

MSP430F438 Device Erratasheet

1 Revision History

✓ The check mark indicates that the issue is present in the specified revision.

	Е
Errata Number	Rev
ADC18	✓
ADC25	✓
CPU4	✓
EEM20	✓
FLL3	✓
TA12	✓
TA16	✓
TA21	✓
TAB22	✓
TB2	✓
TB16	✓
TB24	✓
US15	✓
WDG2	✓
XOSC5	✓
XOSC9	✓

Package Markings www.ti.com

2 Package Markings

PN80 LQFP (PN), 80 Pin

YM = Year and Month Date Code LLLL = LOT Trace Code

S = Assembly Site Code # = DIE Revision

- DIE KEVISIO

o = PIN 1

YM = Year and Month Date Code LLLL = LOT Trace Code

S = Assembly Site Code

= DIE Revision

o = PIN 1

3 Detailed Bug Description

ADC18

ADC12 Module

Function

Incorrect conversion result in extended sample mode

Description

The ADC12 conversion result can be incorrect if the extended sample mode is selected (SHP = 0), the conversion clock is not the internal ADC12 oscillator (ADC12SSEL > 0), and one of the following two conditions is true:

- The extended sample input signal SHI is asynchronous to the clock source used for ADC12CLK and the undivided ADC12 input clock frequency exceeds 3.15 MHz.

or

- The extended sample input signal SHI is synchronous to the clock source used for ADC12CLK and the undivided ADC12 input clock frequency exceeds 6.3 MHz.

Workaround

- Use the pulse sample mode (SHP = 1).

or

- Use the ADC12 internal oscillator as the ADC12 clock source.

or

- Limit the undivided ADC12 input clock frequency to 3.15 MHz.

or

- Use the same clock source (such as ACLK or SMCLK) to derive both SHI and ADC12CLK, to achieve synchronous operation, and also limit the undivided ADC12 input clock frequency to 6.3 MHz.

ADC25

ADC12 Module

Function

Write to ADC12CTL0 triggers ADC12 when CONSEQ = 00

Description

If ADC conversions are triggered by the Timer_B module and the ADC12 is in single-channel single-conversion mode (CONSEQ = 00), ADC sampling is enabled by write access to any bit(s) in the ADC12CTL0 register. This is contrary to the expected behavior that only the ADC12 enable conversion bit (ADC12ENC) triggers a new ADC12 sample.

Workaround

When operating the ADC12 in CONSEQ=00 and a Timer_B output is selected as the sample and hold source, temporarily clear the ADC12ENC bit before writing to other bits in the ADC12CTL0 register. The following capture trigger can then be re-enabled by setting ADC12ENC = 1.

CPU4

CPU Module

Function

PUSH #4, PUSH #8

Description

The single operand instruction PUSH cannot use the internal constants (CG) 4 and 8. The other internal constants (0, 1, 2, -1) can be used. The number of clock cycles is different:

PUSH #CG uses address mode 00, requiring 3 cycles, 1 word instruction PUSH #4/#8 uses address mode 11, requiring 5 cycles, 2 word instruction

Workaround

Workaround implemented in assembler.

EEM20 EEM Module

Function Debugger might clear interrupt flags

Description During debugging read-sensitive interrupt flags might be cleared as soon as the

debugger stops. This is valid in both single-stepping and free run modes.

Workaround None.

FLL3 FLL+ Module

Function FLLDx = 11 for /8 may generate an unstable MCLK frequency

Description When setting the FLL to higher frequencies using FLLDx = 11 (/8) the output frequency

of the FLL may have a larger frequency variation (e.g. averaged over 2sec) as well as a lower average output frequency than expected when compared to the other FLLDx bit

settings.

Workaround None

TA12 TIMER A Module

Function Interrupt is lost (slow ACLK)

Description Timer_A counter is running with slow clock (external TACLK or ACLK)compared to

MCLK. The compare mode is selected for the capture/compare channel and the CCRx register is incremented by one with the occurring compare interrupt (if TAR = CCRx). Due to the fast MCLK the CCRx register increment (CCRx = CCRx+1) happens before the Timer_A counter has incremented again. Therefore the next compare interrupt should happen at once with the next Timer_A counter increment (if TAR = CCRx + 1).

This interrupt gets lost.

Workaround Switch capture/compare mode to capture mode before the CCRx register increment.

Switch back to compare mode afterwards.

TA16 TIMER A Module

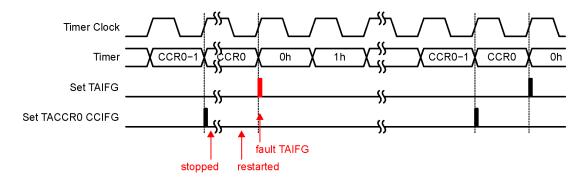
Function First increment of TAR erroneous when IDx > 00

Description The first increment of TAR after any timer clear event (POR/TACLR) happens

immediately following the first positive edge of the selected clock source (INCLK, SMCLK, ACLK or TACLK). This is independent of the clock input divider settings (ID0, ID1). All following TAR increments are performed correctly with the selected IDx settings.

Workaround None

TA21 TIMER_A Module


Function TAIFG Flag is erroneously set after Timer A restarts in Up Mode

Description In Up Mode, the TAIFG flag should only be set when the timer resets from TACCR0 to

zero. However, if the Timer A is stopped at TAR = TACCR0, then cleared (TAR=0) by setting the TACLR bit, and finally restarted in Up Mode, the next rising edge of the

TACLK will erroneously set the TAIFG flag.

Workaround None.

TAB22 TIMER_A/TIMER_B Module

Function Timer A/Timer B register modification after Watchdog Timer PUC

DescriptionUnwanted modification of the Timer_A/Timer_B registers TACTL/TBCTL and TAIV/TBIV

can occur when a PUC is generated by the Watchdog Timer(WDT) in Watchdog mode

and any Timer A/Timer B counter register TACCRx/TBCCRx is

incremented/decremented (Timer A/Timer B does not need to be running).

Workaround Initialize TACTL/TBCTL register after the reset occurs using a MOV instruction (BIS/BIC

may not fully initialize the register). TAIV/TBIV is automatically cleared following this

initialization.

Example code:

MOV.W #VAL, &TACTL

or

MOV.W #VAL, &TBCTL

Where, VAL=0, if Timer is not used in application otherwise, user defined per desired

function.

TB2 TIMER_B Module

Function Interrupt is lost (slow ACLK)

Description

Timer_B counter is running with slow clock (external TBCLK or ACLK) compared to MCLK. The compare mode is selected for the capture/compare channel and the CCRx

register is incremented by 1 with the occurring compare interrupt (if TBR = CCRx).

Due to the fast MCLK, the CCRx register increment (CCRx = CCRx + 1) happens before the Timer_B counter has incremented again. Therefore, the next compare interrupt should happen at once with the next Timer_B counter increment (if TBR = CCRx + 1).

This interrupt is lost.

Workaround Switch capture/compare mode to capture mode before the CCRx register increment.

Switch back to compare mode afterward.

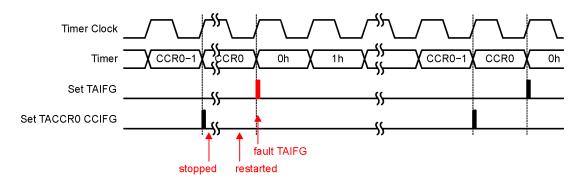
TB16 TIMER B Module

Function First increment of TBR erroneous when IDx > 00

Description The first increment of TBR after any timer clear event (POR/TBCLR) happens

immediately following the first positive edge of the selected clock source (INCLK, SMCLK, ACLK, or TBCLK). This is independent of the clock input divider settings (ID0, ID1). All following TBR increments are performed correctly with the selected IDx settings.

Workaround None


TB24 TIMER_B Module

Function TBIFG Flag is erroneously set after Timer B restarts in Up Mode

Description In Up Mode, the TBIFG flag should only be set when the timer resets from TBCCR0 to zero. However, if the Timer A is stopped at TBR = TBCCR0, then cleared (TBR=0) by

setting the TBCLR bit, and finally restarted in Up Mode, the next rising edge of the

TBCLK will erroneously set the TBIFG flag.

Workaround None.

US15 USART Module

Function UART receive with two stop bits

Description USART hardware does not detect a missing second stop bit when SPB = 1.

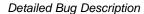
The Framing Error Flag (FE) will not be set under this condition and erroneous data

reception may occur.

Workaround None (Configure USART for a single stop bit, SPB = 0)

WDG2 WDT Module

Function Incorrectly accessing a flash control register


Description If a key violation is caused by incorrectly accessing a flash control register, the watchdog

interrupt flag is set in addition to the expected PUC.

Workaround None

XOSC5 XOSC Module

Function LF crystal failures may not be properly detected by the oscillator fault circuitry

www.ti.com

Description The oscillator fault error detection of the LFXT1 oscillator in low frequency mode (XTS =

0) may not work reliably causing a failing crystal to go undetected by the CPU, i.e.

OFIFG will not be set.

Workaround None

XOSC9 XOSC Module

Function XT1 Oscillator may not function as expected in HF mode

Description XT1 oscillator does not work correctly in high frequency mode at supply voltages below

2.0V with crystal frequency > 4MHz.

Workaround None. When XT1 oscillator is used in HF mode with crystal frequency > 4MHz ensure a

supply voltage > 2.2V.

4 Document Revision History

Changes from family erratasheet to device specific erratasheet.

1. Description for TAB22 was updated

Changes from device specific erratasheet to document Revision A.

1. Errata EEM20 was added to the errata documentation.

Changes from document Revision A to Revision B.

1. Errata TA21 was added to the errata documentation.

Changes from document Revision B to Revision C.

1. Errata TB24 was added to the errata documentation.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u>

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>