SCBS146D - MAY 1992 - REVISED NOVEMBER 1996

 State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V Operation and Low-Static Power 	SN54LVT16500 WD PACKAGE SN74LVT16500 DGG OR DL PACKAGE (TOP VIEW)
Dissipation	
 Members of the Texas Instruments Widebus[™] Family 	OEAB [] 1 56 [] GND LEAB [] 2 55 [] CLKAB A1 [] 3 54 [] B1
 Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V V_{CC}) 	GND [] 4 53] GND A2 [] 5 52] B2
 Support Unregulated Battery Operation Down to 2.7 V 	A3 [] 6 51]] B3 V _{CC} [] 7 50]] V _{CC}
● UBT [™] (Universal Bus Transceiver)	A4 [] 8 49 [] B4 A5 [] 9 48 [] B5
Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent,	A6 [] 10 47]] B6
Latched, or Clocked Mode	GND 🛛 11 46 🗍 GND
 Typical V_{OLP} (Output Ground Bounce) < 0.8 V at V_{CC} = 3.3 V, T_A = 25°C 	A7 [] 12 45 [] B7 A8 [] 13 44 [] B8
 ESD Protection Exceeds 2000 V Per 	A9 🖸 14 43 🛛 B9
MIL-STD-883, Method 3015; Exceeds 200 V	A10 1 5 42 B 10
Using Machine Model	
(C = 200 pF, R = 0)	
Latch-Up Performance Exceeds 500 mA	GND [] 18 39 [] GND A13 [] 19 38 [] B13
Per JEDEC Standard JESD-17	A14 20 37 B14
 Bus Hold on Data Inputs Eliminates the 	A15 21 36 B15
Need for External Pullup/Pulldown	V _{CC} 22 35 V _{CC}
Resistors	A16 23 34 B16
 Support Live Insertion 	A17 🛛 24 🛛 33 🗍 B17
 Distributed V_{CC} and GND Pin Configuration 	
Minimizes High-Speed Switching Noise	
 Flow-Through Architecture Optimizes PCB Layout 	OEBA [] 27 30]] CLKBA LEBA [] 28 29]] GND

 Package Options Include Plastic 300-mil Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages and 380-mil Fine-Pitch Ceramic Flat (WD) Package Using 25-mil Center-to-Center Spacings

description

The 'LVT16500 are 18-bit universal bus transceivers designed for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment.

Data flow in each direction is controlled by output-enable (OEAB and OEBA), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A data is latched if CLKAB is held at a high or low logic level. If LEAB is low, the A-bus data is stored in the latch/flip-flop on the high-to-low transition of CLKAB. Output-enable OEAB is active high. When OEAB is high, the B-port outputs are active. When OEAB is low, the B-port outputs are in the high-impedance state.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus and UBT are trademarks of Texas Instruments Incorporated.

UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1996, Texas Instruments Incorporated

SN54LVT16500, SN74LVT16500 3.3-V ABT 18-BIT UNIVERSAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS SCBS146D – MAY 1992 – REVISED NOVEMBER 1996

description (continued)

Data flow for B to A is similar to that of A to B but uses OEBA, LEBA, and CLKBA. The output enables are complementary (OEAB is active high and OEBA is active low).

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. OE should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

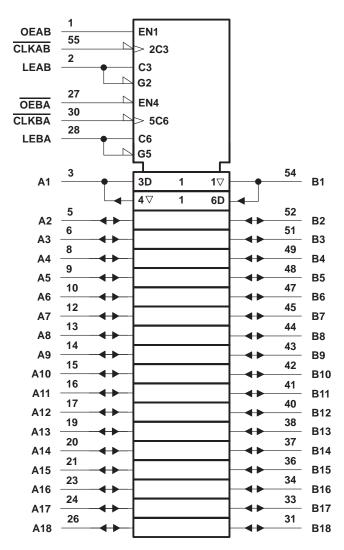
The SN74LVT16500 is available in TI's shrink small-outline (DL) and thin shrink small-outline (DGG) packages, which provide twice the I/O pin count and functionality of standard small-outline packages in the same printed circuit board area.

The SN54LVT16500 is characterized for operation over the full military temperature range of -55° C to 125° C. The SN74LVT16500 is characterized for operation from -40° C to 85° C.

-	FUNCTION TABLE										
	INPUTS										
OEAB	LEAB	CLKAB	Α	В							
L	Х	Х	Х	Z							
н	Н	Х	L	L							
н	Н	Х	Н	н							
н	L	\downarrow	L	L							
н	L	\downarrow	Н	Н							
н	L	Н	Х	в ₀ ‡							
н	L	L	Х	в ₀ ∓ в ₀ §							

FUNCTION TABLET

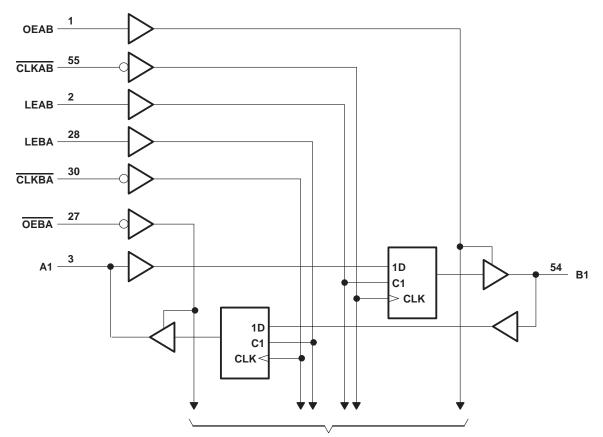
[†] A-to-B data flow is shown: B-to-A flow is similar but uses OEBA, LEBA, and CLKBA.


[‡]Output level before the indicated steady-state input conditions were established

§ Output level before the indicated steady-state input conditions were established, provided that CLKAB was low before LEAB went low

SCBS146D - MAY 1992 - REVISED NOVEMBER 1996

logic symbol[†]



[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SCBS146D – MAY 1992 – REVISED NOVEMBER 1996

logic diagram (positive logic)

To 17 Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	
Input voltage range, V _I (see Note 1)	–0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, V_O (see Note 1)	
Current into any output in the low state, IO: SN54LVT16500	96 mA
SN74LVT16500	128 mA
Current into any output in the high state, I _O (see Note 2): SN54LVT16500	48 mA
SN74LVT16500	64 mA
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I_{OK} ($V_O < 0$)	–50 mA
Maximum power dissipation at $T_A = 55^{\circ}C$ (in still air) (see Note 3): DGG package	
DL package	1.4 W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. This current flows only when the output is in the high state and $V_O > V_{CC}$.

3. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils. For more information, refer to the *Package Thermal Considerations* application note in the *ABT Advanced BiCMOS Technology Data Book*.

SN54LVT16500, SN74LVT16500 3.3-V ABT 18-BIT UNIVERSAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS SCBS146D – MAY 1992 – REVISED NOVEMBER 1996

recommended operating conditions (see Note 4)

			SN54LV	T16500	SN74LV	T16500	UNIT
			MIN	MAX	MIN	MAX	UNIT
VCC	Supply voltage		2.7	3.6	2.7	3.6	V
VIH	High-level input voltage		2	ĬEI,	2		V
VIL	Low-level input voltage			0.8		0.8	V
VI	Input voltage			Q 5.5		5.5	V
ЮН	High-level output current		S.	-24		-32	mA
IOL	Low-level output current		00	48		64	mA
$\Delta t/\Delta v$	Input transition rise or fall rate	Outputs enabled	A.	10		10	ns/V
Т _А	Operating free-air temperature		-55	125	-40	85	°C

NOTE 4: Unused control inputs must be held high or low to prevent them from floating.

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

SCBS146D - MAY 1992 - REVISED NOVEMBER 1996

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	TE	SNS	54LVT16	500	SN7	'4LVT16	500	UNIT		
PARAMETER		ST CONDITIONS		MIN	TYP†	MAX	MIN	TYP [†]	MAX	UNIT
VIK	V _{CC} = 2.7 V,	lj = -18 mA				-1.2			-1.2	V
	$V_{CC} = 2.7 V \text{ to } 3.6 V,$	I _{OH} = -100 μA	V _{CC} -0	.2		V _{CC} -0	.2			
Vari	V _{CC} = 2.7 V,	I _{OH} = -8 mA		2.4			2.4			v
VOH	V _{CC} = 3 V	I _{OH} = -24 mA		2						v
	VCC = 3 V	I _{OH} = -32 mA					2			
	V _{CC} = 2.7 V	I _{OL} = 100 μA				0.2			0.2	
	VCC = 2.7 V	I _{OL} = 24 mA				0.5			0.5	
VOL		I _{OL} = 16 mA				0.4			0.4	v
VOL	$V_{CC} = 3 V$	I _{OL} = 32 mA				0.5			0.5	v
		I _{OL} = 48 mA			0.55					
		I _{OL} = 64 mA				<i>!</i>			0.55	
	V _{CC} = 3.6 V,	$V_I = V_{CC} \text{ or } GND$	Control		Pr-	±1			±1	
`	$V_{CC} = 0 \text{ or } 3.6 \text{ V},$	V _I = 5.5 V	inputs		Z	10				
lj –		V _I = 5.5 V			52	20			20	
	V _{CC} = 3.6 V	$V_I = V_{CC}$	A or B ports‡	Ó	~	5			5	
		$V_{I} = 0$		Q		-10			-10	
l _{off}	V _{CC} = 0,	V_{I} or $V_{O} = 0$ to 4.5	V			±100			±100	μΑ
ha	$V_{CC} = 3 V$	V _I = 0.8 V	A or B ports	75			75			μA
l(hold)	VCC = 3 V	V _I = 2 V	A of B ports	-75			-75			μΑ
IOZH	V _{CC} = 3.6 V,	V _O = 3 V				1			1	μΑ
IOZL	V _{CC} = 3.6 V,	V _O = 0.5 V				-1			-1	μΑ
			Outputs high			0.12			0.12	
Icc	$V_{CC} = 3.6 V,$	IO = 0,	Outputs low			5			5	mA
-00	$V_I = V_{CC}$ or GND	Outputs disabled		0.12 0.1			0.12			
∆ICC§	$V_{CC} = 3 V \text{ to } 3.6 V,$ Other inputs at V_{CC} or C	One input at V _{CC} -			0.2			0.2	mA	
Ci	V _I = 3 V or 0				3.5			3.5		pF
Cio	V _O = 3 V or 0				12			12		pF

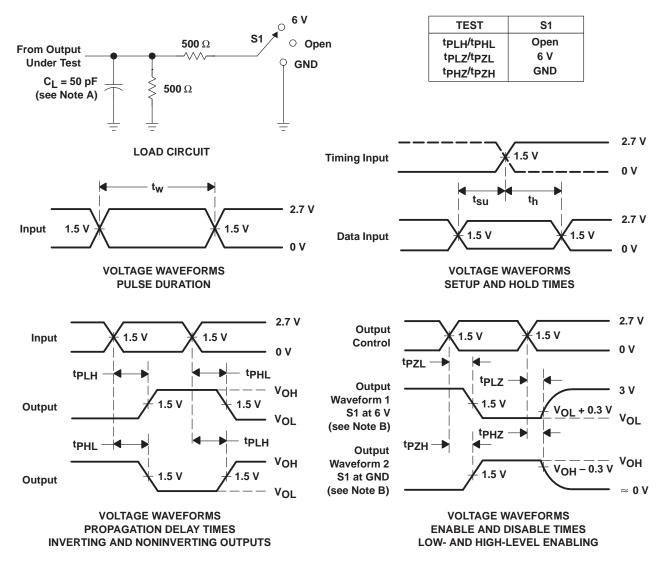
[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. [‡] Unused pins at V_{CC} or GND

§ This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

SCBS146D - MAY 1992 - REVISED NOVEMBER 1996

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

				SN54LV	/T16500			SN74LV	T16500			
			V _{CC} = ± 0.		V _{CC} =	2.7 V	V _{CC} = ± 0.3		V _{CC} =	2.7 V	UNIT	
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
fclock	Clock frequency		0	150	0	125	0	150	0	125	MHz	
	Pulse duration	LE high	3.3		3.3		3.3		3.3		ns	
t _w	Fuise duration	CLK high or low	3.3		3.3		3.3		3.3		115	
		A before $\overline{\text{CLKAB}}\downarrow$	1.8		1.1		1.8		1.1			
	Option times	B before $\overline{CLKBA}\downarrow$	1.9	1	1.2		1.9		1.2			
t _{su}	Setup time	A or B before LE \downarrow , CLK high	2.2	5	1.3		2.2		1.3		ns	
		A or B before LE \downarrow , CLK low	2.7	0	1.9		2.7		1.9			
4.	Lold time	A or B after $\overline{CLK}\downarrow$	1.2	Q	1.2		1.2		1.2			
th	Hold time	A or B after LE \downarrow	0.9		1.1		0.9		1.1		ns	


switching characteristics over recommended operating free-air temperature range, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

				SN54LV	T16500			SN7	4LVT16	500		
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V		V	V _{CC} = 2.7 V		UNIT
			MIN	MAX	MIN	MAX	MIN	TYP†	MAX	MIN	MAX	
fmax			150		125		150			125		MHz
^t PLH	D or A	A or B	1.7	5.8		7	1.7	3	5.4		6.8	ns
^t PHL	B or A	AUB	1.6	6	MJ,	7.8	1.6	3.2	5.9		7.7	115
^t PLH	LEBA or LEAB	A or B	2.3	7.3	EL	8.9	2.3	4	7		8.5	ns
^t PHL	LEDA OI LEAD	AUB	2.7	8.2	40	9.8	2.7	4.3	7.9		9.7	115
^t PLH	CLKBA or	A or B	2	7.4	h	8.8	2	4.1	7		8.3	ns
^t PHL	CLKAB	AUB	2.4	8.1		10	2.4	4.4	7.9		9.9	115
^t PZH	OEBA or	A or B	1.2	5.2		6.1	1.2	3	5		5.9	ns
^t PZL	OEAB	AUB	1.5	5.9		7	1.5	3	5.8		6.9	115
^t PHZ	OEBA or	A or B	2.7	7.7		8.6	2.7	4.6	7.4		8.3	ns
^t PLZ	OEAB	AUID	2.8	7.3		7.7	2.8	4.7	6.7		7.2	115

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

SCBS146D - MAY 1992 - REVISED NOVEMBER 1996

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r \leq 2.5 ns, t_f \leq 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

11-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing		Qty	(2)		(3)		(4)	
SN74LVT16500DLR	NRND	SSOP	DL	56	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVT16500	
SN74LVT16500DLRG4	OBSOLETE	SSOP	DL	56		TBD	Call TI	Call TI	-40 to 85		

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

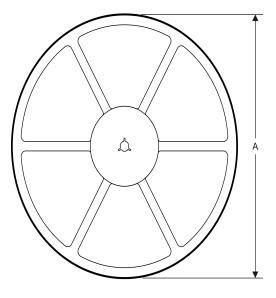
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

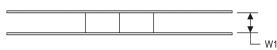
⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

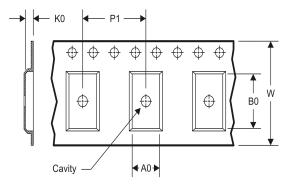
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


PACKAGE MATERIALS INFORMATION


www.ti.com

TAPE AND REEL INFORMATION


REEL DIMENSIONS

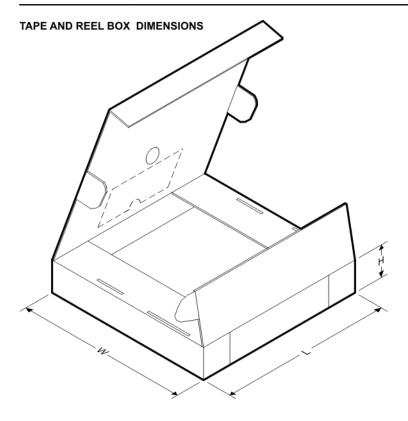
TEXAS INSTRUMENTS

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

 TAPE AND REEL INFORMATION

 *All dimensions are nominal

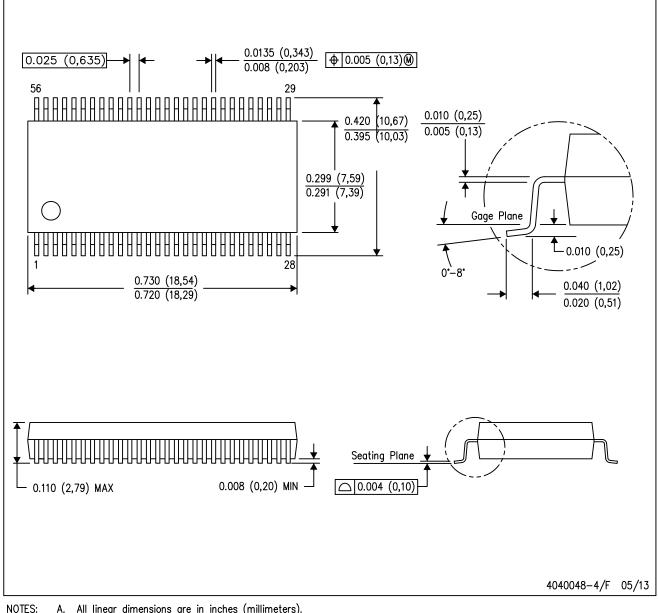

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVT16500DLR	SSOP	DL	56	1000	330.0	32.4	11.35	18.67	3.1	16.0	32.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

14-Jul-2012



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVT16500DLR	SSOP	DL	56	1000	367.0	367.0	55.0

DL (R-PDSO-G56)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in inches (millimeters).
 - This drawing is subject to change without notice. В.
 - Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15). C.
 - D. Falls within JEDEC MO-118

PowerPAD is a trademark of Texas Instruments.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated