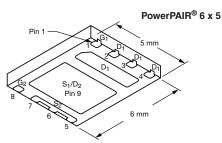
New Product

SiZ904DT

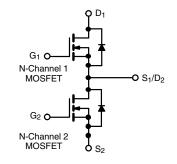

COMPLIANT

HALOGEN FREE

Vishay Siliconix

Dual N-Channel 30 V (D-S) MOSFETs

PRODUCT SUMMARY							
	V _{DS} (V)	R _{DS(on)} (Ω) Max.	I _D (A)	Q _g (Typ.)			
Channel 1	30	0.024 at V _{GS} = 10 V	12 ^a	3.8 nC			
Channel-1	30	0.030 at V _{GS} = 4.5 V	12 ^a	3.0 110			
Channel-2	30	0.0135 at V _{GS} = 10 V	16 ^a	7.3 nC			
Ghannel-2	30	0.017 at V _{GS} = 4.5 V	16 ^a	7.5110			


Ordering Information: SiZ904DT-T1-GE3 (Lead (Pb)-free and Halogen-free)

FEATURES

- Halogen-free According to IEC 61249-2-21 Definition
- TrenchFET[®] Power MOSFETs
- 100 % R_{α} and UIS Tested
- Compliant to RoHS Directive 2002/95/EC

APPLICATIONS

- Notebook System Power
- POL
- Low Current DC/DC

ABSOLUTE MAXIMUM RATINGS (T	A = 25 °C, unle	ess otherwise	noted)		
Parameter	Symbol	Channel-1	Channel-2	Unit	
Drain-Source Voltage	V _{DS}	30	30	V	
Gate-Source Voltage		V _{GS}	± 20		v
	T _C = 25 °C		12 ^a	16 ^a	
Continuous Drain Current ($T_1 = 150 \ ^{\circ}C$)	T _C = 70 °C	I _D	12 ^a	16 ^a	
Continuous Drain Current $(T_j = 150^{\circ} C)$	T _A = 25 °C	٦	9.5 ^{b, c}	14.5 ^{b, c}	
	T _A = 70 °C		7.6 ^{b, c}	11.6 ^{b, c}	А
Pulsed Drain Current (t = 300 μs)		I _{DM}	30	40	A
Source Drain Current Diode Current	T _C = 25 °C	le le	12 ^a	16 ^a	
	T _A = 25 °C	۱ _S	3.2 ^{b, c}	4 ^{b, c}	
Single Pulse Avalanche Current L = 0.1 mH		I _{AS}	10	15	
Single Pulse Avalanche Energy		E _{AS}	5	11	mJ
	T _C = 25 °C		20	33	
Maximum Power Dissipation	T _C = 70 °C		12.9	21	W
Maximum Power Dissipation	T _A = 25 °C	PD	3.8 ^{b, c}	4.8 ^{b, c}	vv
	T _A = 70 °C		2.4 ^{b, c}	2.4 ^{b, c} 3.1 ^{b, c}	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to 150		°C
Soldering Recommendations (Peak Temperature) ^{d, e}			26	60	-0

THERMAL RESISTANCE RATINGS							
Parameter		Symbol	Channel-1		Channel-2		Unit
Falanciel		Symbol		Max.	Тур.	Max.	Onit
Maximum Junction-to-Ambient ^{b, f}	t ≤ 10 s	R _{thJA}	25	33	20	26	°C/W
Maximum Junction-to-Case (Drain)	Steady State	R _{thJC}	4.7	6.2	3	3.8	0/11

Notes: a. Package limited.

b. Surface mounted on 1" x 1" FR4 board.

c. t = 10 s.

d. See solder profile (www.vishay.com/doc?73257). The PowerPAIR is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.

e. Rework conditions: manual soldering with a soldering iron is not recommended for leadless components.

f. Maximum under steady state conditions is 68 °C/W for Channel-1 and 61 °C/W for Channel-2.

Document Number: 63482 S11-2380-Rev. B, 28-Nov-11 www.vishay.com

Vishay Siliconix

Parameter	Symbol	Test Conditions		Min.	Тур.	Max.	Unit	
Static						1		
		$V_{GS} = 0 V, I_{D} = 250 \mu A$	Ch-1	30				
Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0 V$, $I_{D} = 250 \mu A$	Ch-2	30			V	
	N/ (T	I _D = 250 μA	Ch-1		35			
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	I _D = 250 μA	Ch-2		33			
	A) (/T	I _D = 250 μA	Ch-1		- 4.5		mv/°	
V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	I _D = 250 μA	Ch-2		- 5			
Cata Thrashald Valtage	Ň	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	Ch-1	1		2.5	v	
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	Ch-2	1.2		2.5	v	
Gate-Body Leakage	I _{GSS}	$V_{DS} = 0 V, V_{GS} = \pm 20 V$	Ch-1			± 100	nΔ	
	'GSS		Ch-2			± 100	117	
		$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}$	Ch-1			1		
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}$	Ch-2			1	ΠΑ	
	035	$V_{DS} = 30 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \text{ T}_{J} = 55 ^{\circ}\text{C}$				5	μΛ	
		V_{DS} = 30 V, V_{GS} = 0 V, T_{J} = 55 °C	Ch-2	Ch-1 30 Ch-2 30 Ch-1 Ch-2 Ch-2 Ch-2 Ch-2 Ch-1 Ch-2 Ch-1 1 Ch-1 1 Ch-1 1 Ch-1 Ch-1 Ch-1 Ch-1 20 Ch-1 20 Ch-1 0.020 0. Ch-1 0.0105 0.0 Ch-1 0.0135 0. Ch-1 Ch-2	5			
On-State Drain Current ^b		$V_{DS} \ge 5$ V, V_{GS} = 10 V	Ch-1	20			V 2.5 V 2.5 V 2.5 V 100 nA 1 1 5 5 A .024 0135 0 A .024 0135 0 A .024 0135 5 A .024 0135 0 F 12 23 6 11 nC 6.4 0	
On-State Drain Current	I _{D(on)}	$V_{DS} \ge 5$ V, $V_{GS} = 10$ V	Ch-2	20				
		$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 7.8 \text{ A}$	Ch-1		0.020	0.024		
	R _{DS(on)}	V _{GS} = 10 V, I _D = 10 A	Ch-2		0.0105	0.0135		
Drain-Source On-State Resistance ^b		$V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 7 \text{ A}$	Ch-1		0.024	0.030		
		$V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 7 \text{ A}$	Ch-2		0.0135	0.017		
Frank Frank Strategy b	a .	$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 7.8 \text{ A}$	Ch-1		17		<u> </u>	
Forward Transconductance ^b	9 _{fs}	V _{DS} = 10 V, I _D = 10 A	Ch-2		24		5	
Dynamic ^a	· · ·				-			
Input Capacitance	C _{iss}		Ch-1		435			
	CISS	Channel-1 V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHz	Ch-2		846			
Output Capacitance	C _{oss}	$v_{\rm DS} = 10^{-1}$, $v_{\rm GS} = 0^{-1}$, $1 = 10002$					pF	
		Channel-2						
Reverse Transfer Capacitance	C _{rss}	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, \text{ f} = 1 \text{ MHz}$			-4.5 -5 2.5 2.5 ± 100 ± 100 ± 100 1 1 5 0.020 0.020 0.0105 0.024 0.0135 0.024 0.0135 0.0135 0.0135 0.0135 0.0135 0.135 17 846	-		
		V _{DS} = 15 V, V _{GS} = 10 V, I _D = 7.8 A				10		
	-	$V_{DS} = 15 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 7.0 \text{ A}$ $V_{DS} = 15 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 10 \text{ A}$	-					
Total Gate Charge	Qg	$v_{\rm DS} = 15 v, v_{\rm GS} = 10 v, i_{\rm D} = 10 {\rm A}$						
		Channel-1						
		- V _{DS} = 15 V, V _{GS} = 4.5 V, I _D = 7.8 A					nC	
Gate-Source Charge	Q _{gs}	Ober 12					1	
		Channel-2 $V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V}, I_{D} = 10 \text{ A}$	Ch-1		1.1		1	
Gate-Drain Charge	Q _{gd}		Ch-2		2.2		1	
Cata Registeres		f 1 MI I-	Ch-1	0.6	3.2	6.4		
Gate Resistance	Rg	f = 1 MHz	Ch-2	0.2	0.8	1.6	Ω	

Notes:

a. Guaranteed by design, not subject to production testing.

b. Pulse test; pulse width \leq 300 $\mu s,$ duty cycle \leq 2 %.

www.vishay.com 2

Document Number: 63482 S11-2380-Rev. B, 28-Nov-11

This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

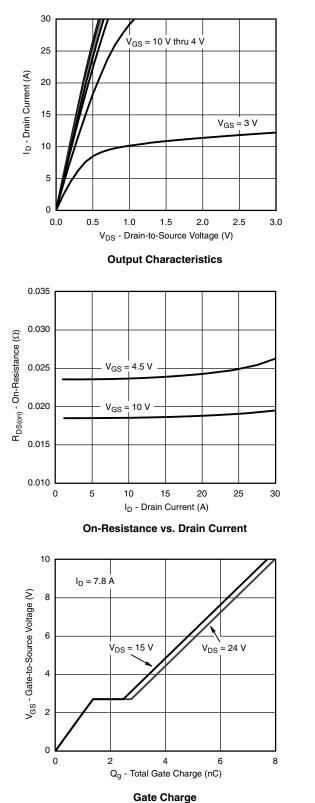
Vishay Siliconix

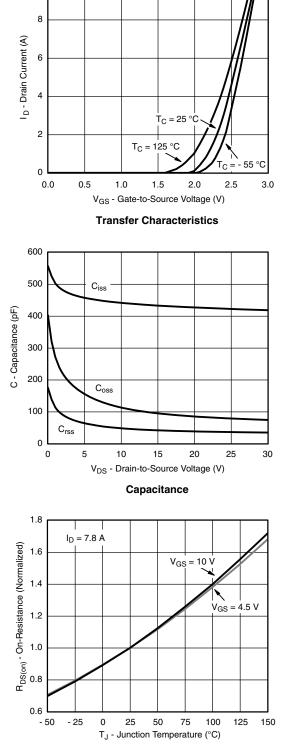
Parameter	Symbol Test Conditions				Тур.	Max.	Unit	
Dynamic ^a	•				<u> </u>	<u> </u>	<u> </u>	
Turn-On Delay Time	t _{d(on)}		Ch-1		15	30		
	^c u(on)	Channel-1 $V_{DD} = 15 \text{ V}, \text{ R}_{L} = 2.4 \Omega$	Ch-2		15	30		
Rise Time	t _r	$V_{DD} = 13$ V, $H_{L} = 2.432$ $I_{D} \cong 6.3$ A, $V_{GEN} = 4.5$ V, $R_{a} = 1 \Omega$	Ch-1		12	24		
	-		Ch-2		12			
Turn-Off Delay Time	t _{d(off)}	Channel-2	Ch-1		13	-		
	a(oii)	V_{DD} = 15 V, R_L = 1.5 Ω	Ch-2		13			
Fall Time	t _f	$I_D \cong$ 10 A, V_{GEN} = 4.5 V, R_g = 1 Ω	Ch-1		10			
			Ch-2		10	-	ns	
Turn-On Delay Time	t _{d(on)}	Channel-1	Ch-1 Ch-2		5 9	-		
		V_{DD} = 15 V, R_L = 2.4 Ω	Ch-2		9 10	-		
Rise Time			Ch-2		9	-		
					15	-	ns A 2 2 2 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	-
Turn-Off Delay Time	t _{d(off)}	Channel-2 V _{DD} = 15 V, R _I = 1.5 Ω	Ch-1 Ch-2		14	30 30 30 24 26 26 20 10 18 20 18 20 18 20 18 20 18 20 18 30 28 20 16 30 40 1.2 30 34 15 19		
		$V_{DD} = 13 \text{ V}, \text{ H}_{L} = 1.3 \Omega$ $I_D \cong 10 \text{ A}, \text{ V}_{\text{GEN}} = 10 \text{ V}, \text{ H}_{g} = 1 \Omega$	Ch-1		10	-		
Fall Time	t _f	10 = 10 , 10 $GEN = 10$ 0 , 10 $g = 122$	Ch-2		8	16		
Drain-Source Body Diode Characteristic	cs		1	1				
Continuous Source-Drain Diode Current	ls	T _C = 25 °C	Ch-1			12		
Continuous Cource Drain Diode Current	'5	10 - 20 0	Ch-2			-	Δ	
Pulse Diode Forward Current ^a	I _{SM}		Ch-1					
Tuise blode i ofward Guirent	-3141		Ch-2			40		
Body Diode Voltage	V _{SD}	I _S = 6.3 A, V _{GS} = 0 V	Ch-1		0.8	1.2	v	
Body Blode Vollage	. 3D	$I_{S} = 3 \text{ A}, V_{GS} = 0 \text{ V}$	Ch-2		0.78	1.2	v	
Body Diode Reverse Recovery Time	t _{rr}		Ch-1		15	30	10 ns 18 20 18 30 28 20 16 16 12 16 30 40 1.2 V 30 1.2 30 ns 34 ns	
	٩r	Channel-1	Ch-2		17	34	113	
Body Diode Reverse Recovery Charge	Q _{rr}	$I_{\rm F} = 6.3 \text{ A}, \text{ dl/dt} = 100 \text{ A/}\mu\text{s}, T_{\rm J} = 25 ^{\circ}\text{C}$	Ch-1		7	15	nC	
	11	1^{-1}	Ch-2		9.5	19		
Reverse Recovery Fall Time	t _a	Channel-2	Ch-1		9			
	ŭ	$I_F = 10 \text{ A}, \text{ dI/dt} = 100 \text{ A/}\mu\text{s}, \text{ T}_J = 25 ^\circ\text{C}$	Ch-2		10		ns	
Reverse Recovery Rise Time	t _b		Ch-1		6		-	
,	~		Ch-2		7			

Notes:

a. Guaranteed by design, not subject to production testing.

b. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2 %.


Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


10

SiZ904DT

Vishay Siliconix

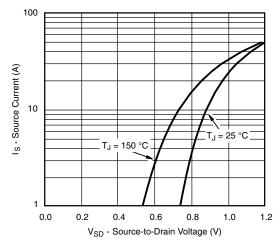
CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

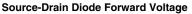
On-Resistance vs. Junction Temperature

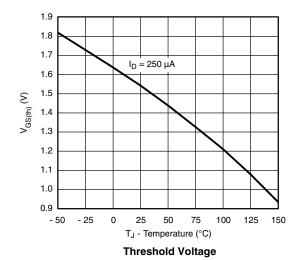
www.vishay.com

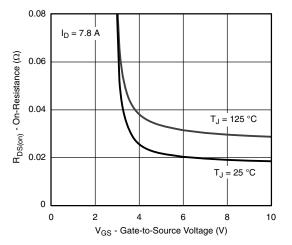
4

Document Number: 63482 S11-2380-Rev. B, 28-Nov-11

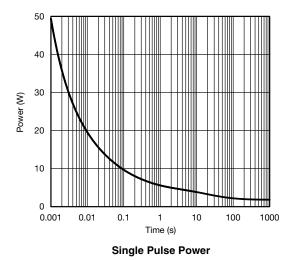

VISHAY

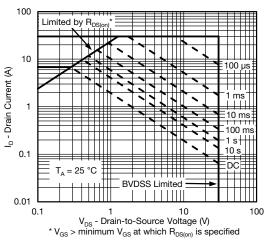

This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000



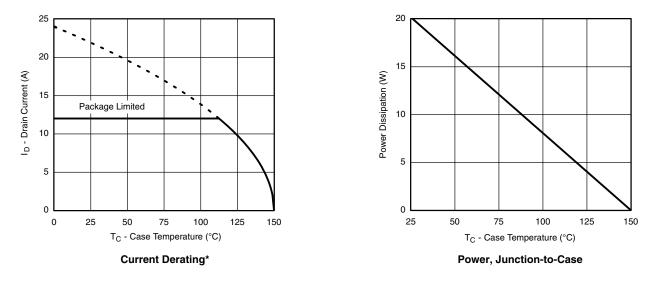

SiZ904DT Vishay Siliconix

CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)





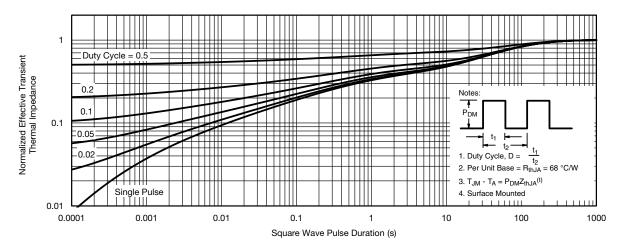
On-Resistance vs. Gate-to-Source Voltage



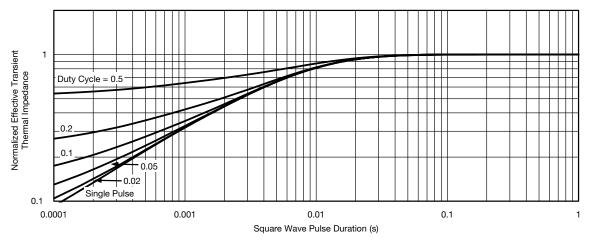
Safe Operating Area, Junction-to-Ambient

Vishay Siliconix

CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


* The power dissipation P_D is based on $T_{J(max)} = 150$ °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

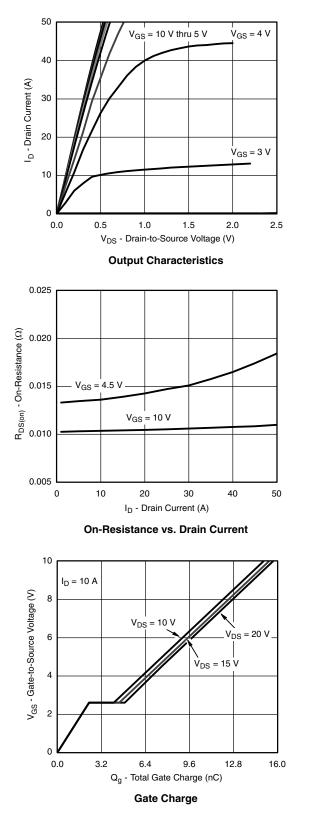
This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 **New Product**

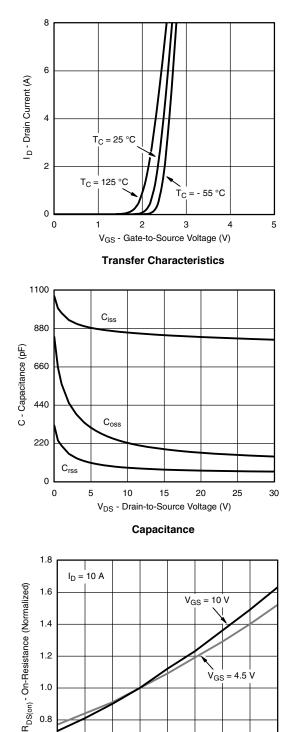


SiZ904DT Vishay Siliconix

CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Normalized Thermal Transient Impedance, Junction-to-Ambient


Normalized Thermal Transient Impedance, Junction-to-Case


7

Vishay Siliconix

CHANNEL-2 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

On-Resistance vs. Junction Temperature

50

T_J - Junction Temperature (°C)

75

25

0

www.vishay.com 8

Document Number: 63482 S11-2380-Rev. B, 28-Nov-11

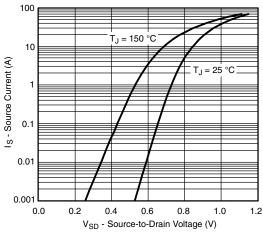
100

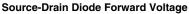
125 150

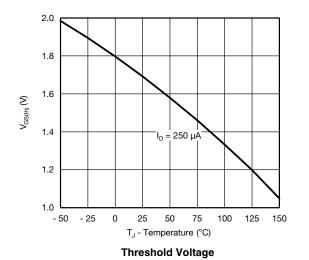
This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

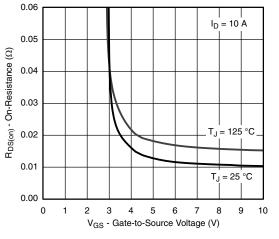
0.8

0.6

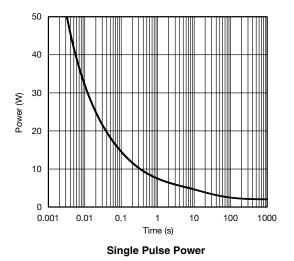

- 50

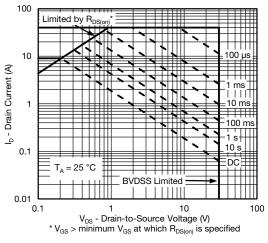

- 25



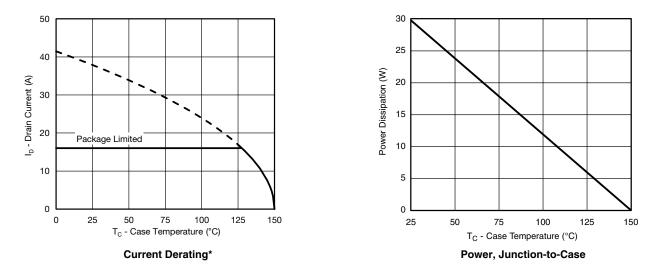

SiZ904DT Vishay Siliconix

CHANNEL-2 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)





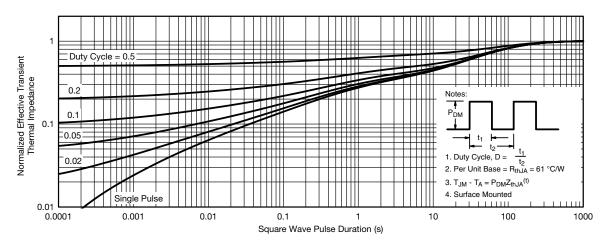
On-Resistance vs. Gate-to-Source Voltage



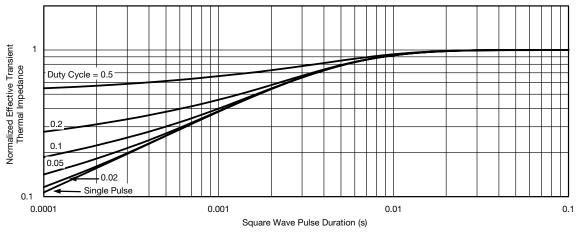
Safe Operating Area, Junction-to-Ambient

Vishay Siliconix

CHANNEL-2 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


* The power dissipation P_D is based on $T_{J(max)} = 150$ °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

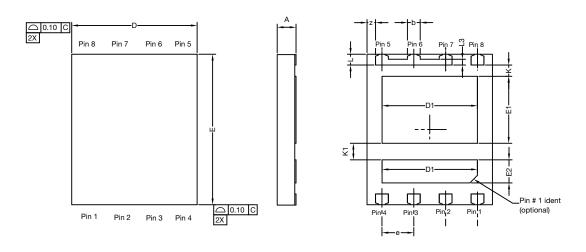
New Product



SiZ904DT Vishay Siliconix

CHANNEL-2 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

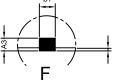
Normalized Thermal Transient Impedance, Junction-to-Ambient


Normalized Thermal Transient Impedance, Junction-to-Case

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?63482.

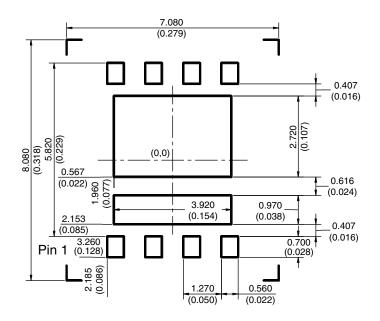
Vishay Siliconix

PowerPAIR[®] 6 x 5 Case Outline


Top side view

Back side view

Ł


		MILLIMETERS		INCHES				
DIM.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.		
А	0.70	0.75	0.80	0.028	0.030	0.032		
A1	0.00	-	0.10	0.000	-	0.004		
A3	0.15	0.20	0.25	0.006	0.007	0.009		
b	0.43	0.51	0.61	0.017	0.020	0.024		
b1		0.25 BSC			0.010 BSC			
D	4.90	5.00	5.10	0.192	0.196	0.200		
D1	3.75	3.80	3.85	0.148	0.150	0.152		
E	5.90	6.00	6.10	0.232	0.236	0.240		
E1 Option AA (for W/B)	2.62	2.67	2.72	0.103	0.105	0.107		
E1 Option AB (for BWL)	2.42	2.47	2.52	0.095	0.097	0.099		
E2	0.87	0.92	0.97	0.034	0.036	0.038		
е		1.27 BSC			0.005 BSC			
K Option AA (for W/B)		0.45 typ.		0.018 typ.				
K Option AB (for BWL)	0.65 typ.				0.025 typ.			
K1	0.66 typ.			0.025 typ.				
L	0.33	0.43	0.53	0.013	0.017	0.020		
L3	0.23 BSC 0.009 BSC							
Z	0.34 BSC			0.013 BSC				

Revision: 20-May-13

Vishay Siliconix

RECOMMENDED MINIMUM PAD FOR PowerPAIR® 6 x 5

Recommended Minimum Pad Dimensions in mm (inches)

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.