 7 MHz, 11 MHz, or 14 MHz at core voltage levels 0, 1, 2, and 3, respectively, the mask lasts only 2 us. MCLK is, therefore, susceptible to run out of spec for 4 us.

Workaround

Set the MCLK divide bits in the Unified Clock System Control 5 Register (UCSCTL5) to divide MCLK by two prior to entering LPM3 or LPM4 (set DIVMx = 001). This prevents MCLK from running out of spec when the CPU wakes from the low-power mode. Following the wakeup from the low-power mode, wait 32, 48, 80, or 100 cycles for core voltage levels 0, 1, 2, and 3, respectively, before resetting DIVMx to zero and running MCLK at full speed [for example, delay cycles(100)].

PMM12

PMM Module

Function

SMCLK comes up fast on exit from LPM3 and LPM4

Description

The DCO exceeds the programmed frequency of operation on exit from LPM3 and LPM4 for up to 6 us. When SMCLK is sourced by the DCO, it is not masked on exit from LPM3 or LPM4. Therefore, SMCLK exceeds the programmed frequency of operation on exit from LPM3 and LPM4 for up to 6 us. The increased frequency has the potential to change the expected timing behavior of peripherals that select SMCLK as the clock source.

Workaround

- Use XT2 as the SMCLK oscillator source instead of the DCO.

or

- Do not disable the clock request bit for SMCLKREQEN in the Unified Clock System Control 8 Register (UCSCTL8). This means that all modules that depend on SMCLK to operate successfully should be halted or disabled before entering LPM3 or LPM4. If the increased frequency prevents the proper function of an affected module, wait 32, 48, 80, or 100 cycles for core voltage levels 0, 1, 2, or 3, respectively, before re-enabling the module [for example, __delay_cycles(100)].

PMM14

PMM Module

Function

Increasing the core level when SVS/SVM low side is configured in full-performance mode causes device reset

Description

When the SVS/SVM low side is configured in full performance mode (SVSMLCTL.SVSLFP = 1), the setting time delay for the SVS comparators is ~2us. When increasing the core level in full-performance mode; the core voltage does not settle to the new level before the settling time delay of the SVS/SVM comparator expires. This results in a device reset.

Workaround

When increasing the core level; enable the SVS/SVM low side in normal mode (SVSMLCTL.SVSLFP=0). This provides a settling time delay of approximately 150us allowing the core sufficient time to increase to the expected voltage before the delay expires.

PMM15

PMM Module

Function

Device may not wake up from LPM2, LPM3, or LPM4

Description

Device may not wake up from LPM2, LPM3 or LMP4 if an interrupt occurs within 1 us after the entry to the specified LPMx; entry can be caused either by user code or automatically (for example, after a previous ISR is completed). Device can be recovered with an external reset or a power cycle. Additionally, a PUC can also be used to reset the failing condition and bring the device back to normal operation (for example, a PUC caused by the WDT).

This effect is seen when:

- A write to the SVSMHCTL and SVSMLCTL registers is immediately followed by an LPM2, LPM3, LPM4 entry without waiting the requisite settling time ((PMMIFG.SVSMLDLYIFG = 0 and PMMIFG.SVSMHDLYIFG = 0)).

or

The following two conditions are met:

- The SVSL module is configured for a fast wake-up or when the SVSL/SVML module is turned off. The affected SVSMLCTL register settings are shaded in the following table.

	SVSLE	SVSLMD	SVSLFP	AM, LPM0/1 SVSL state	Manual SVSMLACE = 0 LPM2/3/4 SVSL State	Automatic SVSMLACE = 1 LPM2/3/4 SVSL State	Wakeup Time LPM2/3/4
SVSL	0	X	Х	OFF	OFF	OFF	twake-up fast
	1	0	0	Normal	OFF	OFF	twake-up slow
	1	0	1	Full Performance	OFF	OFF	twake-up fast
	1	1	0	Normal	Normal	OFF	twake-up slow
	1	1	1	Full Performance	Full Performance	Nomal	twake-up fast
	SVMLE	LE SVMLFP		AM, LPM0/1 SVML state	Manual SVSMLACE = 0 LPM2/3/4	Automatic SVSMLACE = 1 LPM2/3/4	Wakeup Time LPM2/3/4
SVML				SVML State	SVML State		
	0	X		OFF	OFF	OFF	twake-up fast
	1	0		Normal	Normal	OFF	t _{WAKE-UP SLOW}
	1	1		Full Performance	Full Performance	Nomal	twake-up fast

and

-The SVSH/SVMH module is configured to transition from Normal mode to an OFF state when moving from Active/LPM0/LPM1 into LPM2/LPM3/LPM4 modes. The affected SVSMHCTL register settings are shaded in the following table.

	SVSHE SVSHMD		SVSHFP	AM, LPM0/1 SVSH state	Manual SVSMHACE = 0 LPM2/3/4	Manual SVSMHACE = 1 LPM2/3/4	
					SVSH State	SVSH State	
SVSH	0	Х	Х	OFF	OFF	OFF	
	1	0	0	Normal	OFF	OFF	
	1	0	1	Full Performance	OFF	OFF	
	1	1	0	Normal	Normal	OFF	
	1	1	1	Full Performance	Full Performance	Normal	
	SVSHE SVMHFP		LIED	AM, LPM0/1	Manual SVSMHACE = 0	Manual SVSMHACE = 1	
SVMH	SVSHE	SVSHE SVMHFP		SVSH state	LPM2/3/4 SVSH State	LPM2/3/4 SVSH State	
	0	x		OFF	OFF	OFF	
	1	0		Normal	Normal	OFF	
	1	1		Full Performance	Full Performance	Normal	

Workaround

Any write to the SVSMxCTL register must be followed by a settling delay (PMMIFG.SVSMLDLYIFG = 0 and PMMIFG.SVSMHDLYIFG = 0) before entering LPM2, LPM3, LPM4.

and

- 1. Ensure the SVSx, SVMx are configured to prevent the issue from occurring by the following:
- Configure the SVSL module for slow wake up (SVSLFP = 0). Note that this will increase the wakeup time from LPM2/3/4 to twakeupslow (\sim 150 us).

or

- Do not configure the SVSH/SVMH such that the modules transition from Normal mode to an OFF state on LPM entry. Instead force the modules to remain ON even in LPMx. Note that this will cause increased power consumption when in LPMx.

Refer to the MSP430F5xx and MSP430F6xx Core Libraries (<u>SLAA448</u>) for proper PMM configuration functions.

Use the following function, PMM15Check (void), to determine whether or not the existing PMM configuration is affected by the erratum. The return value of the function is 1 if the configuration is affected, and 0 if the configuration is not affected.


```
unsigned char PMM15Check (void)
{
// First check if SVSL/SVML is configured for fast wake-up
if ( (!(SVSMLCTL & SVSLE)) || ((SVSMLCTL & SVSLE) && (SVSMLCTL & SVSLFP)) ||
(!(SVSMLCTL & SVMLE)) || ((SVSMLCTL & SVMLE) && (SVSMLCTL & SVMLFP)) )
{
// Next Check SVSH/SVMH settings to see if settings are affected by PMM15
if ((SVSMHCTL & SVSHE) && (!(SVSMHCTL & SVSHFP)))
{
if ( (!(SVSMHCTL & SVSHMD)) || ((SVSMHCTL & SVSHMD) &&
(SVSMHCTL & SVSMHACE)) )
return 1; // SVSH affected configurations
}
if ((SVSMHCTL & SVMHE) && (!(SVSMHCTL & SVMHFP)) && (SVSMHCTL &
SVSMHACE))
return 0; // SVS/M settings not affected by PMM15
}
return 0; // SVS/M settings not affected by PMM15
}
```

PMM18

PMM Module

Function

PMM supply overvoltage protection falsely triggers POR

service routine or before entry into LPM3/LPM4.

Description

The PMM Supply Voltage Monitor (SVM) high side can be configured as overvoltage protection (OVP) using the SVMHOVPE bit of SVSMHCTL register. In this mode a POR should typically be triggered when DVCC reaches ~3.75V.

2. If fast servicing of interrupts is required, add a 150us delay either in the interrupt

If the OVP feature of SVM high side is enabled going into LPM234, the SVM might trigger at DVCC voltages below 3.6V (~3.5V) within a few ns after wake-up. This can falsely cause an OVP-triggered POR. The OVP level is temperature sensitive during fail scenario and decreases with higher temperature (85 degC ~3.2V).

Workaround

Use Adaptive mode (SVMACE=1). The SVM high side is inactive in LPM234.

PMM20

PMM Module

Function

Unexpected SVSL/SVML event during wakeup from LPM2/3/4 in fast wakeup mode

Description

If PMM low side is configured to operate in fast wakeup mode, during wakeup from LPM2/3/4 the internal VCORE voltage can experience voltage drop below the corresponding SVSL and SVML threshold (recommendation according to User's Guide) leading to an unexpected SVSL/SVML event. Depending on PMM configuration, this event triggers a POR or an interrupt.

NOTE:

As soon the SVSL or the SVML is enabled in Normal performance mode the device is in slow wakeup mode and this erratum does not apply.

In addition, this erratum has sporadic characteristic due to an internal asynchronous circuit. The drop of Vcore does not have an impact on specified device performance.

Workaround

If SVSL or SVML is required for application (to observe external disruptive events at Vcore pin) the slow wakeup mode has to be used to avoid unexpected SVSL/SVML events. This is achieved if the SVSL or the SVML is configured in "Normal" performance mode (not disabled and not in "Full" Performance Mode).

PORT15

PORT Module

Function

In-system debugging causes the PMALOCKED bit to be always set

Description

The port mapping controller registers cannot be modified when single-stepping or halting at break points between a valid password write to the PMAPWD register and the expected lock of the port mapping (PMAP) registers. This causes the PMAPLOCKED bit to remain set and not clear as expected.

Note: This erratum only applies to in-system debugging and is not applicable when operating in free-running mode.

Workaround

Do not single step through or place break points in the port mapping configuration section of code.

PORT16

PORT Module

Function

GPIO pins are driven low during device start-up

Description

During device start-up, all of the GPIO pins are expected to be in the floating input state. Due to this erratum, some of the GPIO pins are driven low for the duration of boot code execution during device start-up, if an external reset event (via the RST pin) interrupted the previous boot code execution. Boot code is always executed after a BOR, and the duration of this boot code execution is approximately 500us.

For a given device family, this erratum affects only the GPIO pins that are not available in the smallest package device family member, but that are present on its larger package variants.

NOTE: This erratum does not affect the smallest package device variants in a particular device family.

Workaround

Ensure that no external reset is applied via the RST pin during boot code execution of the device, which occurs 1us after device start-up.

NOTE: System application needs to account for this erratum in to ensure there is no increased current draw by the external components or damage to the external components in the system during device start-up.

PORT19

PORT Module

www.ti.com

Function Port interrupt may be missed on entry to LPMx.5

Description If a port interrupt occurs within a small timing window (~1MCLK cycle) of the device entry

into LPM3.5 or LPM4.5, it is possible that the interrupt is lost. Hence this interrupt will not

trigger a wakeup from LPMx.5.

Workaround None

RTC_A Module

Function Unreliable write to RTC register

Description A write access to the RTC registers (SEC, MIN, HOUR, DATE, MON, YEAR, DOW) may

result in unexpected results. As a consequence the addressed register might not contain

the written data, or some data can be accidentally written to other RTC registers.

Workaround Use the RTC library routines, available as F541x/F543x code examples on the MSP430

Code Examples page (www.ti.com/msp430 > Software > Code Examples), which use carefully aligned MOV instructions. Library is listed as RTC_Workaround.zip and includes both CCE and IAR example projects that show proper usage. Using this library,

full access to RTC registers is possible.

RTC_A Module

Function the step size of the RTC frequency adjustment is twice the specified size.

Description The step size of the RTC frequency adjustment is =4ppm/-8ppm. This is twice the size

specified in the User's Guide.

For up calibration this results in a step size per step of 8ppm (1024 cycles) instead of 4ppm (512 cycles). For down calibration this results in a step size per step of 4ppm (512

cycles) instead of 2ppm (256 cycles).

Workaround Half the calibration value written into RTCCAL register to compensate the doubled step

size.

SYS16 SYS Module

Function Fast Vcc ramp after device power up may cause a reset

Description At initial power-up, after Vcc crosses the brownout threshold and reaches a constant

level, an abrupt ramp of Vcc at a rate dV/dT > 1V/100us can cause a brownout condition to be incorrectly detected even though Vcc does not fall below the brownout threshold.

This causes the device to undergo a reset.

Workaround Use a controlled Vcc ramp to power up the device.

SYS18 SYS Module

Function USB registers are unlocked and ACCVIFG is set at start-up

Description During device start-up, an incorrect line of code in the start-up code causes the USB

registers to remain unlocked and causes an access violation, setting ACCVIFG bit.

In the BSL430_Low_Level_Init code, the following line of code accesses USBKEY (incorrect register address) instead of USBKEYPID, causing an access violation setting

ACCVIFG bit, and leaving the USB registers unlocked.

mov.w #0x0000, &USBKEY; lock USB The correct line of code should read:

mov.w #0x0000, &USBKEYPID; lock USB correctly

Note: This code does not run when using the JTAG debugger - the behavior only appears when running standalone.

Workaround

1. Load the latest version of the USB BSL from Custom BSL Download

OR

2. Load a non-USB or custom BSL

OR

3. Erase the BSL

TAB23

TIMER_A/TIMER_B Module

Function

TAxR/TBxR read can be corrupted when TAxR/TBxR = TAxCCR0/TBxCCR0

Description

When a timer in Up mode is stopped and the counter register (TAxR/TBxR) is equal to the TAxCCR0/TBxCCR0 value, a read of the TAR/TBR register may return an unexpected result.

Workaround

1. Use 'Up/Down' mode instead of 'Up' mode

OR

2. In 'Up' mode, use the timer interrupt instead of halting the counter and reading out the value in TAxR/TBxR

OR

3. When halting the timer counter in 'Up' mode, reinitialize the timer before starting to run again.

UCS6

UCS Module

Function

USCI source clock does not turn off in LPM3/4 when UART is idle

Description

The USCI clock source (ACLK/SMCLK) remains enabled in LPM3 and LPM4 when the USCI is configured in UART mode and the communication is idle (UCSWRST = 0 but no TX or RX currently executing). This is contrary to the expected automatic clock activation described in the User's Guide and can lead to higher current consumption in low power modes, depending on the oscillator that feeds ACLK / SMCLK.

Workaround

Use the oscillator that is already active in LPM3 (ACLK) to source the USCI and utilize the low-power baud rate generator (UCOS16 = 0). For UART baud rates where a fast SMCLK sourced by the internal DCO is required use LPM0 instead of LPM3.

UCS7

UCS Module

Function

DCO drifts when servicing short ISRs when in LPM0 or exiting active from ISRs for short periods of time

Description

The FLL uses two rising edges of the reference clock to compare against the DCO frequency and decide on the required modifications to the DCOx and MODx bits. If the device is in a low power mode with FLL disabled (LPM0 with DCO not sourcing

ACLK/SMCLK or LPM2, LPM3, LPM4 where SCG1 bit is set) and enters a state which enables FLL (enter ISR from LPM0/LPM2 or exit active from ISRs) for a period less than 3x reference clock cycles, then the FLL will cause the DCO to drift.

This occurs because the FLL immediately begins comparing an active DCO with its reference clock and making the respective modifications to the DCOx and MODx bits. If the FLL is not given sufficient time to capture a full reference clock cycle (2 x reference clock periods) and adjust accordingly (1 x reference clock period), then the DCO will keep drifting each time the FLL is enabled.

Workaround

- (1) If DCO is not sourcing ACLK or SMCLK in the application, use LPM1 instead of LPM0 to make sure FLL is disabled when interrupt service routine is serviced.
- (2) When exiting active from ISRs, insert a delay of at least 3 x reference clock periods. To save on power budget, the 3 x reference clock periods could also be spent in LPM0 with TimerA or TimerB using ACLK/SMCLK sourced from DCO. This way, the FLL and DCO are still active in LPM0.

UCS9 UCS Module

Function

Digital Bypass mode prevents entry into LPM4

Description

When entering LPM4, if an external digital input applied to XT1 in HF mode or XT2 is not turned off, the PMM does not switch to low-current mode causing higher than expected power consumption.

Workaround

Before entering LPM4:

(1) Switch to a clock source other than external bypass digital input.

OR

(2) Turn off external bypass mode (UCSCTL6.XT1BYPASS = 0).

UCS11 UCS Module

Function

Modifying UCSCTL4 clock control register triggers an erroneous clock source request

Description

Changing the SELM/SELS/SELA bits in the UCSCTL4 register might trigger the respective clocks to select an incorrect clock source which requests the XT1/XT2 clock. If the crystals are not present at XT1/XT2 or present but not yet configured in the application firmware, then the respective XT1/XT2 fault flag is falsely set.

Workaround

Clear all the fault flags in UCSCTL7 register once after changing any of the SELM/SELS/SELA bits in the UCSCTL4 register.

USCI26 USCI Module

Function

Tbuf parameter violation in I2C multi-master mode

Description

In multi-master I2C systems the timing parameter Tbuf (bus free time between a stop condition and the following start) is not guaranteed to match the I2C specification of 4.7us in standard mode and 1.3us in fast mode. If the UCTXSTT bit is set during a running I2C transaction, the USCI module waits and issues the start condition on bus release causing the violation to occur.

Note: It is recommended to check if UCBBUSY bit is cleared before setting UCTXSTT=1.

Workaround

None

USCI30

USCI Module

Function

I2C mode master receiver / slave receiver

Description

When the USCI I2C module is configured as a receiver (master or slave), it performs a double-buffered receive operation. In a transaction of two bytes, once the first byte is moved from the receive shift register to the receive buffer the byte is acknowledged and the state machine allows the reception of the next byte.

If the receive buffer has not been cleared of its contents by reading the UCBxRXBUF register while the 7th bit of the following data byte is being received, an error condition may occur on the I2C bus. Depending on the USCI configuration the following may occur:

- 1) If the USCI is configured as an I2C master receiver, an unintentional repeated start condition can be triggered or the master switches into an idle state (I2C communication aborted). The reception of the current data byte is not successful in this case.
- 2) If the USCI is configured as I2C slave receiver, the slave can switch to an idle state stalling I2C communication. The reception of the current data byte is not successful in this case. The USCI I2C state machine will notify the master of the aborted reception with a NACK.

Note that the error condition described above occurs only within a limited window of the 7th bit of the current byte being received. If the receive buffer is read outside of this window (before or after), then the error condition will not occur.

Workaround

a) The error condition can be avoided altogether by servicing the UCBxRXIFG in a timely manner. This can be done by (a) servicing the interrupt and ensuring UCBxRXBUF is read promptly or (b) Using the DMA to automatically read bytes from receive buffer upon UCBxRXIFG being set.

OR

b) In case the receive buffer cannot be read out in time, test the I2C clock line before the UCBxRXBUF is read out to ensure that the critical window has elapsed. This is done by checking if the clock line low status indicator bit UCSCLLOW is set for atleast three USCI bit clock cycles i.e. 3 X t(BitClock).

Note that the last byte of the transaction must be read directly from UCBxRXBUF. For all other bytes follow the workaround:

Code flow for workaround

- (1) Enter RX ISR for reading receiving bytes
- (2) Check if UCSCLLOW.UCBxSTAT == 1
- (3) If no, repeat step 2 until set
- (4) If yes, repeat step 2 for a time period > 3 x t (BitClock) where t (BitClock) = 1/ f (BitClock)
- (5) If window of 3 x t(BitClock) cycles has elapsed, it is safe to read UCBxRXBUF

USCI31

USCI Module

Function

Framing Error after USCI SW Reset (UCSWRST)

Description

While receiving a byte over USCI-UART (with UCBUSY bit set), if the application resets the USCI module (software reset via UCSWRST), then a framing error is reported for the

next receiving byte.

Workaround

- 1. If possible, do not reset USCI-UART during an ongoing receive operation; that is, when UCBUSY bit is set.
- 2. If the application software resets the USCI module (via the UCSWRST bit) during an ongoing receive operation, then set and reset the UCSYNC bit before releasing the software USCI reset.

Workaround code sequence:

bis #UCSWRST, &UCAxCTL1; USCI SW reset

;Workaround begins

bis #UCSYNC, &UCAxCTL0; set synchronous mode bic #UCSYNC, &UCAxCTL0; reset synchronous mode

;Workaround ends

bic #UCSWRST, &UCAxCTL1; release USCI reset

USCI34 USCI Module

Function I2C multi-master transmit may lose first few bytes.

Description In an I2C multi-master system (UCMM =1), under the following conditions:

(1)the master is configured as a transmitter (UCTR =1)

AND

(2)the start bit is set (UCTXSTT =1);

if the I2C bus is unavailable, then the USCI module enters an idle state where it waits and checks for bus release. While in the idle state it is possible that the USCI master updates its TXIFG based on clock line activity due to other master/slave communication on the bus. The data byte(s) loaded in TXBUF while in idle state are lost and transmit pointers initialized by the user in the transmit ISR are updated incorrectly.

Workaround

Verify that the START condition has been sent (UCTXSTT =0) before loading TXBUF with data.

USCI35 USCI Module

Function Violation of setup and hold times for (repeated) start in I2C master mode

Description In I2C master mode, the setup and hold times for a (repeated) START, $t_{SU,STA}$ and $t_{HD,STA}$ respectively, can be violated if SCL clock frequency is greater than 50kHz in standard

mode (100kbps). As a result, a slave can receive incorrect data or the I2C bus can be

stalled due to clock stretching by the slave.

Workaround If using repeated start, ensure SCL clock frequencies is < 50kHz in I2C standard mode

(100 kbps).

WDG4 WDT_A Module

Function The WDT failsafe can be disabled

Description The UCS is capable of masking clock requests (ACLK, SMCLK, MCLK) from peripheral

modules; see request enable (REQEN) bits in the UCS control register, UCSCTL8.

The clock request logic of the UCS is used by the WDT module to ensure a fail-safe clock source in all low-power modes. Therefore, de-asserting the request enable bit of the watchdog clock source (xCLKREQEN = 0) allows the respective clock to be disabled upon entry into a low-power mode. Without an active clock source, the WDT timer stops incrementing and a watchdog event will not occur.

Workaround

None

5 Document Revision History

Changes from family erratasheet to device specific erratasheet.

- 1. Errata JTAG21 was removed
- 2. Errata RTC4 was removed
- 3. Revision H was added
- 4. RGC64 package markings have been updated
- 5. ZQE80 package markings have been updated

Changes from device specific erratasheet to document Revision A.

- 1. Errata DMA10 was added to the errata documentation.
- 2. Errata PORT19 was added to the errata documentation.
- 3. Errata PMM18 was added to the errata documentation.
- 4. Errata RTC6 was added to the errata documentation.
- 5. Errata SYS18 was added to the errata documentation.

Changes from document Revision A to Revision B.

- 1. DMA10 Workaround was updated.
- 2. DMA10 Description was updated.

Changes from document Revision B to Revision C.

- 1. Errata BSL7 was added to the errata documentation.
- 2. Silicon Revision I was added to the errata documentation.
- 3. Errata RTC3 was added to the errata documentation.
- 4. DMA10 Description was updated.

Changes from document Revision C to Revision D.

- 1. DMA10 Description was updated.
- 2. DMA10 Function was updated.

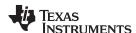
Changes from document Revision D to Revision E.

- 1. DMA10 Description was updated.
- 2. MPY1 Description was updated.
- 3. Errata EEM23 was added to the errata documentation.
- 4. Errata CPU43 was added to the errata documentation.

Changes from document Revision E to Revision F.

- 1. SYS16 Description was updated.
- 2. CPU43 Description was updated.
- 3. Errata USCI34 was added to the errata documentation.
- 4. Device TLV Hardware Revision information added to erratasheet.

Changes from document Revision F to Revision G.


- 1. Errata PMM20 was added to the errata documentation.
- 2. Errata USCI35 was added to the errata documentation.

Changes from document Revision G to Revision H.

- 1. BSL7 Workaround was updated.
- 2. BSL7 Function was updated.

Changes from document Revision H to Revision I.

- 1. Errata BSL12 was added to the errata documentation.
- 2. EEM19 Workaround was updated.
- 3. EEM13 Workaround was updated.

- 4. EEM23 Workaround was updated.
- 5. EEM17 Description was updated.
- 6. EEM23 Description was updated.
- 7. EEM15 Workaround was updated.
- 8. EEM17 Workaround was updated.
- 9. PORT16 Workaround was updated.
- 10. CPU43 Description was updated.
- 11. EEM11 Workaround was updated.
- 12. EEM14 Workaround was updated.
- 13. EEM16 Description was updated.
- 14. PORT16 Description was updated.
- 15. EEM16 Workaround was updated.
- 16. EEM19 Description was updated.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>