

AD8509/8519 EVM User's Guide

Contents

1	Introduction	
2	Analog Interface	1
3	Digital Interface	2
4	Power Supplies	3
5	EVM Operation	4
6	EVM Bill of Materials and Schematic	5
7	Related Documentation from Texas Instruments	6
	List of Figures	
	List of Tables	
1	Pinout of the Analog Input Connector, J1	
2	Input Range Selection	2
3	Pinout of J3	
4	Factory Default Jumper Locations	4
5	Bill of Materials	5
6	EVM Compatible Device Data Sheets, Users Guides and Additional Resources	6

1 Introduction

The AD8509 and AD8519 are complete 16-bit analog-to-digital (A/D) using state-of-the-art CMOS structures. They contain a complete 16-bit, capacitor-based, successive approximation register (SAR) A/D with sample-and-hold, reference, clock, and a serial data interface. Data can be output using the internal clock or can be synchronized to an external data clock. The AD8509 and AD8519 also provide an output synchronization pulse for ease of use with standard DSP processors. The EVM is available with either the AD8509 or AD8519 installed.

1.1 Features

- Full-Featured Evaluation Board for the AD8509 or AD8519, serial Analog to Digital Converters
- 4 V, 5 V, 10 V, ±3.3 V, ±5 V and ±10 V Analog Input Ranges
- Built in reference
- High-Speed Serial Interface
- Compatible with the 5-6K Interface Board for use with a variety of DSP Starter Kits as well as the HPA-MCU Interface

2 Analog Interface

For maximum flexibility, the AD8509/8519 EVM is designed for easy interfacing to multiple analog sources. Samtec part numbers SSW-110-22-F-D-VS-K and TSM-110-01-T-DV-P provide a convenient ten-pin dual row header/socket combination at J1. This header/socket provides access to the analog input pins of the ADC. Consult Samtec at www.samtec.com or call 1-800-SAMTEC-9 for a variety of mating connector options. Table 1 shows the pin out of the analog input connector, J1.

Digital Interface www.ti.com

Pin Number	Signal	Description		
J1.2 thru J1.16 (even)	Analog Input	accommodate EVM Stacking using the TAG feature of the data converter, jumper JP12 can be used combination with J1 to choose one of eight analog input channels to the evaluation module.		
J1.20	REF(+)J	External reference source input, accessible through JP6.		
J1.15	REFOUT	Optional connection via JP6. Provides external AFE circuitry with REFOUT bias voltage.		
J1.1- J1.19 (odd)	AGND	Analog ground connections. Note J1.15 is used for REFOUT connections to external AFE circuitry.		

The analog front-end (AFE) circuitry found on the EVM consists of a simple RC filter. When used in combination with the 5-6K Interface Board, the circuits found on both DAP Signal Conditioning Boards (see <u>SLAU105</u>) provide the level shifting and amplifier configurations to realize single ended or bi-polar mode operation of the analog-to-digital converter installed on the EVM.

2.1 Analog Input Range Selection

Jumpers JP1 through JP5 provide a convenient way to choose the analog input range. JP1 controls the input connection to pin 1 (R1IN), JP2 controls the connection to pin 3 (R2IN) and JP3 controls the inputs on pins 4 and 5 (R3IN and CAP). Jumpers JP4 and JP5 provide connections to 33.2K resistors wired to the CAP pin and TRIM adjustment pot R6 (via JP5). Table 2 is representative of the input range selection.

Table 2. Input Range Selection(1)

Range	Without Trim			With Trim						
	JP1	JP2	JP3	JP4	JP5	JP1	JP2	JP3	JP4	JP5
0–10 V	5–6	1–2	5–6	1–2	2–3	5–6	1–2	5–6	1–2	1–2
0–5 V	5–6	5–6	1–2	1–2	2–3	5–6	5–6	1–2	1–2	1–2
0–4 V	1–2	5–6	1–2	2–3	2–3	1–2	5–6	1–2	2–3	1–2
±10 V	5–6	5–6	3–4	2–3	2–3	5–6	5–6	3–4	2–3	1–2
±5 V	1–2	1–2	3–4	1–2	2–3	1–2	1–2	3–4	1–2	1–2
±5 V	1–2	1–2	3–4	2–3	2–3	1–2	1–2	3–4	2–3	1–2

⁽¹⁾ For Offset Adjustment, close JP6 pins 5–6 and adjust R8 before trimming.

2.2 Optional Amplifier Input

Jumper JP7 provides access to an optional amplifier/buffer circuit on the front end of the data converter. Component U2 can be installed at the user's option with any standard 8 pin SOIC single amplifier component. The amplifier circuit is connected to the ±VA terminals for split supply operation. If single supply amplifiers are used, the –VA (J3 pin 2) can be tied to analog ground (J3 pin 6). The footprint for common 4mm trim pots (see component R11) is provided as an offset adjustment pot for single supply amplifiers. When used in conjunction with the 5-6K Interface Board, please be aware that the –VA supply is common to all power connectors (JP1 through JP6). Shorting the –VA supply to ground on the AD8509/8519 EVM is possible only if it is not used elsewhere on the interface board.

3 Digital Interface

The AD8509/8519 EVM is designed for easy interfacing to multiple control platforms. Jumper options are provided on the EVM to allow direct control over the serial clock source as well as the data output and TAG features.

The active low \overline{CSO} pin is connected to J2 pin 1. This pin can be controlled through GPIO functions on the 5–6K Interface Board. For standalone operation, a shunt jumper can be placed between J2T pins 1 and 2 to tie \overline{CS} to ground.

www.ti.com Power Supplies

The DATA output from the EVM is applied to JP9. When the supplied shunt is on pins 1-2 (default state), the DATA output is fed to J2B (bottom side) pin 11. This is required when operating in the internal data clock mode, where the ADC supplies an SPI master clock to the host processor. Data is input to the SIMO pin of the host in this case. JP13 is provided as a means to return the ADC generated SPI clock to DSP host processors using the 5-6K Interface Board.

3.1 Using TAG Features via JP8, JP9, and JP10

JP8 controls the TAG function of the ADC. With the supplied shunt in position 1-2 (default state), TAG is grounded and the EVM is to be considered as either the only converter in the system, or the LAST converter in the data chain (see SBAA007 for additional details). When the shunt on JP8 is moved to position 2–3, data input to the TAG pin is fed from J2T (top side) pin 13. JP8 and JP9 must be in position 1-2 for the last converter in the chain and position 2–3 for all other devices when using the TAG feature. The TAG feature also requires the use of an external data clock. JP10 sets the EXT/INT pin high (external clock) when the pins are open (no shunt installed). The external data clock can be applied to J2 pin 3 (top or bottom side).

3.2 Additional Digital Control and Monitoring

As mentioned previously, JP10 controls the selection of the internal or external data clock. When JP10 is closed (default) the ADC generates a low dwelling burst mode clock that allows the user to read valid data on either the rising or falling edge. Removing the shunt from JP10 requires an external data clock applied to J2 pin 3 (top or bottom side) to produce a data output stream. JP11 controls the data format; when closed (default) the DATA output pin provides a Binary Twos Complement data stream. Opening JP11 provides a straight binary output of the conversion results. JP14 controls the device power down function. Opening JP14 applies a logic high to the PWRD pin, shutting down the ADC.

Test points TP4 and TP6 provide access to the SYNC and BUSY signals respectively. These can be monitored by referencing an oscilloscope to TP5, digital ground (labeled DGND). The applied digital voltage can be monitored at TP3. Analog signals and the applied VANA voltage can be monitored at TP2 (+5V) referenced to TP1 (AGND).

4 Power Supplies

The AD8509/8519 EVM board requires +5V DC for both the analog and digital sections of the ADC. Power to the ADC is sourced from J3 pin 3 and pin 10 (+5VA and +5VD - see Table 3).

NOTE: VDIG must be less than or equal to VANA.

Table 3 shows the pin out of J3.

Table 3. Pinout of J3

Signal	Pin No	Signal	
+VA	1	2	-VA
+5VA	3	4	Unused
DGND	5	6	AGND
Unused	7	8	Unused
Unused	9	10	+5VD

For stand alone operation, power sources can be applied via various test points located on the EVM (VANA to TP2 and VDIG to TP3). Refer to the schematic at the end of this document for details.

The option amplifier located at position U2 (user supplied) can be powered through J3 pins 1 and 2.

NOTE: While filters are provided for all power supply inputs, optimal performance of the EVM requires a clean, well-regulated power source.

EVM Operation www.ti.com

4.1 Reference Voltage control via JP6

The AD8509/8519 is normally configured to use its internal reference. Jumper JP6 provides various options to allow the EVM user to send the converter's reference voltage off board to external amplifier circuits (JP6 pins 3-4, default state). An external reference source applied to J1 pin 20 can be sent to the ADC by moving the shunt at JP6 to pins 1-2. An on board trim pot is provided at R8, and can be used with a shunt jumper placed on JP6 pins 5–6.

5 EVM Operation

The max analog input swing is $\pm 10V_{PP}$. The input range can be adjusted directly on the EVM by configuring jumpers JP1 through JP5, with offset trim capability using JP6. The EVM is set for the 0-10V input range by default with the serial data stream supplied by the internal clock. Offset trim can be accomplished on board via R8 or through an external input through J1. Single amplifier U2 in an industry standard SOIC 8 package can be installed to do on board signal conditioning if necessary. Refer to Section 12 of Op Amps for Everyone (Doc. No. SLOD006) for information on various circuit applications.

Once power is applied to the EVM, the analog input source can be connected directly to J1 (top or bottom side) or through optional amplifier and signal conditioning modules using the 5-6K Interface Board. Jumper JP12 allows the EVM user to choose which analog signal applied to J1 is directed to the input of the ADC, providing the ability to stack up to eight AD8509/8519 EVM's using the TAG features of the device. When using the TAG feature, be sure to set the jumpers according to section 2.1 of this Users Guide.

The digital control signals can be applied directly to J2 (top or bottom side). The AD8509/8519 EVM can also be connected directly to the 5-6K Interface Board for use with a variety of C5000 and C6000 series DSP Starter Kits (DSK). The analog and digital input connectors are designed to allow pattern generators and/or logic analyzers to be connected to the EVM using standard ribbon type cables on 0.1" centers.

No specific evaluation software is provided with this EVM, however, various code examples are available that show how to use this EVM with a variety of digital signal processors from Texas Instruments Incorporated. Check the product folders for a listing of available code examples. The EVM Gerber files are available on request.

Table 4 shows the factory default jumper locations for the AD8509/8519 EVM:

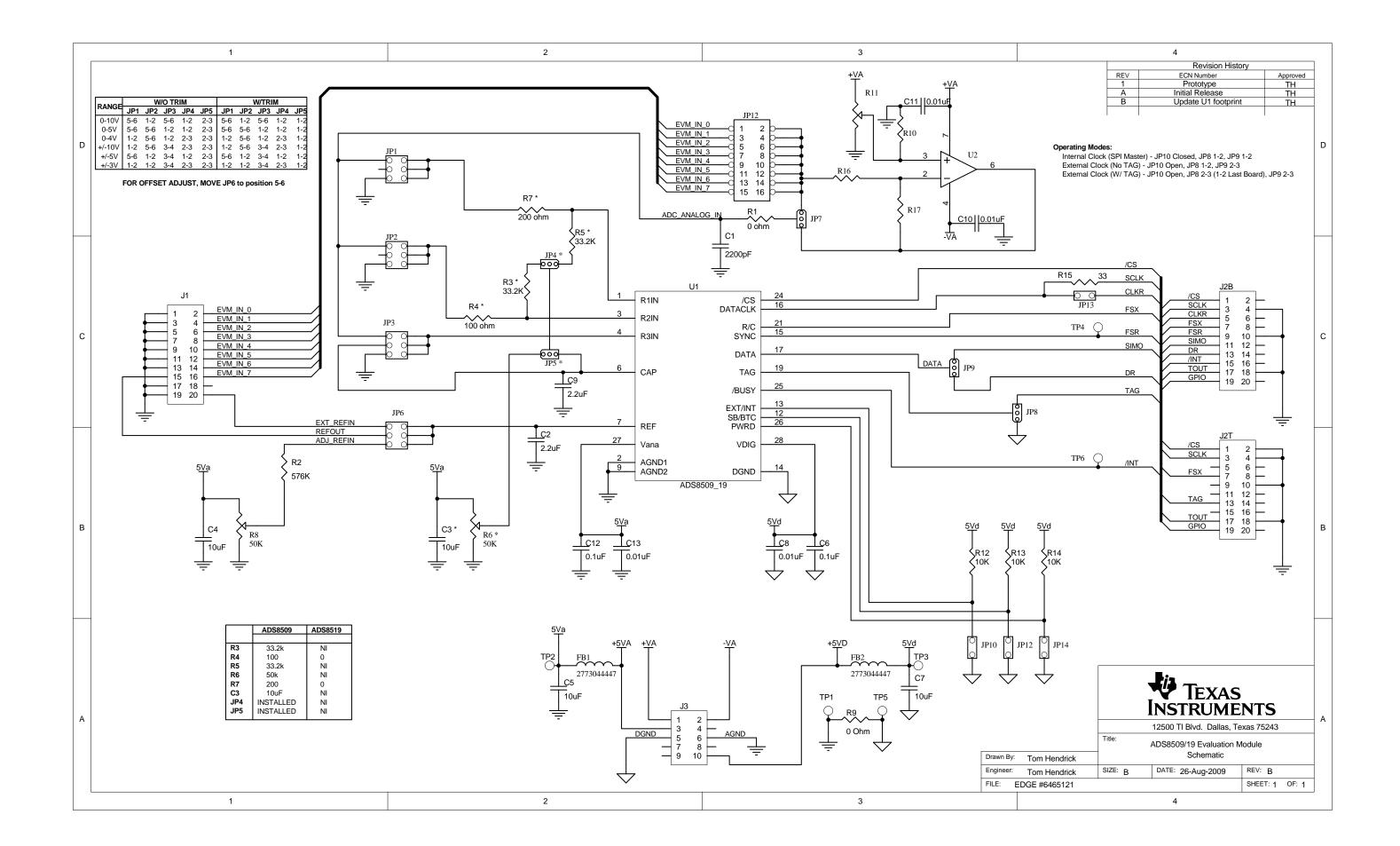
Table 4. Factory Default Jumper Locations

Jumper	Function	Default Condition
JP1	Controls application of the applied analog signal to R1IN	5–6
JP2	Controls application of the applied analog signal to R2IN	1–2
JP3	Controls application of the applied analog signal to R3IN	5–6
JP4	Controls connection of 33.2 k Ω resistors to the CAP pin and TRIM pot	1–2
JP5	Controls connection of 33.2 k Ω resistors to the CAP pin and TRIM pot	2–3
JP6	Controls the application of the reference voltage	3–4
JP7	Controls the application of optional signal conditioning circuitry	1–2
JP8	Controls the TAG feature	1–2
JP9	Controls the application of the DOUT data stream	1–2
JP10	Controls the EXT/INT clock pin	CLOSED
JP11	Controls the SB/BTC data format pin	CLOSED
JP12	Used to select an analog input channel when used with DAP Signal Conditioning Boards	1–2
JP13	Controls the application of clock return for DSP receiver operations	CLOSED
JP14	Controls the PWRD function	CLOSED

6 EVM Bill of Materials and Schematic

Table 5 contains a complete Bill of Materials for the AD8509/8519EVM. The schematic diagram is also provided for reference.

Table 5. Bill of Materials


	Qty.						
Item	ADS8509 ADS8519		Designators	Description	Manufacturer	Mfg. Part Number	
1	1	1	N/A	Printed Wiring Board Texas Instruments 6		6465120	
2	1	1	C1	2200pF Ceramic, 0603,C0G, 50V, 5%	2200pF Ceramic, 0603,C0G, 50V, 5% TDK C1608		
3	2	2	C2 C9	2.2uF Ceramic, 0805, X5R, 10V, 10%	TDK	C2012X5R1A225K/0.85	
4	3	3	C4 C5 C7	10uF Ceramic, 0805, X5R, 16V, 20%	TDK	C2012X5R1C106M	
4	1	0	C3	10uF Ceramic, 0805, X5R, 16V, 20%	TDK	C2012X5R1C106M	
5	2	2	C6 C12	0.1uF Ceramic, 0603, X7R, 25V, 20%	TDK	C1608X7R1E104K	
6	2	2	C8 C13	0.01uF Ceramic, X7R, 50V	TDK	C1608X7R1H103K	
b	0	0	C10 C11	Not Installed			
7	2	2	FB1 FB2	73 SM BEAD	Fair-Rite	2773044447L	
8	2	2	J1 J2 (top side)	10 Pin, Dual Row, SMT Header (20 Pos.)	Samtec	TSM-110-01-T-DV-P	
9	2	2	J1B J2B (bottom side)	10 Pin, Dual Row, SMT Socket (20 Pos.)	Samtec	SSW-110-22-F-D-VS-K	
10	1	1	J3 (top side)	5 Pin, Dual Row, SMT Header (10 Pos.)	Samtec	TSM-105-01-T-DV-P	
11	1	1	J3 (bottom side)	5 Pin, Dual Row, SMT Socket (10 Pos.)	Samtec	SSW-105-22-F-D-VS-K	
12	4	4	JP1 JP2 JP3 JP6	3 Pin, dual row header (6 pos)	Samtec	TSW-103-07-L-D	
13	2	0	JP4 JP5	3 Pin, single row header	Samtec	TSW-103-07-L-S	
13	3	3	JP7 JP8 JP9	3 Pin, single row header	Samtec	TSW-103-07-L-S	
14	4	4	JP10 JP11 JP13 JP14	2 Pin header	Samtec	TSW-102-07-L-S	
15	1	1	JP12	8 Pin, dual row, 2mm header (16 pos)	Samtec	TMM-108-02-L-D	
16	2	2	R1 R4	100 Ohm, 0603, 1%, 1/10W	Yageo America	RC0603FR-07100RL	
17	1	1	R2	576k Ohm, 0603, 1%, 1/10W	Yageo America	RC0603FR-07576KL	
18	2	0	R3 R5	33.2k Ohm, 0603, 1%, 1/10W	Yageo America	RC0603FR-0733K2L	
19	1	0	R6	50k, SMT Trim Pot, 4mm	Bourns	3214W-1-503E	
13	1	1	R8	50k, SMT Trim Pot, 4mm	Bourns	3214W-1-503E	
20	1	0	R7	200 Ohm, 0603, 1%, 1/10W	Yageo America	RC0603FR-07200RL	
21	1	1	R9	0 Ohm, 0603, 5%, 1/10W	Yageo America	RC0603JR-070RL	
22	0	0	R10 R11 R16 R17	Not Installed			
23	3	3	R12 R13 R14	10K ohm, 0603, 1%, 1/10W	Yageo America	RC0603FR-0710KL	
24	1	1	R15	33.0 ohm, 0603, 1%, 1/10W	Yageo America	RC0603FR-0733RL	
25	4	4	TP2 TP3 TP4 TP6	Red Test Point Loop	Keystone	5000	
26	2	2	TP1 TP5	Black Test Point Loop	Keystone	5001	
27	1	0	U1	ADS8509 16BIT 250KSPS SRL 28-SSOP	Texas Instruments	ADS8509IBDBR	
۷.	0	1		ADS8519 16BIT 250KSPS SAMP 28-SSOP	Texas Instruments	ADS8519IBDBR	
28	0	0	U2	Not Installed			
29	13	11	Shunt for items 12,13, 14	0.1" Econ. Shunt - Black	Samtec	SNT-100-BK-T	
30	1	1	Shunt for item 15	2mm Econ. Shunt - Black	Samtec	2SN-BK-G	

7 Related Documentation from Texas Instruments

Table 6. EVM Compatible Device Data Sheets, Users Guides and Additional Resources

Data Sheet	Literature Number
AD8519	SLAS462
AD8509	SLAS324
Users Guides	Literature Number
5-6K Interface Board	SLAU104
DAP Signal Conditioning Boards	SLAU105
Additional Resources	Literature Number
Op Amps for Everyone	SLOD006
AD8509 TAG Features	SBAA007

FCC Warning

This evaluation board/kit is intended for use for **ENGINEERING DEVELOPMENT**, **DEMONSTRATION**, **OR EVALUATION PURPOSES ONLY** and is not considered by TI to be a finished end-product fit for general customer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment in other environments may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.

EVALUATION BOARD/KIT IMPORTANT NOTICE

Texas Instruments (TI) provides the enclosed product(s) under the following conditions:

This evaluation board/kit is intended for use for **ENGINEERING DEVELOPMENT**, **DEMONSTRATION**, **OR EVALUATION PURPOSES ONLY** and is not considered by TI to be a finished end-product fit for general consumer use. Persons handling the product(s) must have electronics training and observe good engineering practice standards. As such, the goods being provided are not intended to be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including product safety and environmental measures typically found in end products that incorporate such semiconductor components or circuit boards. This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and therefore may not meet the technical requirements of these directives or other related directives.

Should this evaluation board/kit not meet the specifications indicated in the User's Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge.

EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.

Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI's environmental and/or safety programs, please contact the TI application engineer or visit www.ti.com/esh.

No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used.

EVM WARNINGS AND RESTRICTIONS

It is important to operate this EVM within the input voltage range of -10 V to +10 V and the output voltage range of 0 V to 5 V.

Exceeding the specified input range may cause unexpected operation and/or irreversible damage to the EVM. If there are questions concerning the input range, please contact a TI field representative prior to connecting the input power.

Applying loads outside of the specified output range may result in unintended operation and/or possible permanent damage to the EVM. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative.

During normal operation, some circuit components may have case temperatures greater than 30 C. The EVM is designed to operate properly with certain components above 60 C as long as the input and output ranges are maintained. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors. These types of devices can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during operation, please be aware that these devices may be very warm to the touch.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2009, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Applications Products Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters Automotive www.ti.com/automotive dataconverter.ti.com DLP® Products Broadband www.dlp.com www.ti.com/broadband DSP Digital Control dsp.ti.com www.ti.com/digitalcontrol Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Military Interface www.ti.com/military interface.ti.com Optical Networking Logic logic.ti.com www.ti.com/opticalnetwork Power Mgmt power.ti.com Security www.ti.com/security Telephony Microcontrollers microcontroller.ti.com www.ti.com/telephony Video & Imaging www.ti-rfid.com www.ti.com/video RF/IF and ZigBee® Solutions www.ti.com/lprf Wireless www.ti.com/wireless

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2009, Texas Instruments Incorporated