

Title	Reference Design Report for a 54 W (200 W Peak) Audio Amplifier Power Supply Using PKS607YN
Specification	90 – 265 VAC Input; +28 V, 0.893 A ,-28 V, 0.893 A, and +12 V, 333 mA Outputs
Application	Audio Amplifier
Author	Applications Engineering Department
Document Number	RDR-203
Date	April 7, 2009
Revision	1.0

Summary and Features

- Greater than 74% efficiency at full load
- Capable of supplying peak load application with a 4:1 crest factor
 - Ideal for audio applications which demand high peak power with low quiescent current
- High switching frequencies allow for much smaller transformers, reducing cost, weight, copper area and audible noise
- Excellent load regulation provides constant output constant voltage under extreme loading
- Fast feedback loop provides excellent response to transient loading
- Less than 1 watt input power at no-load
- Protection features provide safe shutdown under fault conditions protecting audio loads
- Meets CISPR-22 / EN55022B limits for conducted EMI

PATENT INFORMATION

The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.

> Power Integrations 5245 Hellyer Avenue, San Jose, CA 95138 USA. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com

Table of Contents

1		oduction	
2	Pow	ver Supply Specification	.5
3	Sch	ematic	.6
4	Circ	uit Description	.7
	4.1	Input EMI Filtering	.7
	4.2	PeakSwitch Primary	.7
	4.3	Output Rectification	.8
	4.4	Output Feedback	
	4.5	Shutdown Prevention Circuit	.9
5		3 Layout1	
6		of Materials1	
7		nsformer Specification1	14
	7.1	28 V Positive Power Supply Transformer1	
	7.1.		
	7.1.2		
	7.1.:		
	7.1.4		
		28 V Negative Power Supply Transformer1	
	7.2.		
	7.2.2		
	7.2.3		
	7.2.4		
8		nsformer Design Spreadsheets1	
		28 V Positive Transformer Design	
_	8.2	28 V Negative Transformer Design	
9		ormance Data2	
	9.1	Active Mode Efficiency	
	9.2	No-load Input Power	
	9.3	Available Standby Output Power	
	9.4	Regulation	
		1 Load	
	9.4.2		
	9.4.3	0	
	9.5	Power Delivery Capabilities	
1(nermal Performance	
	10.1	Full Load Measurements	
1		aveforms	
	11.1	Drain Voltage and Current, Normal Operation	
		Output Voltage Start-up Profile	
		Drain Voltage and Current Start-up Profile	
		Load Transient Response	
	11.5	Output Ripple Measurements	
	11.5		
	11.5	5.2 Measurement Results – 28 V Positive4	13

11.5.3 Measurement Results – 28 V Negative	44
11.5.4 Measurement Results – 12 V	45
12 Non-Linear Loading	46
12.1 Measurement Results – 28 V Positive	46
12.2 Measurement Results – 28 V Negative	47
13 Line Surge	48
14 Conducted EMI	49
15 Appendix A – Differential Mode Inductor	53
15.1 TOROIDAL FILTER INDUCTOR (L3, L4, L5 & L6)	53
16 Appendix B – Common Mode Inductor	54
16.1 FERRITE BEAD CHOKE (L9)	54
17 Appendix C – Earth Return Jumper (JP_L9)	
18 Revision History	56

Important Note:

Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the prototype board.

1 Introduction

This document is an engineering report describing a 54 W continuous, 200 W peak power supply design utilizing two PKS607YN power conversion ICs. This power supply is intended as a replacement for linear power supplies for audio amplifiers.

The document contains the power supply specification, schematic, bill of materials, transformer documentation, printed circuit layout, and performance data.

Figure 1 – Populated Circuit Board Photograph Top Side.

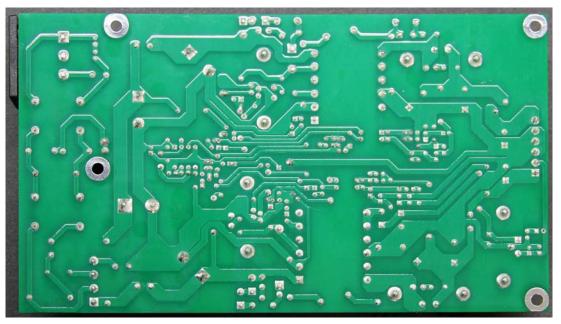


Figure 2 – Populated Circuit Board Photograph Bottom Side.

2 Power Supply Specification

Description	Symbol	Min	Тур	Max	Units	Comment
Input						
Voltage	V _{IN}	90		265	VAC	3 Wire – no P.E.
Frequency	f _{LINE}	47	50/60	64	Hz	
No-load Input Power (230 VAC)				1.0	W	
Output				/		
Output Voltage 1	V _{OUT1}	26.6	28	29.4	V	± 5%
Output Ripple Voltage 1	V _{RIPPLE1}		0.000	280	mV	20 MHz bandwidth
Output Current 1 Output Power 1	I _{OUT1}		0.893 25	3.57 100	A W	
Output Voltage 2	P _{OUT1}	-26.6	-28	-29.4	V	± 5%
	V _{OUT2}	-20.0	-20	-	-	
Output Ripple Voltage 2	V _{RIPPLE2}			280	mV	20 MHz bandwidth
Output Current 2	I _{OUT2}		0.893	3.57	A	
Output Power 2	P _{OUT2}		25	100	W	
Output Voltage 3	V _{OUT3}	11.4	12	12.6	V	\pm 5%
Output Ripple Voltage 3	V _{RIPPLE3}			120	mV	20 MHz bandwidth
Output Current 3	I _{OUT3}			333	mA	
Output Power 3	P _{OUT2}		4		W	
Total Output Power						
Continuous Output Power	Pout		54		W	
Peak Output Power	P _{OUT_PEAK}			200	W	
Efficiency						
Full Load	η	70			%	Measured at P _{OUT} 25 °C
Environmental						
Conducted EMI		Mee	ts CISPR2	2B / EN55	5022B	
Safety		Desigr	ied to mee Cla	et IEC950, Iss II	UL1950	
Surge		2			kV	1.2/50 μs surge, IEC 1000-4-5, Series Impedance: Differential Mode: 2 Ω Common Mode: 12 Ω
Ambient Temperature	Т _{АМВ}	0		40	°C	Free convection, sea level

3 Schematic

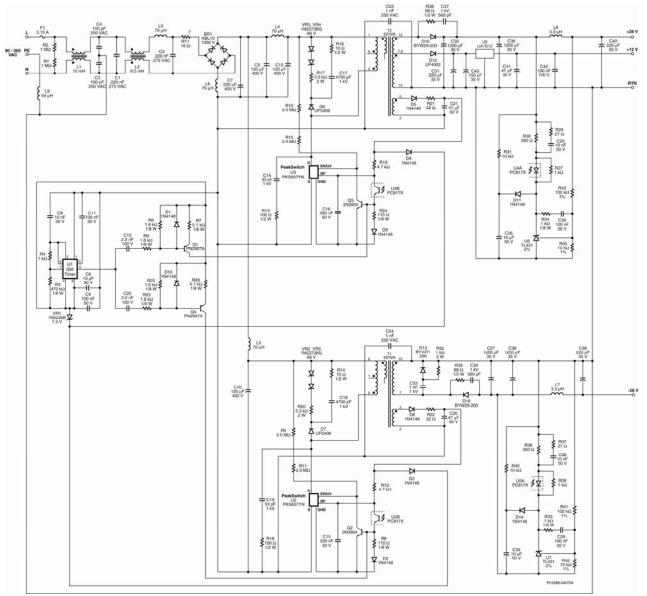


Figure 3 – Schematic.

4 Circuit Description

4.1 Input EMI Filtering

The three wire AC supply is connected to the circuit using connector J1. Fuse F1 provides protection against circuit faults. Thermistor RT1 limits the inrush current drawn by the circuit at start up.

Capacitors C3, C4, C23, C24 along with inductors L4, L5, L6 and L9 and common mode chokes L1 and L2 provide filtering to reduce common mode EMI.

X-caps C1 and C2 along with inductor L3 reduce differential mode EMI at the input while R1 and R2 provide a discharge path for C1. Capacitors C5, C10 and C12 and inductors L4 and L5 create a PI filter for each supply to further reduce differential mode EMI.

Diode bridge BR1 rectifies the AC input which is filtered by C5, C7, C10 and C12.

4.2 PeakSwitch Primary

PeakSwitch devices U3 and U2 drive two parallel, very similar, independent power supplies. The operation of both supplies will be described, with references to matching sets of components on each supply. The description will be referenced to the positive output supply driven by U3, with substitution components for the negative supply, driven by U2, noted in parentheses.

Resistors R10 and R15 (R5 and R11) provide AC line sense and under-voltage detection for U3 (U2).

One side of the power transformer T2 (T1) primary winding is connected to the positive leg of bulk capacitor C12 (C10), and the other side is connected to the DRAIN pin of U3 (U2). At the start of a switching cycle, the controller turns the MOSFET (inside U3 and U2) on and current ramps up in the primary winding, storing energy in the core of the transformer. When the primary current reaches the current limit threshold, the controller turns the MOSFET off. Due to the phasing of the transformer windings and the orientation of the output diode, the stored energy then induces a voltage across the secondary winding, which forward biases the output diode and delivers the stored energy to the output capacitors. When the MOSFET turns off, the leakage inductance of the transformer induces a voltage spike on the drain node. The amplitude of that spike is limited by an RCDZ clamp network that consists of D6, VR3, VR4, C17, R16, and R17 (D7, VR2, VR5, C18, R14 and R20). Zeners VR3 and VR4 (VR2 and VR5), and resistor R17 (R20) dissipate a part of the clamp energy stored in C17 (C18) before the start of the next switching cycle. Resistor R16 (R14) also limits the reverse current that flows through D6 (D7) when the MOSFET turns on. The output of the bias winding is rectified by diode D5 (D8) and filtered by capacitor C21 and R21 (C20 and R22). This rectified and filtered output is fed to the bypass pin capacitor C16 (C15) to power the PeakSwitch device U3,

(U2). Diode D4 (D3) also feeds this output to the supply rail of the shut-down prevention circuit detailed below.

Unlike conventional pulse width modulation (PWM) controllers, PeakSwitch uses simple ON/OFF control to regulate the output voltage. At each sampling period of the EN/UV pin, if the current out of this pin exceeds 240 μ A the device will skip the next cycle.

4.3 Output Rectification

Output rectification for the primary output is provided by diode D15 (D16). Low ESR capacitors C32 and C36 (C27 and C38) provide filtering. Inductor L8, (L7) and capacitor C40 (C39) form a second stage filter that significantly attenuates the switching ripple and ensures low ripple at the output.

The snubber network comprising R38 and C37, (R39 and C34) damp high frequency ringing across diode D15 (D16) which results from leakage inductance of the transformer windings and the secondary trace inductances.

Transformer T2 differs from T1 because its supply also provides a +12 V auxiliary output. Rectification for the +12 V output winding is provided by diode D12. Low ESR capacitor C31 provides filtering. Regulator U8 decreases and regulates the voltage to provide a +12 V auxiliary output, with capacitors C41, C42 and C43 providing the required input and output capacitance to ensure stable operation of U8.

The -28 V supply includes an additional snubber network comprising of D13, R32 and C33 to damp high frequency ringing across diode D16. This is necessary to counteract the increased trace inductance on the -28 V secondary layout.

4.4 Output Feedback

This supply incorporates a constant voltage feedback circuit. During normal operation, the TL431 U6 (U7) draws current through optocoupler U4 (U5) to provide feedback to the EN/UV pin of the PeakSwitch U3 (U2). This circuit operates by maintaining a constant output voltage for load variation from no load to peak load. Resistor R30 (R36) sets the loop gain while R34 and C30 (R33 and C29) set the frequency response of the feedback circuit. Capacitor C25 and R29 (C28 and R37) form the phase boost network that provides the correct phase margin to ensure proper operation over the entire load range (no-load to peak-load.)

Capacitor C26, D11 and R31 (C35, D14 and R40) form the soft-finish circuit. During startup, C26, (C35) begins to charge as the output voltage rises, causing current to flow through optocoupler U4 (U5) and diode D11 (D14). This provides a feedback signal to the device U3 (U2) as the output voltage rises, causing a smooth, monotonic charging of the output capacitors. After the loop is closed and TL431 comes into operation, C26 (C35) continues to charge through R31 (R40) and diode D11 (D14) isolates C26 (C35) from the feedback circuit. Resistor R31 (R40) discharges C26 (C35) when output voltage falls after the power supply has been switched off.

R27 (R28) is used to bias the TL431, and R43 and R35 (R41 and R42) set its reference voltage.

Transistor Q3, R24 and D9 (Q2, R8 and D2) form fast response feedback circuit that enables quick response from the PeakSwitch device U3 (U2) by operating the optocoupler under conditions that give the fastest response.

4.5 Shutdown Prevention Circuit

PeakSwitch incorporates an auto-restart feature which protects the power supply in case of overload or a broken feedback loop by safely shutting down the supply. Audio applications demand power supplies with drooping characteristics at high load that will limit power delivery to the load. This design incorporates a feedback circuit which prevents the device from going into auto-restart during overload conditions. The timing of U1 LMC555CN is controlled by R3, R4 and C8. In this example a 2 µs low pulse is generated every 10 ms. This ensures that, should the output voltage drop and feedback cease, the device will not go into auto-restart after 30 ms. C13 (C22) is a differentiator which biases Q1 (Q2) for a short period when the timer output pulses low. During this period Q1 (Q2) creates a current draw from the EN/UV pin to ensure the device continues to switch. Zener diode VR1 limits the supply voltage to U2 from the bias winding. Resistors R6 and R7 (R25 and R26) biases transistor Q1 (Q2), while diode D1 (D10) limits bias voltage.

5 PCB Layout

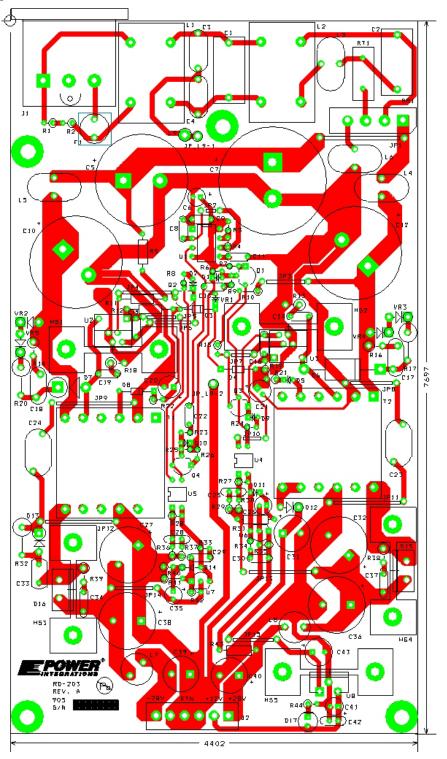


Figure 4 – Printed Circuit Layout.

6 Bill of Materials

Item	Qty	Ref Des	Description	Mfg	Mfg Part Number
1	1	BR1	1000 V, 4 A, Bridge Rectifier	Vishay	KBL10-E4/51
2	2	C1 C2	220 nF, 275 VAC, Film, X2	Panasonic	ECQ-U2A224ML
3	2	C3 C4	100 pF, Ceramic, Y1	Vishay	440LT10-R
4	3	C5 C10 C12	120 μF, 400 V, Electrolytic,GU Snap, (25 x 25)	Nichicon	LGU2G121MELA
5	3	C6 C26 C35	10 μF, 50 V, Electrolytic, Gen. Purpose, (5 x 11)	Nippon Chemi- Con	EKMG500ELL100ME11D
6	1	C7	220 µF, 400 V, Electrolytic, TS-UQ, (30 x 25)	Panasonic	EET-HC2G221DA
7	1	C8	10 nF, 50 V, Ceramic, COG	Epcos	B37986G5822J000
8	4	C9 C11 C29 C30	100 nF, 50 V, Ceramic, X7R	Epcos	B37987F5104K000
9	2	C13 C22	2.2 nF, 100 V, Ceramic, X7R	Epcos	B37981M1222K000
10	2	C14 C19	33 pF, 1 kV, Disc Ceramic	Panasonic	ECC-A3A330JGE
11	2	C15 C16	330 nF, 50 V, Ceramic, X7R	Epcos	B37984M5334K000
12	2	C17 C18	4700 pE 1 k)/ Thru Hala Diag Coromia	Vishay /	562R5GAD47
12			4700 pF, 1 kV, Thru Hole, Disc Ceramic 47 μF, 50 V, Electrolytic, Gen. Purpose,	Sprague Nippon Chemi-	502R5GAD47
13	2	C20 C21	(6.3 x 11)	Con	EKMG500ELL470MF11D
14	2	C23 C24	1 nF, Ceramic, Y1	Vishay	440LD10-R
15	2	C25 C28	10 nF, 50 V, Ceramic, X7R	Murata	RPER71H103K2P1A03B
16	4	C27 C32 C36 C38	1200 $\mu\text{F},$ 35 V, Electrolytic, Very Low ESR, 18 m $\Omega,$ (16 x 20)	Nippon Chemi- Con	EKZE350ELL122ML20S
17	1	C31	220 μ F, 35 V, Electrolytic, Very Low ESR, 53 m Ω , (10 x 12.5)	Nippon Chemi- Con	EKZE350ELL221MJC5S
18	1	C33	1 nF, 1 kV, Disc Ceramic, Y5P	Panasonic	ECK-A3A102KBP
19	2	C34 C37	560 pF, 1 kV, Disc Ceramic	Panasonic	ECK-D3A561KBN
20	2	C39 C40	220 μF, 35 V, Electrolytic, Gen. Purpose, (10 x 12.5)	Nippon Chemi- Con	EKME350ELL221MJC5S
21	1	C41	47 μF, 35 V, Electrolytic, Gen. Purpose, (5 x 11)	Nippon Chemi- Con	EKMG350ELL470ME11D
22	1	C42	100 nF, 100 V, Ceramic, X7R	Epcos	B37987M1104K000
			150 $\mu\text{F},$ 35 V, Electrolytic, Low ESR, 120 m $\Omega,$	Nippon Chemi-	
23	1	C43 D1 D2 D3 D4 D5 D8 D9 D10	(8 x 12)	Con	ELXZ350ELL151MH12D
24	10	D11 D14	75 V, 300 mA, Fast Switching, DO-35 1000 V, 3 A, Ultrafast Recovery, 50 ns,	Vishay	1N4148TR
25	2	D6 D7	DO-201AD	Vishay	UF5407-E3/54
26	1	D12	100 V, 1 A, Ultrafast Recovery, 50 ns, DO-41	Vishay	UF4002-E3
27	1	D13	200 V, 2 A, Ultrafast Recovery, 25 ns, SOD57	Philips	BYV27-200
28	2	D15 D16	200 V, 8 A, Ultrafast Recovery, 25 ns, TO- 220AC	ON Semiconductor	BYW29-200G
29	1	F1	3.15 A, 250V, Slow, TR5	Wickman	3721315041
30	5	HS1 HS2 HS3 HS4 HS5	HEATSINK, Alum, TO220_POWER W/PINS BK_ L 1.375" (34.92mm) W 0.50" (12.7 mm) H 1." (25.4 mm)	Aavid Thermaloy	513002B02500G
31	1	J1	AC Input Receptacle and Accessory Plug, PCBM	Kobiconn	161-R301SN13
32	1	J2	6 Position (1 x 6) header, 0.156 pitch, Vertical	Molex	26-48-1065

1				1	
33	5	JP1 JP3 JP6 JP14 JP15	Wire Jumper, Non insulated, 22 AWG, 0.5 in	Alpha	298
34	1	JP2	Wire Jumper, Non insulated, 22 AWG, 0.2 in	Alpha	298
35	2	JP4 JP8	Wire Jumper, Non insulated, 22 AWG, 0.2 in	Alpha	298
36	1	JP5	Wire Jumper, No insulated, 22 AWG, 0.6 in	Alpha	298
37	2	JP7 JP10	Wire Jumper, Non insulated, 22 AWG, 0.4 in	Alpha	298
38	1	JP9	Wire Jumper, Non insulated, 22 AWG, 0.9 in	Alpha	298
- 30	1	JP11 JP12	Whe sumper, Non insulated, 22 AWG, 0.9 in	Арпа	290
39	3	JP13	Wire Jumper, Non insulated, 22 AWG, 0.8 in	Alpha	298-
		5	Wire, 20AWG,Grn/Yel, Length to be specified	• • •	
40	1	JP_L9	in Mech Drawing	Anixter Panasonic-	1180-20/19-54
41	1	L1	15 mH, 1 A, Common Mode Choke,	ECG	ELF-18N010A
42	1	L2	9.5 mH, 1.2 A, Common Mode Choke	Panasonic	ELF18N012A
43	4	L3 L4 L5 L6	70 μH, Common Mode Inductor, 2 Pins,	Santronics	SNX-R1498
44	2	L7 L8	3.3 uH, 5.0 A	Coilcraft	RFB0807-3R3L
45	1	L9	54 μH, Ground Choke, Flying Lead	Santronics	SNX-R1499
		MTG_HOLE1 MTG_HOLE2			
46	4	MTG_HOLE3 MTG_HOLE4	Mounting Hole No 6		
			<u> </u>	On	
47	2	Q1 Q4	PNP, Small Signal BJT, 60 V, 0.6 A, TO-92	Semiconductor	PN2907AG
48	2	Q2 Q3	NPN, Small Signal BJT, 40 V, 0.2 A, TO-92	On Semiconductor	2N3904RLRAG
49	2	R1 R2	1 MΩ, 5%, 1/4 W, Carbon Film	Yageo	CFR-25JB-1M0
50	1	R3	470 kΩ, 5%, 1/8 W, Carbon Film	Yageo	CFR-12JB-470K
51	3	R4 R27 R28	1 kΩ, 5%, 1/4 W, Carbon Film	Yageo	CFR-25JB-1K0
52	4	R5 R10 R11 R15	2.0 MΩ, 5%, 1/4 W, Carbon Film	Yageo	CFR-25JB-2M0
		R6 R9 R23			
53	4	R25	1.8 kΩ, 5%, 1/8 W, Carbon Film	Yageo	CFR-12JB-1K8
54	2	R7 R26	5.1 kΩ, 5%, 1/8 W, Carbon Film	Yageo	CFR-12JB-5K1
55	2	R8 R24	110 Ω, 5%, 1/8 W, Carbon Film	Yageo	CFR-12JB-110R
56	2	R12 R19	4.7 kΩ, 5%, 1/4 W, Carbon Film	Yageo	CFR-25JB-4K7
57	2	R13 R18	100 Ω, 5%, 1/2 W, Carbon Film	Yageo	CFR-50JB-100R
58	2	R14 R16	10 Ω, 5%, 1/2 W, Carbon Film	Yageo	CFR-50JB-10R
59	2	R17 R20	3.3 kΩ, 5%, 2 W, Metal Oxide	Yageo	RSF200JB-3K3
60	2	R21 R22	22 Ω, 5%, 1/4 W, Carbon Film	Yageo	CFR-25JB-22R
61	2	R29 R37	27 Ω, 5%, 1/4 W, Carbon Film	Yageo	CFR-25JB-27R
62	2	R30 R36	360 Ω, 5%, 1/4 W, Carbon Film	Yageo	CFR-25JB-360R
63	2	R31 R40	10 kΩ, 5%, 1/4 W, Carbon Film	Yageo	CFR-25JB-10K
64	1	R32	1 kΩ, 5%, 2 W, Metal Oxide	Yageo	RSF200JB-1K0
65 66	2	R33 R34	1 kΩ, 5%, 1/8 W, Carbon Film	Yageo Panasonic	CFR-12JB-1K0
66 67	2	R35 R42 R38 R39	10 kΩ, 1%, 1/4 W, Metal Film 68 Ω, 5%, 1/2 W, Carbon Film	Yageo	ERO-S2PHF1002 CFR-50JB-68R
68	2			Yageo	
69	 1	R41 R43 R44	102 kΩ, 1%, 1/4 W, Metal Film 3.6 kΩ, 5%, 1/4 W, Carbon Film	Yageo	MFR-25FBF-102K CFR-25JB-3K6
70	1	RT1	NTC Thermistor, 16 Ω , 2.7 A	Thermometrics	RL4504-10-73-S60
70	2	T1 T2	Bobbin, ER28, Horizontal, 12 pins	Pin-Shine Santronics (T1) Santronics (T2)	P-2816 SNX-R1496 SNX-R1497

72	1	U1	LMC555 CMOS TIMER 8-DIP	National Semiconductor	LMC555CN
73	2	U2 U3	PeakSwitch, PKS607Y, TO-220-7C	Power Integrations	PKS607YN
74	2	U4 U5	Opto coupler, 35 V, CTR 300-600%, 4-DIP	Sharp	PC817X4J000F
75	2	U6 U7	2.495 V Shunt Regulator IC, 2%, 0 to 70C, TO-92	On Semiconductor	TL431CLPG
76	1	U8	12 V, 1.5 A, Regulator, TO-220	Texas Instruments	UA7812CKC
77	1	VR1	7.5 V, 5%, 500 mW, DO-35	Micro Commercial Co.	1N5236B-TP
78	4	VR2 VR3 VR4 VR5	68 V, 5%, 5 W, DO-41	ON Semiconductor	1N5373BG

7 Transformer Specification

7.1 28 V Positive Power Supply Transformer

7.1.1 Electrical Schematic and Build Diagram

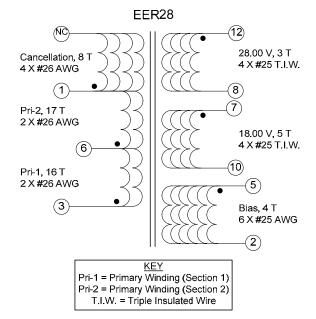
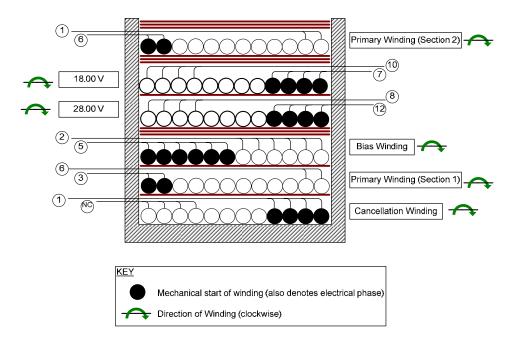
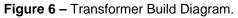




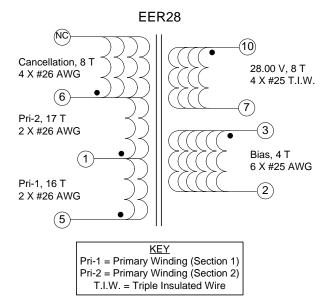
Figure 5 – Transformer Electrical Schematic.

7.1.2 Electrical Specifications

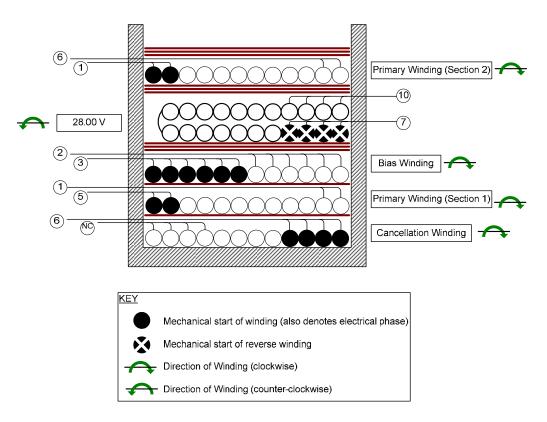
Electrical Strength	1 second, 60 Hz, from pins 3-6 to pins 7-12	3000 VAC
Primary Inductance	Pins 3-1, all other windings open, measured at 100 kHz, 0.4 VRMS	167 μH, ±5%
Resonant Frequency	Pins 3-1, all other windings open	1500 kHz (Min.)
Primary Leakage Inductance	Pins 3-1, with all other pins shorted, measured at 100 kHz, 0.4 VRMS	3.0 μH (Max.)

7.1.3 Materials

Item	Description
[1]	Core: EER28, NC-2H or Equivalent, gapped for ALG of 149 nH/t ²
[2]	Bobbin: ER28 Pin-Shine P-2816, Horizontal, 12 pins (6/6)
[3]	Barrier Tape: Polyester film 16.40 mm wide
[4]	Magnet Wire: 26 AWG, Solderable Double Coated
[5]	Magnet Wire: 25 AWG, Solderable Double Coated
[6]	Triple Insulated Wire: 25 AWG
[7]	Varnish


7.1.4 Transformer Construction

	Orient bobbin item [2] on winding machine with primary side on the left side and
Winding preparation	secondary side on the right side.
	Direction for all windings is clockwise direction.
	Temporarily hang quad-filar item [4] on pin 10, wind 8 turns from right to left with
Cancellation	tight tension and place tape item [3] to hold these wires in place. Flip the start
Cancenation	leads from pin 10 to the left side to terminate at pin 1. Cut the end leads to leave
	no-connect.
Basic Insulation	Add 1 layer of tape item [3] for insulation.
A st holf of Drive on a	Start on pin 3, wind 16 bi-filar turns of item [4] in 1 layer from left to right and bring
1 st half of Primary	the wires back to the left side to terminate at pin 6.
Basic Insulation	Add 1 layer of tape item [3] for insulation.
Dies Winding	Start on pin 5, wind 4 turns (x 6 filar) of item [5]. Wind in same as primary winding
Bias Winding	with tight tension and finish this winding on pin2.
Basic Insulation Add 3 layers of tape item [3] for insulation.	
	Start on pin 12, wind 3 quad-filar turns of item [6] from right to left, spread wires
Secondary 1	evenly on the bobbin, at the last turn bring the wires back to the right and
	terminate at pin 8.
Basic Insulation	Add 1 layer of tape item [3] for insulation.
Coordination 2	Wind the same as secondary 1, but start at pin 7, terminate at pin 10, and wind 5
Secondary 2	quad-filar turns of item [6].
Secondary Insulation	Add 3 layers of tape, item [3] for insulation.
2 nd half of Primary	Wind the same as 1 st half of Primary winding, but start on pin 6, terminate at pin
2 nd half of Primary	1, and wind 17 bi-filar turns of item [4].
Outer Wrap	Add 3 layers of tape item [3], for insulation.
Core Preparation	Assemble and secure core halves item [1].
Final Assembly	Dip varnish uniformly in item [7]. Do not vacuum impregnate.



7.2 28 V Negative Power Supply Transformer

7.2.1 Electrical Schematic and Build Diagram

7.2.2 Electrical Specifications

Electrical Strength	1 second, 60 Hz, from pins 1, 2, 3, 4, 5, 6 to pins 7,10	3000 VAC
Primary Inductance	Pins 5-6, all other windings open, measured at 100 kHz, 0.4 VRMS	167 μH, ±5%
Resonant Frequency	Pins 5-6, all other windings open	1500 kHz (Min.)
Primary Leakage Inductance	Pins 5-6, with all other pins shorted, measured at 100 kHz, 0.4 VRMS	2.5 μH (Max.)

7.2.3 Materials

Item	Description
[1]	Core: EER28, NC-2H or Equivalent, gapped for ALG of 149 nH/t ²
[2]	Bobbin: ER28 Pin-Shine P-2816, Horizontal, 12 pins (6/6)
[3]	Barrier Tape: Polyester film 16.40 mm wide
[4]	Magnet Wire: 26 AWG, Solderable Double Coated
[5]	Magnet Wire: 25 AWG, Solderable Double Coated
[6]	Triple Insulated Wire: 25 AWG
[7]	Varnish

7.2.4 Transformer Construction

	Orient bobbin item [2] on winding machine with primary side on the left side and
Winding preparation	secondary side on the right side.
	Direction for all windings is clockwise direction.
	Temporarily hang quad-filar item [4] on pin 7, wind 8 turns from right to left with
Cancellation	tight tension and place tape item [3] to hold these wires in place. Flip the start
Cancenation	leads from pin 7 to the left side to terminate at pin 6. Cut the end leads to leave
	no-connect.
Basic Insulation	Add 1 layer of tape item [3] for insulation.
1 st holf of Drimony	Start on pin 5, wind 16 bi-filar turns of item [4] in 1 layer from left to right and bring
1 st half of Primary	the wires back to the left side to terminate at pin 1.
Basic Insulation	Add 1 layer of tape item [3] for insulation.
Bias Winding	Start on pin 3, wind 4 turns (x 6 filar) of item [5]. Wind in same as primary winding
Bias Winding	with tight tension and finish this winding on pin 2.
Basic Insulation	Add 3 layers of tape item [3] for insulation.
	This winding direction is reverse direction; just rotate the bobbin so the secondary
Secondary Winding	side is on the left side and keep the same winding direction (clockwise direction).
Secondary Winding	Now start on pin 7, wind 8 quad-filar turns from left to right and then from right to
	left to terminate at pin 10.
Secondary Insulation	Add 3 layers of tape item [3] for insulation.
	Rotate the bobbin back to original position.
2 nd half of Primary	Do the same as 1 st half Primary winding, start on pin 1, wind 17 bi-filar turns of
2 hall of Primary	item [4] in 1 layer from left to right and bring the wires back to the left side to
	terminate at pin 6.
Outer Wrap	Add 3 layers of tape item [3] for insulation.
Core Preparation	Assemble and secure core halves item [1].
Bobbin Pin-out	Remove pin 12 from bobbin by clipping.
Final Assembly	Dip varnish uniformly in item [7]. Do not vacuum impregnate.

8 Transformer Design Spreadsheets

8.1 28 V Positive Transformer Design

Rev.1.15; Copyright Power Integrations 2008	INPUT	INFO	OUTPUT	UNIT	ACDC_PeakSwitch_032608_Rev1- 15.xls; PeakSwitch Continuous/Discontinuous Flyback Transformer Design Spreadsheet
ENTER APPLICATION VARIABL	ES				Customer
VACMIN	90			Volts	Minimum AC Input Voltage
VACMAX	265			Volts	Maximum AC Input Voltage
fL	50			Hertz	AC Mains Frequency
Nominal Output Voltage (VO)	28.00			Volts	Nominal Output Voltage (at
······go (···)					continuous power)
Maximum Output Current (IO)	3.58			Amps	Power Supply Output Current (corresponding to peak power)
Minimum Output Voltage at Peak Load			28.00	Volts	Minimum Output Voltage at Peak Power (Assuming output droop during peak load)
Continuous Power	25.00		25.00	Watts	Continuous Output Power
Peak Power		Warning (See Note 1 bleow)	100.24	Watts	II Warning. Peak output power exceeds the power capability of chosen device. Use larger PeakSwitch or reduce peak output power
n	0.76				Efficiency Estimate at output terminals and at peak load. Enter 0.7 if no better data available
Z			0.60		Loss Allocation Factor (Z = Secondary side losses / Total losses)
tC Estimate	3.00			mSeconds	Bridge Rectifier Conduction Time Estimate
CIN	350.00		350	uFarads	Input Capacitance
ENTER PeakSwitch VARIABLES					
ENTER PeakSwitch VARIABLES PeakSwitch	PKS607Y		PKS607Y		PeakSwitch device
		PKS607Y	PKS607Y		PeakSwitch device
PeakSwitch Chosen Device		PKS607Y		Amps	
PeakSwitch Chosen Device ILIMITMIN		PKS607Y	2.790	Amps Amps	Minimum Current Limit
PeakSwitch Chosen Device		PKS607Y		Amps Amps Hertz	Minimum Current Limit Maximum Current Limit Minimum Device Switching
PeakSwitch Chosen Device ILIMITMIN ILIMITMAX		PKS607Y	2.790 3.210	Amps	Minimum Current Limit Maximum Current Limit Minimum Device Switching Frequency I/2f (product of current limit squared and frequency is trimmed for tighter
PeakSwitch Chosen Device ILIMITMIN ILIMITMAX fSmin I/2fmin		PKS607Y	2.790 3.210 250000	Amps Hertz	Minimum Current Limit Maximum Current Limit Minimum Device Switching Frequency I^2f (product of current limit squared
PeakSwitch Chosen Device ILIMITMIN ILIMITMAX fSmin	PKS607Y	PKS607Y	2.790 3.210 250000 2242	Amps Hertz A^2kHz	Minimum Current Limit Maximum Current Limit Minimum Device Switching Frequency I/2f (product of current limit squared and frequency is trimmed for tighter tolerance) Reflected Output Voltage (VOR <=
PeakSwitch Chosen Device ILIMITMIN ILIMITMAX fSmin I^2fmin VOR VDS	PKS607Y	PKS607Y	2.790 3.210 250000 2242 120	Amps Hertz A^2kHz Volts	Minimum Current Limit Maximum Current Limit Minimum Device Switching Frequency I^2f (product of current limit squared and frequency is trimmed for tighter tolerance) Reflected Output Voltage (VOR <= 135 V Recommended) PeakSwitch on-state Drain to Source Voltage Output Winding Diode Forward Voltage Drop
PeakSwitch Chosen Device ILIMITMIN ILIMITMAX fSmin I^2fmin VOR VDS VDB	PKS607Y	PKS607Y	2.790 3.210 250000 2242 120 10	Amps Hertz A^2kHz Volts Volts Volts Volts	Minimum Current Limit Maximum Current Limit Minimum Device Switching Frequency I^2f (product of current limit squared and frequency is trimmed for tighter tolerance) Reflected Output Voltage (VOR <= 135 V Recommended) PeakSwitch on-state Drain to Source Voltage Output Winding Diode Forward Voltage Drop Bias Winding Diode Forward Voltage Drop
PeakSwitch Chosen Device ILIMITMIN ILIMITMAX fSmin I/2fmin VOR VDS VDB VCLO	PKS607Y	PKS607Y	2.790 3.210 250000 2242 120 10 0.7 0.7 200	Amps Hertz A^2kHz Volts Volts Volts	Minimum Current Limit Maximum Current Limit Minimum Device Switching Frequency I^2f (product of current limit squared and frequency is trimmed for tighter tolerance) Reflected Output Voltage (VOR <= 135 V Recommended) PeakSwitch on-state Drain to Source Voltage Output Winding Diode Forward Voltage Drop Bias Winding Diode Forward Voltage Drop Nominal Clamp Voltage
PeakSwitch Chosen Device ILIMITMIN ILIMITMAX fSmin I^2fmin VOR VDS VD VDB VCLO	PKS607Y	PKS607Y	2.790 3.210 250000 2242 120 10 0.7 0.7	Amps Hertz A^2kHz Volts Volts Volts Volts	Minimum Current Limit Maximum Current Limit Minimum Device Switching Frequency I^2f (product of current limit squared and frequency is trimmed for tighter tolerance) Reflected Output Voltage (VOR <= 135 V Recommended) PeakSwitch on-state Drain to Source Voltage Output Winding Diode Forward Voltage Drop Bias Winding Diode Forward Voltage Drop
PeakSwitch Chosen Device ILIMITMIN ILIMITMAX fSmin I/2fmin VOR VDS VD VDB VCLO KP (STEADY STATE)	PKS607Y	PKS607Y	2.790 3.210 250000 2242 120 10 0.7 0.7 200	Amps Hertz A^2kHz Volts Volts Volts Volts	Minimum Current Limit Maximum Current Limit Minimum Device Switching Frequency I^2f (product of current limit squared and frequency is trimmed for tighter tolerance) Reflected Output Voltage (VOR <= 135 V Recommended) PeakSwitch on-state Drain to Source Voltage Output Winding Diode Forward Voltage Drop Bias Winding Diode Forward Voltage Drop Nominal Clamp Voltage Ripple to Peak Current Ratio (KP <
PeakSwitch Chosen Device ILIMITMIN ILIMITMAX fSmin I/2fmin VOR VDS VD VDB VCLO KP (STEADY STATE) KP (TRANSIENT)	PKS607Y	PKS607Y	2.790 3.210 250000 2242 120 10 0.7 0.7 200 0.42	Amps Hertz A^2kHz Volts Volts Volts Volts	Minimum Current Limit Maximum Current Limit Minimum Device Switching Frequency I^2f (product of current limit squared and frequency is trimmed for tighter tolerance) Reflected Output Voltage (VOR <= 135 V Recommended) PeakSwitch on-state Drain to Source Voltage Output Winding Diode Forward Voltage Drop Bias Winding Diode Forward Voltage Drop Nominal Clamp Voltage Ripple to Peak Current Ratio (KP < 6) Ripple to Peak Current Ratio under worst case at peak load (0.25 < KP
PeakSwitch Chosen Device ILIMITMIN ILIMITMAX fSmin I/2fmin VOR VDS VD VDB VCLO KP (STEADY STATE)	PKS607Y	PKS607Y	2.790 3.210 250000 2242 120 10 0.7 0.7 200 0.42	Amps Hertz A^2kHz Volts Volts Volts Volts	Minimum Current Limit Maximum Current Limit Minimum Device Switching Frequency I^2f (product of current limit squared and frequency is trimmed for tighter tolerance) Reflected Output Voltage (VOR <= 135 V Recommended) PeakSwitch on-state Drain to Source Voltage Output Winding Diode Forward Voltage Drop Bias Winding Diode Forward Voltage Drop Nominal Clamp Voltage Ripple to Peak Current Ratio (KP < 6) Ripple to Peak Current Ratio under worst case at peak load (0.25 < KP

					on standard value of RUV_ACTUAL
RUV_IDEAL			4.75	Mohms	Calculated value for UV Lockout resistor
RUV_ACTUAL			4.70	Mohms	Closest standard value of resistor to RUV_IDEAL
BIAS WINDING VARIABLE	ES				
VB			15.00	Volts	Bias winding Voltage
NB			4		Number of Bias Winding Turns
PIVB			60	Volts	Bias rectifier Maximum Peak Inverse Voltage
ENTER TRANSFORMER	CORE/CONSTRUCT	ION VARIABLES			
Core Type	EER28		EER28		User Selected Core Size(Verify acceptable thermal rise under continuous load conditions)
Core		EER28		P/N:	PC40EER28-Z
Bobbin		EER28_BOBBIN		P/N:	EER28 BOBBIN
AE		LLINZO_DODDIN	0.821	cm^2	Core Effective Cross Sectional Area
LE			6.40	cm	Core Effective Path Length
AL			2870	nH/T^2	Ungapped Core Effective Inductance
BW			16.70	mm	Bobbin Physical Winding Width
M			0.00	mm	Safety Margin Width (Half the Primary to Secondary Creepage Distance)
L	1.00		1		Number of Primary Layers
NS	8		8		Number of Secondary Turns
DC INPUT VOLTAGE PAR	AMETERS				
VMIN	110.00		110	Volts	Minimum DC Input Voltage
VMAX			375	Volts	Maximum DC Input Voltage
CURRENT WAVEFORM S	HAPE PARAMETER	RS .	0.55	1	Duty Datia at full land minimum
DMAX			0.55		Duty Ratio at full load, minimum primary inductance and minimum input voltage
IAVG			1.32	Amps	Average Primary Current
IP			2.79	Amps	Minimum Peak Primary Current
IR			1.18	Amps	Primary Ripple Current
IRMS			1.89	Amps	Primary RMS Current
		TERO			
TRANSFORMER PRIMAR	T DESIGN PARAME	TERS	167	uHenries	Typical Primary Inductance. +/- 5%
LF			107	unennes	to ensure a minimum primary inductance of 159 uH
LP_TOLERANCE	5.00		5	%	Primary inductance tolerance
NP			33		Primary Winding Number of Turns
ALG			149	nH/T^2	Gapped Core Effective Inductance
Target BM			3000	Gauss	Target Peak Flux Density at Maximum Current Limit
ВМ			1953	Gauss	Calculated Maximum Operating Flux Density, BM < 3000 is recommended
B40			414	Gauss	AC Flux Density for Core Loss
BAC					Curves (0.5 X Peak to Peak)
ur			1780		Relative Permeability of Ungapped Core
ur LG			1780 0.65	mm	Relative Permeability of Ungapped Core Gap Length (Lg > 0.1 mm)
ur			1780		Relative Permeability of Ungapped CoreGap Length (Lg > 0.1 mm)Effective Bobbin Width Maximum Primary Wire Diameter
ur LG BWE			1780 0.65 16.7	mm	Relative Permeability of Ungapped Core Gap Length (Lg > 0.1 mm) Effective Bobbin Width Maximum Primary Wire Diameter including insulation Estimated Total Insulation Thickness (= 2 * film thickness)
ur LG BWE OD			1780 0.65 16.7 0.50	mm mm mm	Relative Permeability of Ungapped Core Gap Length (Lg > 0.1 mm) Effective Bobbin Width Maximum Primary Wire Diameter including insulation Estimated Total Insulation

MA 135 Cmils RANSFORMER SECONDARY DESIGN PARAMETERS 11.67 An SP 11.67 An SRMS 7.22 An RIPPLE 6.26 An WGS 1443 Cn WGS 18 AV OLTAGE STRESS PARAMETERS 665 Vc IVS 118 Vc IVS 118 Vc RANSFORMER SECONDARY DESIGN PARAMETERS (MULTIPLE OUTPUTS) 51 output 118 O1 2.8 Vc IVS 118 Vc Chanser SECONDARY DESIGN PARAMETERS (MULTIPLE OUTPUTS) 51 output 118 O1 2.8 Vc D1 0.7 Vc SRMS1 7.215 An RIPPLE1 6.26 An IVS1 118 Vc SRMS1 7.215 An RIPPLE1 6.26 An IVS1 18 AV IVS1 18.0		next smaller standard AWG value)
RANSFORMER SECONDARY DESIGN PARAMETERS Imped parameters 11.6.7 SP 11.6.7 SRMS 7.22 MRS 1443 Cr 6.26 MS 1443 WGS 18 OLTAGE STRESS PARAMETERS 0 DRAIN 665 VC IVS 11.8 VC 11.8 VC IVS 11.8 VC 28 VC 28 VC 28 VC 28 VC 28 VC 10.2.2 VIS 11.8 VC 28 VC 28 VC 3.580 O1 0.7 VC 3.580 SRMS1 7.215 RIPPLE1 6.26 VIS1 11.8 VC 11.8 VGS1 14.43 Cn 200	Cmils	Bare conductor effective area in circular mils
umped parameters 11.67 An SP 11.67 An SRMS 7.22 An RIPPLE 6.26 An WGS 1443 Cn WGS 18 AV OLTAGE STRESS PARAMETERS 665 Vc DRAIN 665 Vc IVS 118 Vc IVS 118 Vc RANSFORMER SECONDARY DESIGN PARAMETERS (MULTIPLE OUTPUTS) Stoutput	nils/Amp	Primary Winding Current Capacity (100 < CMA < 500)
umped parameters 11.67 An SP 11.67 An SRMS 7.22 An RIPPLE 6.26 An WGS 1443 Cn WGS 18 AV OLTAGE STRESS PARAMETERS 665 Vc DRAIN 665 Vc IVS 118 Vc IVS 118 Vc RANSFORMER SECONDARY DESIGN PARAMETERS (MULTIPLE OUTPUTS) Stoutput		
SP 11.67 An RMS 7.22 An RIPPLE 6.26 An MS 1443 Cn WGS 18 AV OLTAGE STRESS PARAMETERS 665 Vc DRAIN 665 Vc IVS 118 Vc RANSFORMER SECONDARY DESIGN PARAMETERS (MULTIPLE OUTPUTS) 51 01101 0.7 St output 28 Vc O1 28 Vc D1 0.7 Vc SRMS1 7.215 An RIPPLE1 6.26 An IVS1 118 Vc SRMS1 7.215 An RIPPLE1 6.26 An IVS1 118 Vc IVS1 118 Vc IVS1 18 AV IVS1 18 AV IVS1 18.00 Vc IVS1 18 AV IVS1 0.33 An		
SRMS 7.22 An RIPPLE 6.26 An MS 1443 Cn WGS 18 AV OLTAGE STRESS PARAMETERS 665 Vc DRAIN 665 Vc IVS 118 Vc IVS 118 Vc RANSFORMER SECONDARY DESIGN PARAMETERS (MULTIPLE OUTPUTS) stoutput O O1 28 Vc O1 28 Vc O1 0.7 Vc SRMS1 7.215 An RIPPLE1 6.26 An IVS1 118 Vc SIS1 8.00 St SRMS1 1.03 m IVS1 118 Vc MS1 1.03 m IVS1 2.09 m IVS1 1.03 m IVS1 0.7 Vc IS1 0.065 An IVS1 0.0665 An <	Amps	Peak Secondary Current
RIPPLE 6.26 An MS 1443 Cn WGS 18 AV OLTAGE STRESS PARAMETERS 0 0 DRAIN 665 VC IVS 118 VC RANSFORMER SECONDARY DESIGN PARAMETERS (MULTIPLE OUTPUTS) 51 St output 28 VC O1 28 VC O1 0.7 VC St output 0.7 VC O1 0.7 VC SRMS1 7.215 An RIPPLE1 6.26 An IVS1 118 VC WGS1 118 VC MS1 1443 Cn WGS1 118 VC INS1 118 VC IVS1 118 VC INS1 1.03 m INS1 1.03 m INS1 0.07 VC INS1 0.07 VC	Amps	Secondary RMS Current
WGS 18 AV OLTAGE STRESS PARAMETERS 665 VC 'DRAIN 665 VC 'IVS 118 VC IVS 118 VC St output 665 VC 'OT 28 VC OT 28 VC OT 28 VC OT 0.3580 An OT 0.28 VC OT 28 VC OT 0.28 VC SRMS1 7.215 An RIPPLE1 6.26 An VS1 1443 Cn WGS1 18 AV MAS1 1.03 m DDS1 0.33 <td< td=""><td>Amps</td><td>Output Capacitor RMS Ripple Current</td></td<>	Amps	Output Capacitor RMS Ripple Current
OLTAGE STRESS PARAMETERS DRAIN 665 VG IVS 118 VG IVS 118 VG RANSFORMER SECONDARY DESIGN PARAMETERS (MULTIPLE OUTPUTS) st output VG O1 28 VG O1 0.7 VG O1 0.7 VG SRMS1 0.7 VG IVS1 118 VG IVS1 188 AV IVS1 0.03 MG IVS1 0.03 An IVS2 0.7 VG IVS2 76 VG	Cmils	Secondary Bare Conductor minimum circular mils
DRAIN 665 Vc IVS 118 Vc IVS 118 Vc RANSFORMER SECONDARY DESIGN PARAMETERS (MULTIPLE OUTPUTS) st output	AWG	Secondary Wire Gauge (Rounded up to next larger standard AWG value)
DRAIN 665 Vc IVS 118 Vc IVS 118 Vc RANSFORMER SECONDARY DESIGN PARAMETERS (MULTIPLE OUTPUTS) st output		
IVS 118 Vol RANSFORMER SECONDARY DESIGN PARAMETERS (MULTIPLE OUTPUTS) st output 01 O1 28 Vol O1 3.580 Arr O1 0.7 Vol D1 0.7 Vol SRMS1 7.215 Arr RIPPLE1 6.26 Arr IVS1 118 Vol VS1 118 Vol MS1 1443 Cr VGS1 18 Av IVAS1 1.03 m ODS1 2.09 m O2 18.00 Vol O2 18.00 Vol O2 0.33 Arr O2 0.33 Arr O2 0.33 Arr O2 0.5.21 S.21	Volts	Maximum Drain Voltage Estimate
Bit Second ARY DESIGN PARAMETERS (MULTIPLE OUTPUTS) st output O O1 28 Vc O1 3.580 Arr O1 100.24 Wz D1 0.7 Vc SRMS1 8.00 SRMS1 RIPPLE1 6.26 Arr IVS1 118 Vc WGS1 18 Av MAS1 1.03 m MDS1 2.09 m IMS1 1.03 m IVS1 18 Av IVS1 0.33 Arr IVS1 0.665 Arr IVS1 18.00 Vc IVS1 1.03 m IVS1 0.33 Arr IVS2 0.33 Arr	VOIIS	(Assumes 20% zener clamp tolerance and an additional 10% temperature tolerance)
st output 28 Vc O1 3.580 An O1 100.24 Wa D1 0.7 Vc D1 0.7 Vc SRMS1 7.215 An RIPPLE1 6.26 An IVS1 118 Vc tecommended Diodes BYW29- 200 200 CMS1 1443 Cn WGS1 18 AV IAS1 1.03 m O2 18.00 Vc O2 0.33 An O2 0.33 An IS2 5.94 Wa IS2 0.665 An VS2 76 Vc	Volts	Output Rectifier Maximum Peak Inverse Voltage
st output 28 Vc O1 3.580 An O1 100.24 Wa D1 0.7 Vc D1 0.7 Vc SRMS1 7.215 An RIPPLE1 6.26 An IVS1 118 Vc tecommended Diodes BYW29- 200 200 CMS1 1443 Cn WGS1 18 AV IAS1 1.03 m O2 18.00 Vc O2 0.33 An O2 0.33 An IS2 5.94 Wa IS2 0.665 An VS2 76 Vc		
O1 28 Vc O1 3.580 An O1 100.24 Wz D1 0.7 Vc IS1 8.00 SRMS1 RIPPLE1 6.26 An IVS1 118 Vc INS1 118 Vc INS1 1443 Cn WGS1 18 AV IAS1 1.03 m IDS1 2.09 m INS1 1.03 m VIS1 18 AV IAS1 0.07 Vc IS2 0.33 An O2 0.33 An IS2 5.94 Wa IS2 5.21 S IS2 5.21 S IS2 0.58 An IVS2 76 Vc IVS2 76 Vc		
O1 100.24 Wa D1 0.7 Vc IS1 8.00 8.00 SRMS1 7.215 An RIPPLE1 6.26 An IVS1 118 Vc tecommended Diodes BYW29- 200 200 IMS1 1443 Cn WGS1 18 AV DAS1 2.09 m ODS1 2.09 m IO2 0.33 An O2 0.33 An IVS2 0.665 An IVS2 76 Vc IVS2 76 Vc IVS2 MUR110, UF4002,	Volts	Main Output Voltage (if unused, defaults to single output design)
O1 100.24 Wa D1 0.7 Vc IS1 8.00 8.00 SRMS1 7.215 An RIPPLE1 6.26 An IVS1 118 Vc tecommended Diodes BYW29- 200 200 IMS1 1443 Cn WGS1 18 AV DAS1 2.09 m ODS1 2.09 m IO2 0.33 An O2 0.33 An IVS2 0.665 An IVS2 76 Vc IVS2 76 Vc IVS2 MUR110, UF4002,	Amps	Output DC Current
D1 0.7 Vc IS1 8.00 8.00 SRMS1 7.215 An RIPPLE1 6.26 An IVS1 118 Vc tecommended Diodes BYW29- 200 200 IMS1 1443 Cn WGS1 18 AV DIAS1 1.03 m DDS1 2.09 m IMO2 0.33 An IS2 5.94 Wz SRMS2 0.665 An IVS2 76 Vc Recommended Diode MUR110, UF4002,	Watts	Output Do Current Output Power
IS1 8.00 SRMS1 7.215 An RIPPLE1 6.26 An IVS1 118 Vc Recommended Diodes BYW29- 200 200 CMS1 1443 Cn WGS1 18 AV NAS1 1.03 m DDS1 2.09 m MO2 0.33 An O2 0.33 An O2 0.7 Vc SRMS2 0.665 An RIPPLE2 0.58 An VIVS2 76 Vc Recommended Diode MUR110, UF4002, MUR110,	Volts	Output Diode Forward Voltage Drop
SRMS1 7.215 An RIPPLE1 6.26 An IVS1 118 Vol tecommended Diodes BYW29- 200 200 SMS1 1443 Cn WGS1 18 AV NAS1 1.03 m DDS1 2.09 m O2 18.00 Vol D2 0.33 An O2 5.94 Wa D2 0.7 Vol SRMS2 0.665 An IVS2 76 Vol Recommended Diode MUR110, UF4002,	VOILS	Output Winding Number of Turns
RIPPLE1 6.26 An IVS1 118 Vol tecommended Diodes 200 200 CMS1 1443 Cn WGS1 18 AV NAS1 1.03 m DDS1 2.09 m Ind output 2.09 m VQ2 18.00 Vol D2 0.33 An VQ2 18.00 Vol D2 0.33 An VQ2 0.365 An VQ2 76 Vol SRMS2 76 Vol VS2 76 Vol Recommended Diode	Amps	Output Winding RMS Current
BYW29- 200 SMS1 1443 Cn WGS1 18 AV MAS1 1.03 m DDS1 2.09 m md output 2.09 m O2 18.00 Vc D2 0.33 An O2 5.94 Wa DS1 0.7 Vc SRMS2 0.665 An RIPPLE2 0.58 An IVS2 76 Vc	Amps	Output Capacitor RMS Ripple Current
200 SMS1 1443 Cn WGS1 18 AV NAS1 1.03 m DDS1 2.09 m Image: Second Sec	Volts	Output Rectifier Maximum Peak Inverse Voltage
WGS1 18 AV MAS1 1.03 m DDS1 2.09 m Ind output 2.09 m O2 18.00 Vc D2 0.33 Arr O2 0.33 5.94 Val 5.94 Val DS1 5.21 5.21 SRMS2 0.665 Arr IVS2 76 Vc Recommended Diode MUR110, UF4002, MUR110, UF4002,		Recommended Diodes for this output
NAS1 1.03 m DDS1 2.09 m nd output 2.09 m O2 18.00 Vc D2 0.33 An O2 0.33 5.94 Wa 0.7 Vc SRMS2 5.21 SRMS2 0.665 NIPPLE2 76 VC2 76	Cmils	Output Winding Bare Conductor minimum circular mils
DDS1 2.09 m nd output	AWG	Wire Gauge (Rounded up to next larger standard AWG value)
Image: Non-Ample Control of the second sec	mm	Minimum Bare Conductor Diameter
YO2 18.00 Vc D2 0.33 Am YO2 5.94 Wa YO2 0.7 Vc YO2 0.7 Vc YO2 0.7 Vc YO2 0.665 Am SRMS2 0.665 Am YIVS2 76 Vc Recommended Diode MUR110, UF4002, Vc	mm	Maximum Outside Diameter for Triple Insulated Wire
YO2 18.00 Vc D2 0.33 Am YO2 5.94 Wa YO2 0.7 Vc YO2 0.7 Vc YO2 0.7 Vc YO2 0.665 Am SRMS2 0.665 Am YIVS2 76 Vc Recommended Diode MUR110, UF4002, UF4002,		<u> </u>
D2 0.33 An O2 5.94 Wa O2 0.7 Vc ID2 5.21 SRMS2 SRMS2 0.665 Ann RIPPLE2 0.58 Ann VIVS2 76 Vc Recommended Diode MUR110, UF4002, UF4002,	Volts	Output Voltage
O2 5.94 Wa /D2 0.7 Vc IS2 5.21 SRMS2 0.665 Am SRMS2 0.58 Am Am VIVS2 76 Vc Recommended Diode MUR110, UF4002, Vc	Amps	Output DC Current
ID2 0.7 Vc IS2 5.21 5.21 SRMS2 0.665 Am RIPPLE2 0.58 Am IVS2 76 Vc Recommended Diode MUR110, UF4002, UF4002,	Watts	Output Power
IS2 5.21 SRMS2 0.665 Am RIPPLE2 0.58 Am IVS2 76 Vc Recommended Diode MUR110, UF4002, UF4002,	Volts	Output Diode Forward Voltage Drop
SRMS2 0.665 Am RIPPLE2 0.58 Am IVS2 76 Vc Recommended Diode MUR110, UF4002, UF4002,		Output Winding Number of Turns
RIPPLE2 0.58 An IVS2 76 Vc Recommended Diode MUR110, UF4002, UF4002,	Amps	Output Winding RMS Current
Recommended Diode MUR110, UF4002,	Amps	Output Capacitor RMS Ripple Current
UF4002,	Volts	Output Rectifier Maximum Peak Inverse Voltage
SB1100		Recommended Diodes for this output
	Cmils AWG	Output Winding Bare Conductor minimum circular mils Wire Gauge (Rounded up to next

				larger standard AWG value)
DIAS2		0.32	mm	Minimum Bare Conductor Diameter
ODS2		3.20	mm	Maximum Outside Diameter for Triple Insulated Wire
3rd output				
VO3			Volts	Output Voltage
103			Amps	Output DC Current
PO3		0.00	Watts	Output Power
VD3		0.7	Volts	Output Diode Forward Voltage Drop
NS3		0.20		Output Winding Number of Turns
ISRMS3		0.000	Amps	Output Winding RMS Current
IRIPPLE3		0.00	Amps	Output Capacitor RMS Ripple Current
PIVS3		2	Volts	Output Rectifier Maximum Peak Inverse Voltage
Recommended Diode				Recommended Diodes for this output
CMS3		0	Cmils	Output Winding Bare Conductor minimum circular mils
AWGS3		N/A	AWG	Wire Gauge (Rounded up to next larger standard AWG value)
DIAS3		N/A	mm	Minimum Bare Conductor Diameter
ODS3		N/A	mm	Maximum Outside Diameter for Triple Insulated Wire
Total power	Warning (See Note 2 Below)	106.18	Watts	Total power does not match calculated PO at top of sheet
Negative Output		N/A		If negative output exists enter
				Output number; eg: If VO2 is negative output, enter 2

Note 1: The power level recommended in the power table on the front page of the datasheet is based on several assumptions, as indicated in the applications section of the datasheet. The primary assumption is that the minimum DC Bus voltage be held to 100 V under all operating conditions. Peak power capability can be increased with an increase in the minimum DC Bus voltage.

Using increased bulk capacitance, this design is able to ensure that DC Bus voltage never falls below 110 V at peak load with 90 VAC input. The design does not violate any other design criteria (such as KP, flux density, etc.) at peak load and low line input and hence is able to deliver 100 W of power without encountering any limitations from device ratings.

PI Expert and PIXLs will typically generate a warning when the power level exceeds the rated power in the datasheet. This can be ignored if no other limits are exceeded. Careful attention to thermal design is necessary when operating parts close to rated power.

Note 2: It is assumed that the total load on either power supply will never exceed 100 W.

8.2 28 V Negative Transformer Design

ACDC_PeakSwitch_032608; Rev.1.15; Copyright Power Integrations 2008	INPUT	INFO	OUTPUT	UNIT	ACDC_PeakSwitch_032608_Rev1- 15.xls; PeakSwitch Continuous/Discontinuous Flyback Transformer Design Spreadsheet
ENTER APPLICATION VARIABL	ES		1	1	Customer
VACMIN	90			Volts	Minimum AC Input Voltage
VACMAX	265			Volts	Maximum AC Input Voltage
fL	50			Hertz	AC Mains Frequency
Nominal Output Voltage (VO)	28.00			Volts	Nominal Output Voltage (at continuous power)
Maximum Output Current (IO)	3.58			Amps	Power Supply Output Current (corresponding to peak power)
Minimum Output Voltage at Peak Load			28.00	Volts	Minimum Output Voltage at Peak Power (Assuming output droop during peak load)
Continuous Power	25.00		25.00	Watts	Continuous Output Power
Peak Power		Warning (See Note 1 Below	100.24	Watts	III Warning. Peak output power exceeds the power capability of chosen device. Use larger PeakSwitch or reduce peak output power
n	0.76				Efficiency Estimate at output terminals and at peak load. Enter 0.7 if no better data available
Z			0.60		Loss Allocation Factor (Z = Secondary side losses / Total losses)
tC Estimate	3.00			mSeconds	Bridge Rectifier Conduction Time Estimate
CIN	350.00		350	uFarads	Input Capacitance
ENTER PeakSwitch VARIABLES					
PeakSwitch	PKS607Y		PKS607Y		PeakSwitch device
Chosen Device ILIMITMIN		PKS607Y	2.790	Amps	Minimum Current Limit
ILIMITMAX	ł – – ł		3.210	Amps	Maximum Current Limit
fSmin			250000	Hertz	Minimum Device Switching Frequency
I^2fmin			2242	A^2kHz	I/2f (product of current limit squared and frequency is trimmed for tighter tolerance)
VOR	120.00		120	Volts	Reflected Output Voltage (VOR <= 135 V Recommended)
VDS			10	Volts	PeakSwitch on-state Drain to Source Voltage
VD			0.7	Volts	Output Winding Diode Forward Voltage Drop
VDB			0.7	Volts	Bias Winding Diode Forward Voltage Drop
VCLO	\downarrow \downarrow		200	Volts	Nominal Clamp Voltage
KP (STEADY STATE)			0.42		Ripple to Peak Current Ratio (KP < 6)
KP (TRANSIENT)			0.26		Ripple to Peak Current Ratio under worst case at peak load (0.25 < KP < 6)
ENTER LIVI O VARIARI ES					
ENTER UVLO VARIABLES V_UV_TARGET			121	Volts	Target DC under-voltage threshold, above which the power supply with start
			121	Volts Volts	above which the power supply with

					resistor
RUV_ACTUAL			4.70	Mohms	Closest standard value of resistor to RUV_IDEAL
BIAS WINDING VARIABL	ES	Г	45.00) (- 1(-	Discussion discussion
VB			15.00	Volts	Bias winding Voltage
NB			4		Number of Bias Winding Turns
PIVB			60	Volts	Bias rectifier Maximum Peak Inverse Voltage
ENTER TRANSFORMER	CORE/CONSTRUCT				
Core Type	EER28		EER28		User Selected Core Size(Verify
					acceptable thermal rise under continuous load conditions)
Core		EER28		P/N:	PC40EER28-Z
Bobbin		EER28 BOBBIN		P/N:	EER28 BOBBIN
AE		11.110_00000	0.821	cm^2	Core Effective Cross Sectional Area
LE			6.40	cm	Core Effective Path Length
AL			2870	nH/T^2	Ungapped Core Effective
			2070	111712	Inductance
BW			16.70	mm	Bobbin Physical Winding Width
Μ			0.00	mm	Safety Margin Width (Half the Primary to Secondary Creepage Distance)
L	1.00		1		Number of Primary Layers
NS	8		8		Number of Secondary Turns
	DAMETEDS				
DC INPUT VOLTAGE PA	110.00	1 1	110	Volts	Minimum DC Input Voltage
VMAX	110.00				Minimum DC Input Voltage
VINAX			375	Volts	Maximum DC Input Voltage
CURRENT WAVEFORM	SHAPE PARAMETE	RS			
CURRENT WAVEFORM S	SHAPE PARAMETE	RS	0.55		Duty Ratio at full load, minimum primary inductance and minimum
DMAX	SHAPE PARAMETE	RS		Amos	primary inductance and minimum input voltage
DMAX	SHAPE PARAMETE	RS	1.32	Amps	primary inductance and minimum input voltage Average Primary Current
DMAX IAVG IP	SHAPE PARAMETE	RS	1.32 2.79	Amps	primary inductance and minimum input voltage Average Primary Current Minimum Peak Primary Current
DMAX IAVG IP IR	SHAPE PARAMETE	RS	1.32 2.79 1.18	Amps Amps	primary inductance and minimum input voltage Average Primary Current Minimum Peak Primary Current Primary Ripple Current
DMAX IAVG IP	SHAPE PARAMETE	RS	1.32 2.79	Amps	primary inductance and minimum input voltage Average Primary Current Minimum Peak Primary Current
DMAX IAVG IP IR IRMS			1.32 2.79 1.18	Amps Amps	primary inductance and minimum input voltage Average Primary Current Minimum Peak Primary Current Primary Ripple Current
DMAX IAVG IP IR IRMS TRANSFORMER PRIMAF LP	RY DESIGN PARAM		1.32 2.79 1.18	Amps Amps Amps uHenries	primary inductance and minimum input voltage Average Primary Current Minimum Peak Primary Current Primary Ripple Current Primary RMS Current Typical Primary Inductance. +/- 5% to ensure a minimum primary inductance of 159 uH
DMAX IAVG IP IR IRMS TRANSFORMER PRIMAF			1.32 2.79 1.18 1.89 167 5	Amps Amps Amps	primary inductance and minimum input voltage Average Primary Current Minimum Peak Primary Current Primary Ripple Current Primary RMS Current Typical Primary Inductance. +/- 5% to ensure a minimum primary
DMAX IAVG IP IR IRMS TRANSFORMER PRIMAF LP	RY DESIGN PARAM		1.32 2.79 1.18 1.89 167	Amps Amps Amps uHenries	primary inductance and minimum input voltage Average Primary Current Minimum Peak Primary Current Primary Ripple Current Primary RMS Current Typical Primary Inductance. +/- 5% to ensure a minimum primary inductance of 159 uH
DMAX IAVG IP IR IRMS TRANSFORMER PRIMAF LP LP_TOLERANCE	RY DESIGN PARAM		1.32 2.79 1.18 1.89 167 5 33	Amps Amps Amps uHenries	primary inductance and minimum input voltage Average Primary Current Minimum Peak Primary Current Primary Ripple Current Primary RMS Current Typical Primary Inductance. +/- 5% to ensure a minimum primary inductance of 159 uH Primary inductance tolerance Primary Winding Number of Turns
DMAX IAVG IP IR IRMS TRANSFORMER PRIMAF LP LP_TOLERANCE NP	RY DESIGN PARAM		1.32 2.79 1.18 1.89 167 5	Amps Amps Amps uHenries %	primary inductance and minimum input voltage Average Primary Current Minimum Peak Primary Current Primary Ripple Current Primary RMS Current Typical Primary Inductance. +/- 5% to ensure a minimum primary inductance of 159 uH Primary inductance tolerance Primary Winding Number of Turns Gapped Core Effective Inductance Target Peak Flux Density at
DMAX IAVG IP IR IRMS TRANSFORMER PRIMAF LP LP_TOLERANCE NP ALG	RY DESIGN PARAM		1.32 2.79 1.18 1.89 167 5 33 149	Amps Amps Amps uHenries % nH/T^2	primary inductance and minimum input voltage Average Primary Current Minimum Peak Primary Current Primary Ripple Current Primary RMS Current Typical Primary Inductance. +/- 5% to ensure a minimum primary inductance of 159 uH Primary inductance tolerance Primary Winding Number of Turns Gapped Core Effective Inductance Target Peak Flux Density at Maximum Current Limit Calculated Maximum Operating Flux Density, BM < 3000 is
DMAX IAVG IP IR IRMS TRANSFORMER PRIMAF LP LP_TOLERANCE NP ALG Target BM	RY DESIGN PARAM		1.32 2.79 1.18 1.89 167 5 33 149 3000	Amps Amps Amps uHenries % nH/T^2 Gauss	primary inductance and minimum input voltage Average Primary Current Minimum Peak Primary Current Primary Ripple Current Primary RMS Current Typical Primary Inductance. +/- 5% to ensure a minimum primary inductance of 159 uH Primary inductance tolerance Primary Winding Number of Turns Gapped Core Effective Inductance Target Peak Flux Density at Maximum Current Limit Calculated Maximum Operating Flux Density, BM < 3000 is recommended AC Flux Density for Core Loss
DMAX IAVG IP IR IRMS TRANSFORMER PRIMAP LP LP_TOLERANCE NP ALG Target BM BM	RY DESIGN PARAM		1.32 2.79 1.18 1.89 167 5 33 149 3000 1953	Amps Amps Amps uHenries % nH/T^2 Gauss Gauss	primary inductance and minimum input voltage Average Primary Current Minimum Peak Primary Current Primary Ripple Current Primary RMS Current Typical Primary Inductance. +/- 5% to ensure a minimum primary inductance of 159 uH Primary inductance tolerance Primary Winding Number of Turns Gapped Core Effective Inductance Target Peak Flux Density at Maximum Current Limit Calculated Maximum Operating Flux Density, BM < 3000 is recommended
DMAX IAVG IP IR IRMS TRANSFORMER PRIMAF LP LP_TOLERANCE NP ALG Target BM BM BAC ur LG	RY DESIGN PARAM		1.32 2.79 1.18 1.89 167 5 33 149 3000 1953 414	Amps Amps Amps uHenries % nH/T^2 Gauss Gauss	primary inductance and minimum input voltage Average Primary Current Minimum Peak Primary Current Primary Ripple Current Primary RMS Current Typical Primary Inductance. +/- 5% to ensure a minimum primary inductance of 159 uH Primary inductance tolerance Primary Winding Number of Turns Gapped Core Effective Inductance Target Peak Flux Density at Maximum Current Limit Calculated Maximum Operating Flux Density, BM < 3000 is recommended AC Flux Density for Core Loss Curves (0.5 X Peak to Peak) Relative Permeability of Ungapped
DMAX IAVG IP IR IRMS TRANSFORMER PRIMAF LP LP_TOLERANCE NP ALG Target BM BM BAC ur	RY DESIGN PARAM		1.32 2.79 1.18 1.89 167 5 33 149 3000 1953 414 1780	Amps Amps Amps uHenries % nH/T^2 Gauss Gauss Gauss	primary inductance and minimum input voltage Average Primary Current Minimum Peak Primary Current Primary Ripple Current Primary RMS Current Typical Primary Inductance. +/- 5% to ensure a minimum primary inductance of 159 uH Primary inductance tolerance Primary Winding Number of Turns Gapped Core Effective Inductance Target Peak Flux Density at Maximum Current Limit Calculated Maximum Operating Flux Density, BM < 3000 is recommended AC Flux Density for Core Loss Curves (0.5 X Peak to Peak) Relative Permeability of Ungapped Core
DMAX IAVG IP IR IRMS TRANSFORMER PRIMAF LP LP_TOLERANCE NP ALG Target BM BM BAC ur LG	RY DESIGN PARAM		1.32 2.79 1.18 1.89 167 5 33 149 3000 1953 414 1780 0.65	Amps Amps Amps uHenries % nH/T^2 Gauss Gauss Gauss mm	primary inductance and minimum input voltage Average Primary Current Minimum Peak Primary Current Primary Ripple Current Primary RMS Current Typical Primary Inductance. +/- 5% to ensure a minimum primary inductance of 159 uH Primary inductance tolerance Primary Winding Number of Turns Gapped Core Effective Inductance Target Peak Flux Density at Maximum Current Limit Calculated Maximum Operating Flux Density, BM < 3000 is recommended AC Flux Density for Core Loss Curves (0.5 X Peak to Peak) Relative Permeability of Ungapped Core Gap Length (Lg > 0.1 mm)
DMAX IAVG IP IR IRMS TRANSFORMER PRIMAF LP LP_TOLERANCE NP ALG Target BM BM BAC ur LG BWE	RY DESIGN PARAM		1.32 2.79 1.18 1.89 167 5 33 149 3000 1953 414 1780 0.65 16.7	Amps Amps Amps uHenries % nH/T^2 Gauss Gauss Gauss mm mm	primary inductance and minimum input voltage Average Primary Current Minimum Peak Primary Current Primary Ripple Current Primary RMS Current Typical Primary Inductance. +/- 5% to ensure a minimum primary inductance of 159 uH Primary inductance tolerance Primary Winding Number of Turns Gapped Core Effective Inductance Target Peak Flux Density at Maximum Current Limit Calculated Maximum Operating Flux Density, BM < 3000 is recommended AC Flux Density for Core Loss Curves (0.5 X Peak to Peak) Relative Permeability of Ungapped Core Gap Length (Lg > 0.1 mm) Effective Bobbin Width Maximum Primary Wire Diameter including insulation
DMAX IAVG IP IR IRMS IRMS IRMS IRANSFORMER PRIMAF LP LP_TOLERANCE NP ALG Target BM BM BAC ur LG BWE OD INS	RY DESIGN PARAM		1.32 2.79 1.18 1.89	Amps Amps Amps uHenries % nH/T^2 Gauss Gauss Gauss Gauss mm mm mm	primary inductance and minimum input voltage Average Primary Current Minimum Peak Primary Current Primary Ripple Current Primary RMS Current Typical Primary Inductance. +/- 5% to ensure a minimum primary inductance of 159 uH Primary inductance tolerance Primary Winding Number of Turns Gapped Core Effective Inductance Target Peak Flux Density at Maximum Current Limit Calculated Maximum Operating Flux Density, BM < 3000 is recommended AC Flux Density for Core Loss Curves (0.5 X Peak to Peak) Relative Permeability of Ungapped Core Gap Length (Lg > 0.1 mm) Effective Bobbin Width Maximum Primary Wire Diameter including insulation Estimated Total Insulation Thickness (= 2 * film thickness)
DMAX IAVG IP IR IRMS TRANSFORMER PRIMAF LP LP_TOLERANCE NP ALG Target BM BM BAC ur LG BWE OD	RY DESIGN PARAM		1.32 2.79 1.18 1.89 167 5 33 149 3000 1953 414 1780 0.65 16.7 0.50	Amps Amps Amps uHenries % nH/T^2 Gauss Gauss Gauss mm mm	primary inductance and minimum input voltage Average Primary Current Minimum Peak Primary Current Primary Ripple Current Primary RMS Current Typical Primary Inductance. +/- 5% to ensure a minimum primary inductance of 159 uH Primary inductance tolerance Primary Winding Number of Turns Gapped Core Effective Inductance Target Peak Flux Density at Maximum Current Limit Calculated Maximum Operating Flux Density, BM < 3000 is recommended AC Flux Density for Core Loss Curves (0.5 X Peak to Peak) Relative Permeability of Ungapped Core Gap Length (Lg > 0.1 mm) Effective Bobbin Width Maximum Primary Wire Diameter including insulation

			circular mils
СМА	135	Cmils/Amp	Primary Winding Current Capacity (100 < CMA < 500)
TRANSFORMER SECONDARY DESIGN PAR	AMETERS		
Lumped parameters			
ISP	11.67	Amps	Peak Secondary Current
ISRMS	7.22	Amps	Secondary RMS Current
IRIPPLE	6.26	Amps	Output Capacitor RMS Ripple Current
CMS	1443	Cmils	Secondary Bare Conductor minimum circular mils
AWGS	18	AWG	Secondary Wire Gauge (Rounded up to next larger standard AWG value)
VOLTAGE STRESS PARAMETERS	665	Volts	Maximum Drain Voltago Estimato
VDRAIN	600	VOIIS	Maximum Drain Voltage Estimate (Assumes 20% zener clamp tolerance and an additional 10% temperature tolerance)
PIVS	118	Volts	Output Rectifier Maximum Peak Inverse Voltage
TRANSFORMER SECONDARY DESIGN PAR	AMETERS (MULTIPLE OUTPUT	S)	
1st output		·	
VO1	28	Volts	Main Output Voltage (if unused, defaults to single output design)
IO1	3.580	Amps	Output DC Current
PO1	100.24	Watts	Output Power
VD1	0.7	Volts	Output Diode Forward Voltage Drop
NS1	8.00		Output Winding Number of Turns
ISRMS1	7.215	Amps	Output Winding RMS Current
IRIPPLE1	6.26	Amps	Output Capacitor RMS Ripple Current
PIVS1	118	Volts	Output Rectifier Maximum Peak Inverse Voltage
Recommended Diodes	BYW29- 200		Recommended Diodes for this output
CMS1	1443	Cmils	Output Winding Bare Conductor minimum circular mils
AWGS1	18	AWG	Wire Gauge (Rounded up to next larger standard AWG value)
DIAS1	1.03	mm	Minimum Bare Conductor Diameter
ODS1	2.09	mm	Maximum Outside Diameter for Triple Insulated Wire
2nd output			
VO2		Volts	Output Voltage
102		Amps	Output DC Current
PO2	0.00	Watts	Output Power
VD2	0.7	Volts	Output Diode Forward Voltage Drop
NS2	0.20		Output Winding Number of Turns
ISRMS2	0.000	Amps	Output Winding RMS Current
IRIPPLE2	0.00	Amps	Output Capacitor RMS Ripple Current
PIVS2	2	Volts	Output Rectifier Maximum Peak Inverse Voltage
Recommended Diode			Recommended Diodes for this output
CMS2	0	Cmils	Output Winding Bare Conductor minimum circular mils
AWGS2	N/A	AWG	Wire Gauge (Rounded up to next larger standard AWG value)
DIAS2	N/A	mm	Minimum Bare Conductor Diameter
ODS2	N/A	mm	Maximum Outside Diameter for

			Triple Insulated Wire
			· ·
3rd output			
VO3		Volts	Output Voltage
IO3		Amps	Output DC Current
PO3	0.00	Watts	Output Power
VD3	0.7	Volts	Output Diode Forward Voltage Drop
NS3	0.20		Output Winding Number of Turns
ISRMS3	0.000	Amps	Output Winding RMS Current
IRIPPLE3	0.00	Amps	Output Capacitor RMS Ripple Current
PIVS3	2	Volts	Output Rectifier Maximum Peak Inverse Voltage
Recommended Diode			Recommended Diodes for this output
CMS3	0	Cmils	Output Winding Bare Conductor minimum circular mils
AWGS3	N/A	AWG	Wire Gauge (Rounded up to next larger standard AWG value)
DIAS3	N/A	mm	Minimum Bare Conductor Diameter
ODS3	N/A	mm	Maximum Outside Diameter for Triple Insulated Wire
Total power	100.24	Watts	Total Output Power
Negative Output	N/A		If negative output exists enter Output number; eg: If VO2 is negative output, enter 2

Note 1: The power level recommended in the power table on the front page of the datasheet is based on several assumptions, as indicated in the applications section of the datasheet. The primary assumption is that the minimum DC Bus voltage be held to 100 V under all operating conditions. Peak power capability can be increased with an increase in the minimum DC Bus voltage.

Using increased bulk capacitance, this design is able to ensure that DC Bus voltage never falls below 110 V at peak load with 90 VAC input. The design does not violate any other design criteria (such as KP, flux density, etc.) at peak load and low line input and hence is able to deliver 100 W of power without encountering any limitations from device ratings.

PI Expert and PIXLs will typically generate a warning when the power level exceeds the rated power in the datasheet. This can be ignored if no other limits are exceeded. Careful attention to thermal design is necessary when operating parts close to rated power.

9 Performance Data

All measurements performed at room temperature, 60 Hz input frequency.

9.1 Active Mode Efficiency

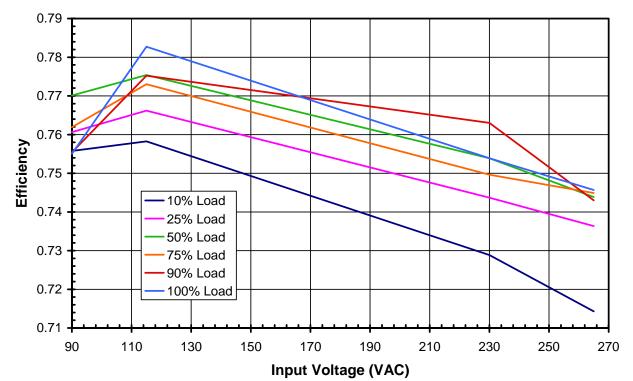
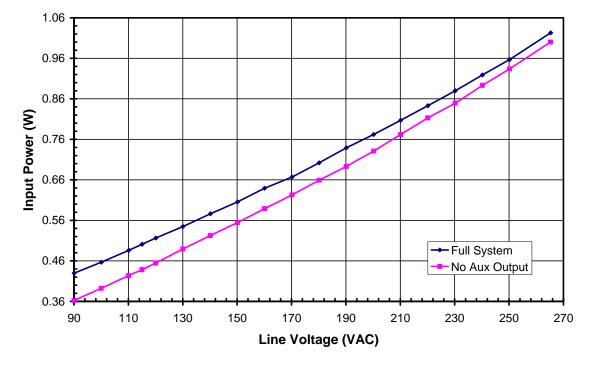
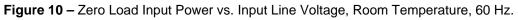
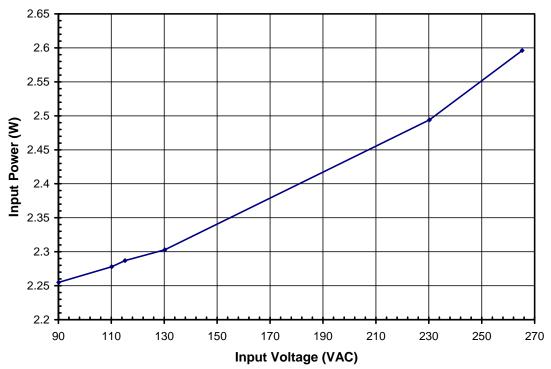
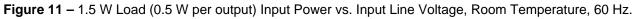



Figure 9 – Efficiency vs. Input Voltage, Room Temperature, 60 Hz.


Percent of Full Load	Efficier	ncy (%)
	115 VAC	230 VAC
25	76.6	74.4
50	77.5	75.4
75	77.3	75
100	78.3	75.4
Average	77.4	75

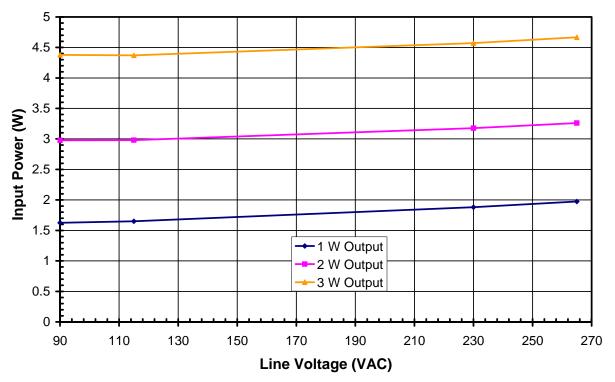
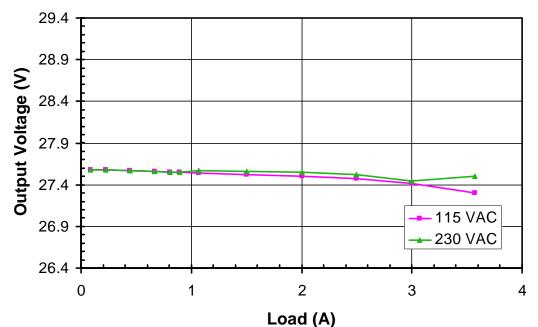

Note: This design utilizes a linear regulator to achieve a +12 V auxiliary output. Linear regulators have poor efficiency; hence the overall efficiency of this design can be increased by replacing the regulator with a dual weighted feedback scheme for both the +28 V and +12 V outputs, or by removing the auxiliary output completely.

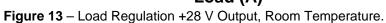


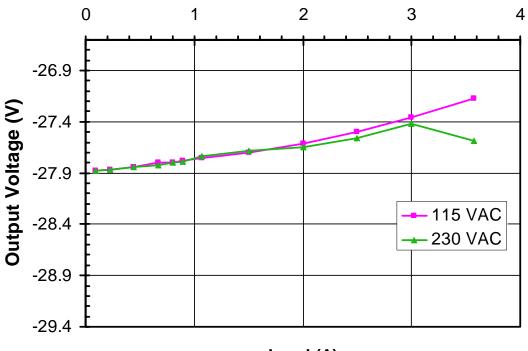
9.2 No-load Input Power

9.3 Available Standby Output Power

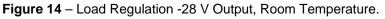
The chart below shows the input power vs line voltage for an output power of 1 W, 2 W and 3 W loading distributed across all outputs evenly.

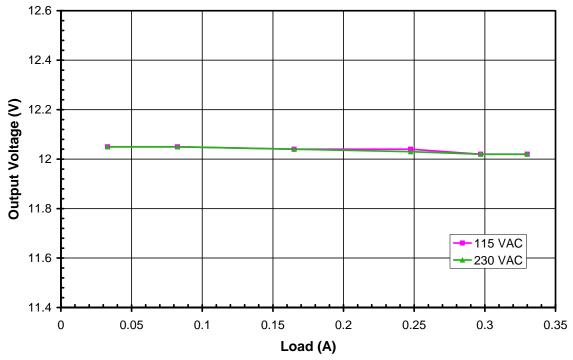



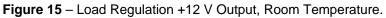

Figure 12 – Output Power Vs. Input Line Voltage, Various Standby Loading, Room Temperature, 60 Hz.

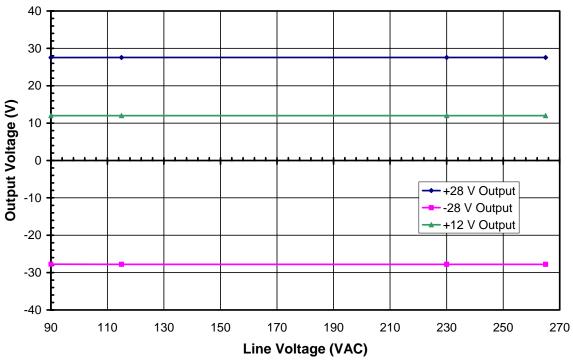


9.4 Regulation


9.4.1 Load



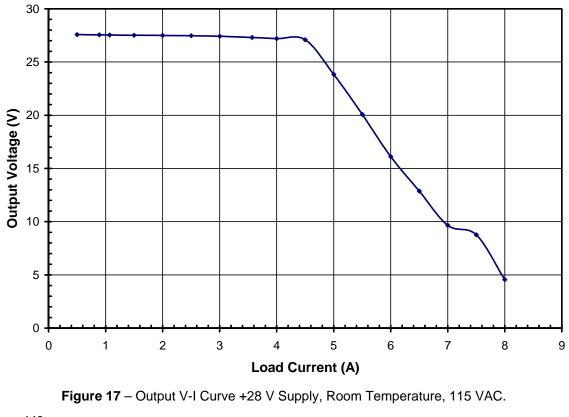


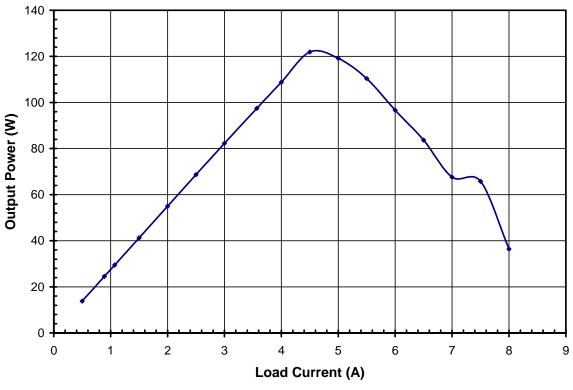


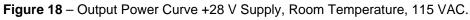
9.4.3 Cross Regulation Matrix

The tables below show data for outputs under various loading conditions at 90, 115, 230 and 265 VAC. Regulation on all outputs is within \pm 5% under all conditions.

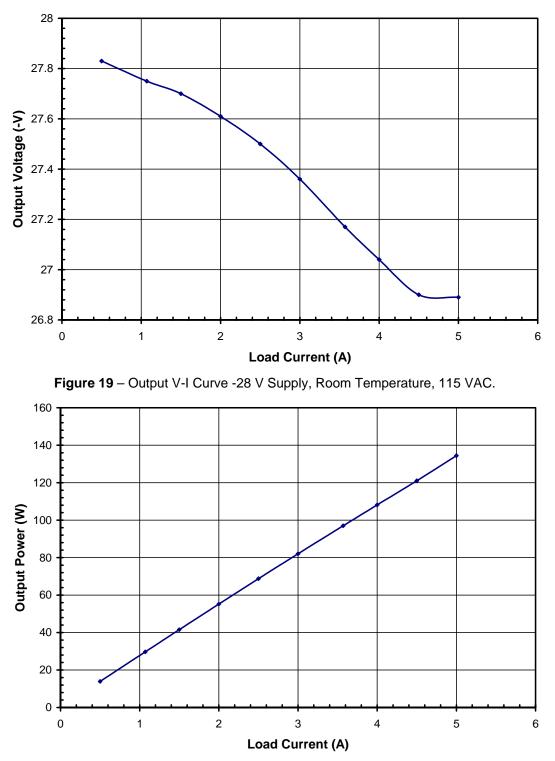
90 VAC	constant 3	3 mA Loa	d on 12 V	115 VAC	constant 3	3 mA Load	on 12 V	230 VAC	constant	33 mA Load	on 12 V	265 VA	C constant 3	3 mA Load	on 12 V
lo (+28 V)	lo (12 V)	Vo (+28 V	Vo (12 V)	lo (+28 V)	lo (12 V)	Vo (+28 V)	Vo (12 V)	lo (+28 V)	lo (12 V)	Vo (+28 V)	Vo (12 V)	lo (+28 V)	lo (12 V)	Vo (+28 V)	Vo (12 V)
0.000	0.033	27.59	12.05	0.000	0.033	27.58	12.05	0.000	0.033		12.05	0.000	0.033		12.05
0.089	0.033	27.58	12.05	0.089	0.033	27.58	12.05	0.089	0.033	27.58	12.05	0.089	0.033		12.05
0.223	0.033	27.58	12.05	0.223	0.033	27.58	12.05	0.223	0.033	27.58	12.05	0.223	0.033		12.05
0.447	0.033	27.58	12.05	0.447	0.033	27.57	12.05	0.447	0.033	27.57	12.05	0.447	0.033		12.05
0.670	0.033	27.57	12.05	0.670	0.033		12.05	0.670	0.033	27.57	12.05	0.670			12.05
0.893	0.033	27.56	12.05	0.893	0.033	27.56	12.05	0.893	0.033	27.57	12.05	0.893	0.033	27.56	12.05
			at full load			constant at				constant a				constant at	
lo (+28 V)	lo (12 V)	Vo (+28 V	Vo (12 V)	lo (+28 V)	lo (12 V)	Vo (+28 V)	Vo (12 V)	lo (+28 V)	lo (12 V)	Vo (+28 V)	Vo (12 V)	lo (+28 V)	lo (12 V)	Vo (+28 V)	Vo (12 V)
0.000	0.330	27.58	12.04				12.02	0.000	0.330		12.02	0.000			12.02
0.089	0.330	27.57	12.04	0.089	0.330		12.03	0.089	0.330		12.03	0.089			12.02
0.223	0.330	27.57	12.04	0.223	0.330		12.03	0.223	0.330		12.03	0.223	0.330		12.02
0.447	0.330	27.56	12.04	0.447	0.330		12.02	0.447	0.330			0.447	0.330		
0.670	0.330	27.56	12.04	0.670	0.330		12.02	0.670	0.330			0.670			12.02
0.893	0.330	27.55	12.04	0.893	0.330	27.55	12.02	0.893	0.330	27.55	12.02	0.893	0.330	27.55	12.02
			l on +28 V			9 mA Load				9 mA Load				9 mA Load	
lo (+28 V)	lo (12 V)	Vo (+28 V	Vo (12 V)	lo (+28 V)	lo (12 V)	Vo (+28 V)	Vo (12 V)	lo (+28 V)	lo (12 V)	Vo (+28 V)	Vo (12 V)	lo (+28 V)	lo (12 V)	Vo (+28 V)	Vo (12 V)
lo (+28 V) 0.089	lo (12 V) 0.000	Vo (+28 V 27.57	Vo (12 V) 12.04	lo (+28 V) 0.089	lo (12 V) 0.000	Vo (+28 V) 27.58	Vo (12 V) 12.05	lo (+28 V) 0.089	lo (12 V) 0.000	Vo (+28 V) 27.58	Vo (12 V) 12.05	lo (+28 V) 0.089	lo (12 V) 0.000	Vo (+28 V) 27.58	Vo (12 V) 12.05
lo (+28 V) 0.089 0.089	lo (12 V) 0.000 0.033	Vo (+28 V 27.57 27.57	Vo (12 V) 12.04 12.05	lo (+28 V) 0.089 0.089	lo (12 V) 0.000 0.033	Vo (+28 V) 27.58 27.58	Vo (12 V) 12.05 12.05	lo (+28 V) 0.089 0.089	lo (12 V) 0.000 0.033	Vo (+28 V) 27.58 27.57	Vo (12 V) 12.05 12.05	lo (+28 V) 0.089 0.089	lo (12 V) 0.000 0.033	Vo (+28 V) 27.58 27.57	Vo (12 V) 12.05 12.05
lo (+28 V) 0.089 0.089 0.089	lo (12 V) 0.000 0.033 0.083	Vo (+28 V 27.57 27.57 27.57	Vo (12 V) 12.04 12.05 12.05	lo (+28 V) 0.089 0.089 0.089	lo (12 V) 0.000 0.033 0.083	Vo (+28 V) 27.58 27.58 27.57	Vo (12 V) 12.05 12.05 12.05	lo (+28 V) 0.089 0.089 0.089	lo (12 V) 0.000 0.033 0.083	Vo (+28 V) 27.58 27.57 27.57	Vo (12 V) 12.05 12.05 12.04	lo (+28 V) 0.089 0.089 0.089	lo (12 V) 0.000 0.033 0.083	Vo (+28 V) 27.58 27.57 27.57	Vo (12 V) 12.05 12.05 12.04
lo (+28 V) 0.089 0.089 0.089 0.089	lo (12 V) 0.000 0.033 0.083 0.165	Vo (+28 V 27.57 27.57 27.57 27.57 27.57	Vo (12 V) 12.04 12.05 12.05 12.04	lo (+28 V) 0.089 0.089 0.089 0.089	lo (12 V) 0.000 0.033 0.083 0.165	Vo (+28 V) 27.58 27.58 27.57 27.57	Vo (12 V) 12.05 12.05 12.05 12.04	lo (+28 V) 0.089 0.089 0.089 0.089	lo (12 V) 0.000 0.033 0.083 0.165	Vo (+28 V) 27.58 27.57 27.57 27.58	Vo (12 V) 12.05 12.05 12.04 12.04	lo (+28 V) 0.089 0.089 0.089 0.089	lo (12 V) 0.000 0.033 0.083 0.165	Vo (+28 V) 27.58 27.57 27.57 27.57	Vo (12 V) 12.05 12.05 12.04 12.04
lo (+28 V) 0.089 0.089 0.089 0.089 0.089	lo (12 V) 0.000 0.033 0.083 0.165 0.248	Vo (+28 V 27.57 27.57 27.57 27.57 27.57 27.57	Vo (12 V) 12.04 12.05 12.05 12.04 12.04	lo (+28 V) 0.089 0.089 0.089 0.089 0.089 0.089	lo (12 V) 0.000 0.033 0.083 0.165 0.248	Vo (+28 V) 27.58 27.58 27.57 27.57 27.57	Vo (12 V) 12.05 12.05 12.05 12.04 12.04	lo (+28 V) 0.089 0.089 0.089 0.089 0.089	lo (12 V) 0.000 0.033 0.083 0.165 0.248	Vo (+28 V) 27.58 27.57 27.57 27.58 27.58 27.57	Vo (12 V) 12.05 12.05 12.04 12.04 12.04 12.04	lo (+28 V) 0.089 0.089 0.089 0.089 0.089	lo (12 V) 0.000 0.033 0.083 0.165 0.248	Vo (+28 V) 27.58 27.57 27.57 27.57 27.57 27.57	Vo (12 V) 12.05 12.05 12.04 12.04 12.04
lo (+28 V) 0.089 0.089 0.089 0.089	lo (12 V) 0.000 0.033 0.083 0.165	Vo (+28 V 27.57 27.57 27.57 27.57 27.57	Vo (12 V) 12.04 12.05 12.05 12.04	lo (+28 V) 0.089 0.089 0.089 0.089	lo (12 V) 0.000 0.033 0.083 0.165	Vo (+28 V) 27.58 27.58 27.57 27.57 27.57	Vo (12 V) 12.05 12.05 12.05 12.04	lo (+28 V) 0.089 0.089 0.089 0.089	lo (12 V) 0.000 0.033 0.083 0.165	Vo (+28 V) 27.58 27.57 27.57 27.58 27.58 27.57	Vo (12 V) 12.05 12.05 12.04 12.04	lo (+28 V) 0.089 0.089 0.089 0.089	lo (12 V) 0.000 0.033 0.083 0.165 0.248	Vo (+28 V) 27.58 27.57 27.57 27.57 27.57 27.57	Vo (12 V) 12.05 12.05 12.04 12.04
lo (+28 V) 0.089 0.089 0.089 0.089 0.089 0.089	lo (12 V) 0.000 0.033 0.083 0.165 0.248 0.330	Vo (+28 V 27.57 27.57 27.57 27.57 27.57 27.57 27.57	Vo (12 V) 12.04 12.05 12.05 12.04 12.04 12.04	lo (+28 V) 0.089 0.089 0.089 0.089 0.089 0.089 0.089	lo (12 V) 0.000 0.033 0.083 0.165 0.248 0.330	Vo (+28 V) 27.58 27.58 27.57 27.57 27.57 27.57 27.57	Vo (12 V) 12.05 12.05 12.05 12.04 12.04 12.04	lo (+28 V) 0.089 0.089 0.089 0.089 0.089 0.089 0.089	lo (12 V) 0.000 0.033 0.083 0.165 0.248 0.330	Vo (+28 V) 27.58 27.57 27.57 27.58 27.58 27.57 27.57	Vo (12 V) 12.05 12.05 12.04 12.04 12.04 12.04 12.04 12.04	lo (+28 V) 0.089 0.089 0.089 0.089 0.089 0.089 0.089	lo (12 V) 0.000 0.033 0.083 0.165 0.248 0.330	Vo (+28 V) 27.58 27.57 27.57 27.57 27.57 27.57 27.57	Vo (12 V) 12.05 12.05 12.04 12.04 12.04 12.03
Io (+28 V) 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 90 VAC +	lo (12 V) 0.000 0.033 0.083 0.165 0.248 0.330 28 V held	Vo (+28 V 27.57 27.57 27.57 27.57 27.57 27.57 27.57 27.57	Vo (12 V) 12.04 12.05 12.05 12.04 12.04 12.04 12.04 12.04	Io (+28 V) 0.089 0.089 0.089 0.089 0.089 0.089 0.089 115 VAC	lo (12 V) 0.000 0.033 0.083 0.165 0.248 0.330 +28 V held	Vo (+28 V) 27.58 27.58 27.57 27.57 27.57 27.57 27.57 27.57 constant at	Vo (12 V) 12.05 12.05 12.05 12.04 12.04 12.04 12.04 12.04	lo (+28 V) 0.089 0.089 0.089 0.089 0.089 0.089 230 VAC -	lo (12 V) 0.000 0.033 0.083 0.165 0.248 0.330 ►28 V held	Vo (+28 V) 27.58 27.57 27.57 27.58 27.57 27.58 27.57 27.57 27.57	Vo (12 V) 12.05 12.05 12.04 12.04 12.04 12.04 12.04 12.04 t full load	lo (+28 V) 0.089 0.089 0.089 0.089 0.089 0.089 0.089 265 VAC	lo (12 V) 0.000 0.033 0.083 0.165 0.248 0.330 +28 V held	Vo (+28 V) 27.58 27.57 27.57 27.57 27.57 27.57 27.57 27.57 constant at	Vo (12 V) 12.05 12.05 12.04 12.04 12.04 12.04 12.03 full load
lo (+28 V) 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 90 VAC + lo (+28 V)	lo (12 V) 0.000 0.033 0.083 0.165 0.248 0.330 28 V held lo (12 V)	Vo (+28 V 27.57 27.57 27.57 27.57 27.57 27.57 27.57 27.57 Vo (+28 V	Vo (12 V) 12.04 12.05 12.05 12.04 12.04 12.04 12.04 12.04 Vo (12 V)	lo (+28 V) 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 115 VAC Io (+28 V)	lo (12 V) 0.000 0.033 0.083 0.165 0.248 0.330 +28 V held lo (12 V)	Vo (+28 V) 27.58 27.58 27.57 27.57 27.57 27.57 27.57 27.57 Vo (+28 V)	Vo (12 V) 12.05 12.05 12.05 12.04 12.04 12.04 12.04 full load Vo (12 V)	lo (+28 V) 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 230 VAC - lo (+28 V)	lo (12 V) 0.000 0.033 0.083 0.165 0.248 0.330 -28 V held lo (12 V)	Vo (+28 V) 27.58 27.57 27.57 27.58 27.57 27.58 27.57 27.57 Vo (+28 V)	Vo (12 V) 12.05 12.05 12.04 12.04 12.04 12.04 12.04 12.04 t full load Vo (12 V)	lo (+28 V) 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089	lo (12 V) 0.000 0.033 0.083 0.165 0.248 0.330 +28 V held lo (12 V)	Vo (+28 V) 27.58 27.57 27.57 27.57 27.57 27.57 27.57 27.57 Vo (+28 V)	Vo (12 V) 12.05 12.05 12.04 12.04 12.04 12.03 full load Vo (12 V)
lo (+28 V) 0.089 0.089 0.089 0.089 0.089 0.089 90 VAC + lo (+28 V) 0.893	lo (12 V) 0.000 0.033 0.083 0.165 0.248 0.330 28 V held lo (12 V) 0.000	Vo (+28 V 27.57 27.57 27.57 27.57 27.57 27.57 27.57 27.57 Vo (+28 V 27.55	Vo (12 V) 12.04 12.05 12.05 12.04 12.04 12.04 12.04 12.04 Vo (12 V) 12.04	lo (+28 V) 0.089 0.089 0.089 0.089 0.089 0.089 115 VAC lo (+28 V) 0.893	lo (12 V) 0.000 0.033 0.083 0.165 0.248 0.330 +28 V held lo (12 V) 0.000	Vo (+28 V) 27.58 27.58 27.57 27.57 27.57 27.57 27.57 constant at Vo (+28 V) 27.55	Vo (12 V) 12.05 12.05 12.05 12.04 12.04 12.04 12.04 full load Vo (12 V) 12.03	lo (+28 V) 0.089 0.089 0.089 0.089 0.089 0.089 0.089 230 VAC - lo (+28 V) 0.893	lo (12 V) 0.000 0.033 0.083 0.165 0.248 0.330 -28 V held lo (12 V) 0.000	Vo (+28 V) 27.58 27.57 27.57 27.58 27.57 27.57 27.57 constant a Vo (+28 V) 27.55	Vo (12 V) 12.05 12.05 12.04 12.04 12.04 12.04 12.04 12.04 t full load Vo (12 V) 12.03	lo (+28 V) 0.089 0.089 0.089 0.089 0.089 0.089 0.089 265 VAC lo (+28 V) 0.893	lo (12 V) 0.000 0.033 0.083 0.165 0.248 0.330 +28 V held lo (12 V) 0.000	Vo (+28 V) 27.58 27.57 27.57 27.57 27.57 27.57 27.57 27.57 27.57 27.57 27.57	Vo (12 V) 12.05 12.05 12.04 12.04 12.04 12.04 12.03 full load Vo (12 V) 12.03
lo (+28 V) 0.089 0.089 0.089 0.089 0.089 0.089 90 VAC + lo (+28 V) 0.893 0.893	lo (12 V) 0.000 0.033 0.083 0.165 0.248 0.330 28 V held lo (12 V) 0.000 0.033	Vo (+28 V 27.57 27.57 27.57 27.57 27.57 27.57 27.57 constant a Vo (+28 V 27.55 27.56	Vo (12 V) 12.04 12.05 12.05 12.04 12.04 12.04 12.04 tfull load Vo (12 V) 12.04 12.04	lo (+28 V) 0.089 0.089 0.089 0.089 0.089 0.089 115 VAC lo (+28 V) 0.893 0.893	lo (12 V) 0.000 0.033 0.083 0.165 0.248 0.330 +28 V held lo (12 V) 0.000 0.033	Vo (+28 V) 27.58 27.58 27.57 27.57 27.57 27.57 27.57 constant at Vo (+28 V) 27.55 27.56	Vo (12 V) 12.05 12.05 12.05 12.04 12.04 12.04 12.04 full load Vo (12 V) 12.03 12.03	lo (+28 V) 0.089 0.089 0.089 0.089 0.089 0.089 0.089 230 VAC - lo (+28 V) 0.893 0.893	lo (12 V) 0.000 0.033 0.083 0.165 0.248 0.330 -28 V held lo (12 V) 0.000 0.033	Vo (+28 V) 27.58 27.57 27.57 27.58 27.57 27.57 27.57 constant a Vo (+28 V) 27.55 27.56	Vo (12 V) 12.05 12.05 12.04 12.04 12.04 12.04 12.04 12.04 Vo (12 V) 12.03 12.03	lo (+28 V) 0.089 0.089 0.089 0.089 0.089 265 VAC lo (+28 V) 0.893 0.893	lo (12 V) 0.000 0.033 0.083 0.165 0.248 0.330 +28 V held lo (12 V) 0.000 0.033	Vo (+28 V) 27.58 27.57 27.57 27.57 27.57 27.57 27.57 constant at Vo (+28 V) 27.55 27.56	Vo (12 V) 12.05 12.05 12.04 12.04 12.04 12.03 full load Vo (12 V) 12.03 12.03
lo (+28 V) 0.089 0.089 0.089 0.089 0.089 0.089 90 VAC + lo (+28 V) 0.893 0.893	lo (12 V) 0.000 0.033 0.083 0.165 0.248 0.330 28 V held lo (12 V) 0.000 0.033 0.083	Vo (+28 V 27.57 27.57 27.57 27.57 27.57 27.57 27.57 Constant a Vo (+28 V 27.55 27.56 27.56	Vo (12 V) 12.04 12.05 12.05 12.04 12.04 12.04 12.04 12.04 12.04 12.04 12.04 12.04 12.04 12.04 12.04 12.04	lo (+28 V) 0.089 0.08	lo (12 V) 0.000 0.033 0.083 0.165 0.248 0.330 +28 V held lo (12 V) 0.000 0.033 0.083	Vo (+28 V) 27.58 27.57 27.57 27.57 27.57 27.57 27.57 27.55 27.55 27.55 27.56 27.56	Vo (12 V) 12.05 12.05 12.04 12.04 12.04 12.04 12.04 12.04 Vo (12 V) 12.03 12.03 12.03 12.03	lo (+28 V) 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.893 0.893	lo (12 V) 0.000 0.033 0.083 0.165 0.248 0.330 -28 V held lo (12 V) 0.000 0.033 0.083	Vo (+28 V) 27.58 27.57 27.57 27.58 27.57 27.57 27.57 constant a Vo (+28 V) 27.55 27.55 27.56 27.56	Vo (12 V) 12.05 12.05 12.04 12.04 12.04 12.04 12.04 12.04 Vo (12 V) 12.03 12.03 12.04 12.04	lo (+28 V) 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.0893 0.893 0.893	Io (12 V) 0.000 0.033 0.083 0.165 0.248 0.330 +28 V held Io (12 V) 0.000 0.033 0.083	Vo (+28 V) 27.58 27.57 27.57 27.57 27.57 27.57 27.57 Vo (+28 V) 27.55 27.56 27.56	Vo (12 V) 12.05 12.05 12.04 12.04 12.04 12.03 full load Vo (12 V) 12.03 12.03 12.03 12.03
lo (+28 V) 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.893 0.893 0.893	lo (12 V) 0.000 0.033 0.083 0.165 0.248 0.330 28 V held lo (12 V) 0.000 0.033 0.083 0.165	Vo (+28 V 27.57 27.57 27.57 27.57 27.57 27.57 27.57 27.57 27.57 27.55 27.56 27.56 27.56 27.55	Vo (12 V) 12.04 12.05 12.05 12.04 12.04 12.04 12.04 12.04 12.04 12.04 12.04 12.04 12.04 12.04 12.04 12.04 12.04 12.05 12.04	lo (+28 V) 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.893 0.893 0.893	Io (12 V) 0.000 0.033 0.083 0.165 0.248 0.330 +28 V held Io (12 V) 0.000 0.033 0.033 0.033 0.033 0.033 0.165	Vo (+28 V) 27.58 27.57 27.57 27.57 27.57 27.57 27.57 constant at Vo (+28 V) 27.55 27.56 27.56 27.56	Vo (12 V) 12.05 12.05 12.05 12.04 12.04 12.04 12.04 12.04 12.03 12.03 12.03 12.03 12.03 12.03	lo (+28 V) 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.0893 0.893 0.893 0.893	lo (12 V) 0.000 0.033 0.083 0.165 0.248 0.330 -28 V held lo (12 V) 0.000 0.033 0.083 0.165	Vo (+28 V) 27.58 27.57 27.57 27.57 27.57 27.57 27.57 constant a Vo (+28 V) 27.55 27.56 27.56 27.56	Vo (12 V) 12.05 12.05 12.04 12.04 12.04 12.04 12.04 12.04 12.04 12.04 12.04 12.04 12.04 12.02 12.03 12.04 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.04	lo (+28 V) 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.0893 0.893 0.893 0.893	Io (12 V) 0.000 0.033 0.083 0.165 0.248 0.330 +28 V held Io (12 V) 0.000 0.033 0.033 0.033 0.033 0.0483 0.165	Vo (+28 V) 27.58 27.57 27.57 27.57 27.57 27.57 27.57 27.56 27.56 27.56 27.56 27.56	Vo (12 V) 12.05 12.05 12.04 12.04 12.04 12.03 full load Vo (12 V) 12.03 12.03 12.03 12.03 12.03
lo (+28 V) 0.089 0.089 0.089 0.089 0.089 0.089 90 VAC + lo (+28 V) 0.893 0.893	lo (12 V) 0.000 0.033 0.083 0.165 0.248 0.330 28 V held lo (12 V) 0.000 0.033 0.083	Vo (+28 V 27.57 27.57 27.57 27.57 27.57 27.57 27.57 27.57 27.55 27.56 27.56 27.55 27.56 27.55	Vo (12 V) 12.04 12.05 12.05 12.04 12.04 12.04 12.04 12.04 12.04 12.04 12.04 12.04 12.04 12.04 12.04 12.04	lo (+28 V) 0.089 0.08	lo (12 V) 0.000 0.033 0.083 0.165 0.248 0.330 +28 V held lo (12 V) 0.000 0.033 0.083	Vo (+28 V) 27.58 27.57 27.57 27.57 27.57 27.57 27.57 27.55 27.56 27.56 27.56 27.56 27.56 27.56	Vo (12 V) 12.05 12.05 12.04 12.04 12.04 12.04 12.04 12.04 Vo (12 V) 12.03 12.03 12.03 12.03	lo (+28 V) 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.893 0.893	lo (12 V) 0.000 0.033 0.083 0.165 0.248 0.330 -28 V held lo (12 V) 0.000 0.033 0.083	Vo (+28 V) 27.58 27.57 27.57 27.57 27.58 27.57 27.56 27.56 27.56 27.56 27.56 27.56 27.56	Vo (12 V) 12.05 12.04 12.04 12.04 12.04 12.04 12.04 Vo (12 V) 12.03 12.03 12.04 12.04 12.04 12.04 12.04 12.04 12.04 12.04 12.05 12.04 12.05 1	lo (+28 V) 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.0893 0.893 0.893	Io (12 V) 0.000 0.033 0.083 0.165 0.248 0.330 +28 V held Io (12 V) 0.000 0.033 0.033 0.165 0.248 0.1000 0.033 0.165 0.248	Vo (+28 V) 27.58 27.57 27.57 27.57 27.57 27.57 27.56 27.56 27.56 27.56 27.56 27.56	Vo (12 V) 12.05 12.05 12.04 12.04 12.04 12.03 full load Vo (12 V) 12.03 12.03 12.03 12.03 12.03 12.03

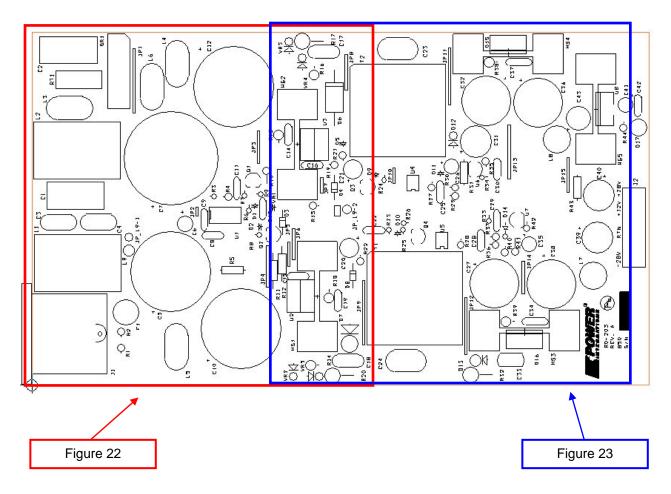

Table 1 – Cross Regulation Matrix Between +28 V and +12 V Outputs.


90 VAC	constant 8	9 mA Loa	d on -28 V	115 VAC	constant 8	9 mA Load	on -28 V	230 VAC	constant 8	9 mA Load	on -28 V	265 VAC	constant 8	9 mA Load	on -28 V
lo (+28 V)	lo (-28 V)	Vo (+28 V	Vo (-28 V)	lo (+28 V)	lo (-28 V)	Vo (+28 V)	Vo (-28 V)	lo (+28 V)	lo (-28 V)	Vo (+28 V)	Vo (-28 V)	lo (+28 V)	lo (-28 V)	Vo (+28 V)	Vo (-28 V)
0.000	0.089	27.57	-27.88	0.000	0.089	27.58	-27.88	0.000	0.089	27.58	-27.88	0.000		27.58	-27.88
0.089	0.089	27.57	-27.88	0.089	0.089	27.57	-27.88	0.089	0.089	27.57	-27.88	0.089	0.089	27.57	-27.88
0.223	0.089	27.57	-27.88	0.223	0.089	27.57	-27.88	0.223	0.089	27.57	-27.88	0.223	0.089	27.57	-27.88
0.447	0.089	27.56	-27.88	0.447	0.089	27.56	-27.88	0.447	0.089	27.57	-27.88	0.447	0.089	27.57	-27.88
0.670	0.089	27.55	-27.88	0.670	0.089	27.56	-27.88	0.670	0.089	27.56	-27.88	0.670			-27.88
0.893	0.089	27.55	-27.88	0.893	0.089	27.54	-27.88	0.893	0.089	27.55	-27.88	0.893	0.089	27.55	-27.88
90 VAC -	-28 V held	constant a	t full load	115 VAC	-28 V held	constant at	full load	230 VAC	28 V held	constant at	t full load	265 VAC	-28 V held	constant at	full load
lo (+28 V)	lo (-28 V)	Vo (+28 V	Vo (-28 V)	lo (+28 V)	lo (-28 V)	Vo (+28 V)	Vo (-28 V)	lo (+28 V)	lo (-28 V)	Vo (+28 V)	Vo (-28 V)	lo (+28 V)	lo (-28 V)	Vo (+28 V)	Vo (-28 V)
0.000		27.58	-27.78	0.000		27.58	-27.78		0.893		-27.77	0.000			-27.79
0.089	0.893	27.58	-27.78	0.089	0.893	27.58	-27.78	0.089	0.893	27.58	-27.77	0.089	0.893	27.58	-27.79
0.223	0.893	27.57	-27.78	0.223	0.893	27.58	-27.78	0.223	0.893	27.58	-27.77	0.223	0.893	27.58	-27.79
0.447	0.893	27.56	-27.78		0.893	27.57	-27.78	0.447	0.893	27.57	-27.77	0.447	0.893	27.57	-27.79
0.670	0.893	27.55	-27.77	0.670		27.56	-27.78	0.670	0.893	27.56	-27.78	0.670			-27.79
0.893	0.893	27.54	-27.76	0.893	0.893	27.55	-27.78	0.893	0.893	27.55	-27.78	0.893	0.893	27.55	-27.79
	constant 8) mA Load				9 mA Load				9 mA Load	
				lo (+28 V)		Vo (+28 V)				Vo (+28 V)				Vo (+28 V)	
0.089	0.000	27.58	-27.89	0.089	0.000	27.58	-27.89	0.089	0.000	27.58	-27.89	0.089		27.58	
0.089	0.089	27.58	-27.88	0.089	0.089	27.58	-27.88	0.089	0.089	27.58	-27.88	0.089		27.58	-27.88
0.089	0.223	27.58	-27.87	0.089	0.223	27.58	-27.87	0.089	0.223	27.58	-27.87	0.089		27.58	-27.87
0.089	0.447	27.58	-27.84	0.089	0.447	27.58	-27.84	0.089	0.447	27.58	-27.85	0.089	0.447	27.58	-27.85
0.089	0.670	27.58	-27.79	0.089	0.670	27.58	-27.8	0.089	0.670	27.58	-27.82	0.089	0.670	27.58	-27.82
0.089	0.893	27.58	-27.76	0.089	0.893	27.58	-27.79	0.089	0.893	27.57	-27.78	0.089	0.893	27.58	-27.79
	+28 V held					constant at				constant a				constant at	
lo (+28 V)	10 / 28 \/	Vo (+28 V	Vo (.28 V)	lo (+28 V)	lo (-28 V)	Vo (+28 V)	Vo (-28 V)	lo (+28 V)	lo (-28 V)	Vo (+28 V)				Vo (+28 V)	
															-27.89
0.893	0.000	27.55	-27.89	0.893	0.000	27.55	-27.89	0.893	0.000	27.55	-27.89	0.893			
0.893 0.893	0.000 0.089	27.55 27.55	-27.89 -27.88	0.893 0.893	0.089	27.55	-27.88	0.893	0.089	27.55	-27.88	0.893	0.089	27.55	-27.88
0.893 0.893 0.893	0.000 0.089 0.223	27.55 27.55 27.55	-27.89 -27.88 -27.87	0.893 0.893 0.893	0.089	27.55 27.55	-27.88 -27.87	0.893 0.893	0.089	27.55 27.55	-27.88 -27.87	0.893 0.893	0.089	27.55 27.55	-27.88 -27.87
0.893 0.893 0.893 0.893	0.000 0.089 0.223 0.447	27.55 27.55 27.55 27.54	-27.89 -27.88 -27.87 -27.84	0.893 0.893 0.893 0.893 0.893	0.089 0.223 0.447	27.55 27.55 27.55	-27.88 -27.87 -27.84	0.893 0.893 0.893	0.089 0.223 0.447	27.55 27.55 27.55	-27.88 -27.87 -27.85	0.893 0.893 0.893	0.089 0.223 0.447	27.55 27.55 27.55	-27.88 -27.87 -27.85
0.893 0.893 0.893	0.000 0.089 0.223	27.55 27.55 27.55	-27.89 -27.88 -27.87	0.893 0.893 0.893	0.089	27.55 27.55	-27.88 -27.87	0.893 0.893	0.089	27.55 27.55	-27.88 -27.87	0.893 0.893	0.089 0.223 0.447 0.670	27.55 27.55 27.55 27.55 27.55	-27.88 -27.87

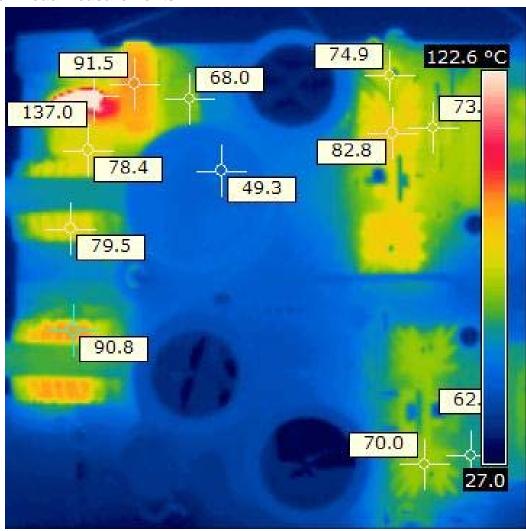

Table 2 – Cross Regulation Matrix Between +28 V and -28 V Outputs.

9.5 Power Delivery Capabilities




Figure 20 – Output Power Curve -28 V Supply, Room Temperature, 115 VAC.


Note: The overload response of the -28 V output will match that of the +28 V output provided that both outputs are loaded to the same levels simultaneously.


10 Thermal Performance

Thermal performance is shown in thermal images taken below. Snapshots were taken at worst case steady-state conditions. Thermal markers are placed on the images to note the temperatures of several key components. In order to increase resolution, primary and secondary sides were photographed separately with an overlap centering on the device heatsink. Please refer to Figure 21 below for an illustration of component locations in the thermal images.

10.1 Full Load Measurements

Figure 22 – Thermal Image of Primary Side, 40 °C Ambient Temperature, 90 VAC, Full Load, (Worst Steady State Conditions).

Note: The thermistor RT1 is measured at 137 °C in Figure 22 above. This is normal and does not violate the device specification. The maximum rated temperature for the device is 175 °C. The board has been designed to minimize heat coupling to nearby components.

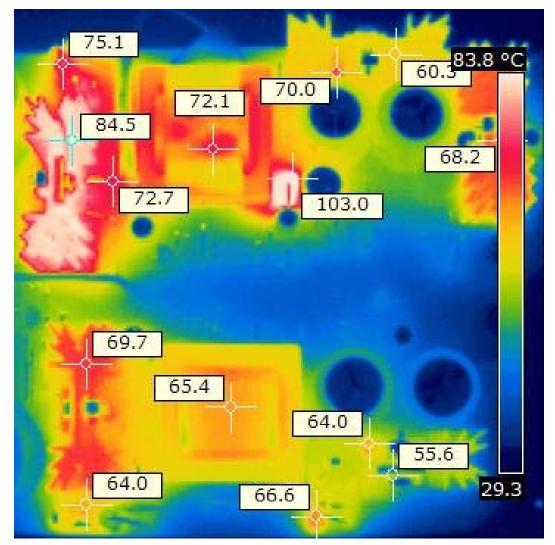
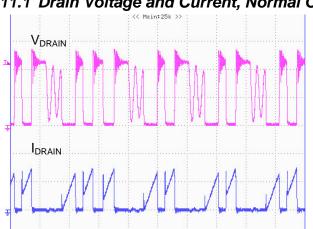



Figure 23 – Thermal Image of Secondary Side, 40 °C Ambient Temperature, 90 VAC, Full Load (Worst Steady State Conditions).

Page 36 of 57

11 Waveforms

11.1 Drain Voltage and Current, Normal Operation

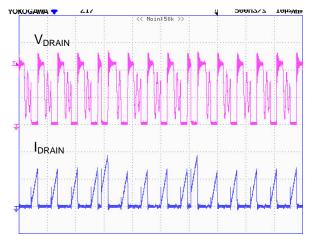


Figure 26 - 90 VAC, Full Load, -28 V Supply. Lower: I_{DRAIN}, 1 A / div. Upper: V_{DRAIN} , 100 V, 10 μ s / div.

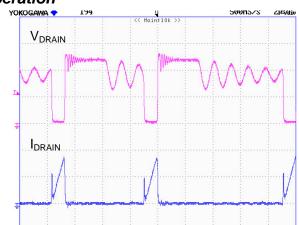


Figure 25 – 265 VAC, Full Load, +28 V Supply. Lower: I_{DRAIN}, 1 A / div. Upper: V_{DRAIN} , 200 V / div, 2 μ s / div.

Figure 27 - 265 VAC, Full Load, -28 V Supply. Lower: I_{DRAIN}, 1 A / div. Upper: V_{DRAIN} , 200 V / div, 2 μ s / div.

11.2 Output Voltage Start-up Profile

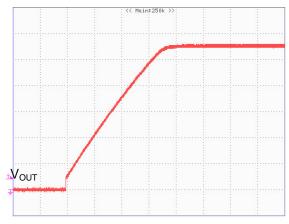


Figure 28 – Start-up Profile +28 V Output, 90VAC Full Load, 5 V, 50 ms / div.

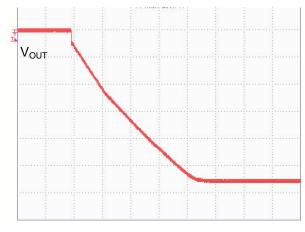


Figure 30 – Start-up Profile -28 V Output, 90 VAC Full Load, 5 V, 50 ms / div.

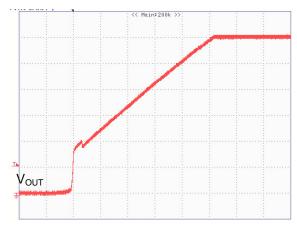


Figure 32 – Start-up Profile +12 V Output, 90VAC Full Load, 2 V, 20 ms / div.

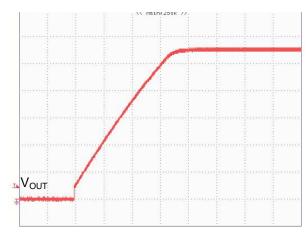


Figure 29 – Start-up Profile +28 V Output, 265 VAC Full Load, 5 V, 50 ms / div.

Figure 31 – Start-up Profile -28 V Output, 265 VAC Full Load, 5 V, 50 ms / div.

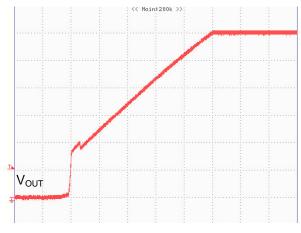
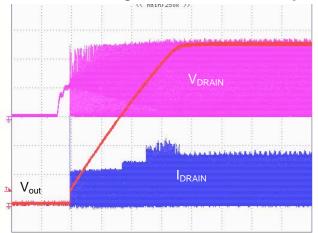
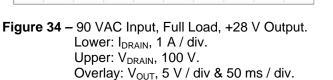




Figure 33 – Start-up Profile +12 V Output, 265 VAC Full Load, 2 V, 20 ms / div.

11.3 Drain Voltage and Current Start-up Profile

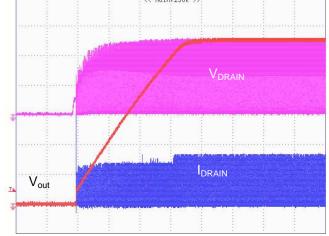
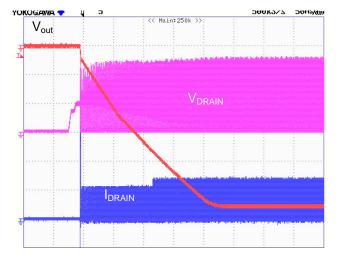



Figure 35 – 265 VAC Input, Full Load, +28 V Output. Lower: I_{DRAIN} , 1 A / div. Upper: V_{DRAIN} , 200 V. Overlay: V_{OUT} , 5 V / div & 50 ms / div.

 $\label{eq:Figure 36-90 VAC Input, Full Load, -28 V Output. Lower: I_{DRAIN}, 1 A / div. \\ Upper: V_{DRAIN}, 100 V. \\ Overlay: V_{OUT}, 5 V / div \& 50 ms / div. \\ \end{array}$

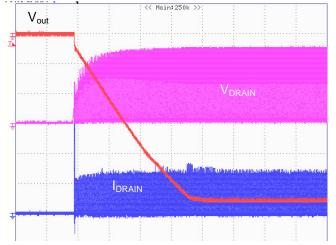


Figure 37 – 265 VAC Input, Full Load, -28 V Output. Lower: I_{DRAIN}, 1 A / div. Upper: V_{DRAIN}, 200 V. Overlay: V_{OUT}, 5 V / div & 50 ms / div.

11.4 Load Transient Response

In the figures shown below, signal averaging was used to better enable viewing the load transient response. The oscilloscope was triggered using the load current step as a trigger source. Since the switching and line frequency ripple on the DC Bus occur essentially at random with respect to the load transient, contributions to the output ripple from these sources will average out, leaving the contribution only from the load step response.

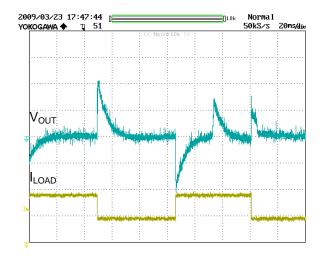


Figure 38 – Transient Response, 115 VAC, +28 V 50-100-50% Load Step. Top: Output Voltage, 20 mV / div. Bottom: Load Current, 500 mA / div, 20 ms / div. (See note below)

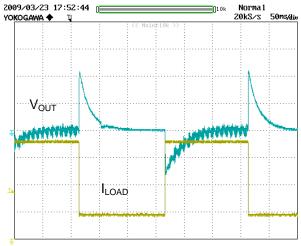


Figure 40 – Transient Response, 115 VAC, +28 V 100-Peak-100% Load Step. Top: Output Voltage, 200 mV / div. Bottom: Load Current, 1 A / div, 50 ms / div.

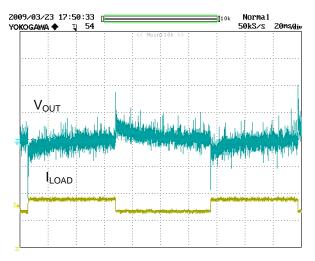


Figure 39 – Transient Response, 115 VAC, +28 V 75-100-75% Load Step Top: Output Voltage, 10 mV / div. Bottom: Load Current, 500 mA / div, 20 ms / div.

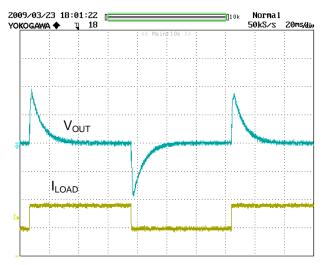


Figure 41 – Transient Response, 115 VAC, -28 V 50-100-50% Load Step. Top: Output Voltage, 50 mV / div. Bottom: Load Current, 500 mA / div, 20 ms / div.

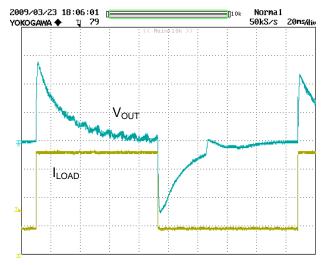


Figure 43 – Transient Response, 115 VAC, -28 V 100-Peak-100% Load Step. Top: Output Voltage, 200 mV / div. Bottom: Load Current, 1 A/div, 20 ms / div. (See note below)

Note: During transient load steps, the controller internal to the Peakswitch device U3, (U2) will adjust the primary current limit for optimum power delivery. This change in current limit will manifest as a fluctuation in output voltage as seen in Figures 38 and 43 above. This fluctuation occurs at random intervals as the controller adjusts the current limit to meet operating condition demands. The voltage variation does not violate acceptable regulation limits under any conditions.

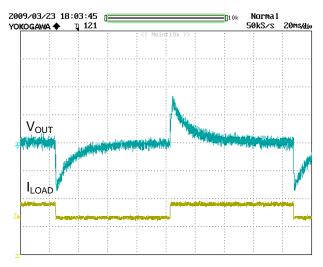


Figure 42 – Transient Response, 115 VAC, -28 V 75-100-75% Load Step Top: Output Voltage, 20 mV / div. Bottom: Load Current, 500 mA / div, 20 ms / div.

11.5 Output Ripple Measurements

11.5.1 Ripple Measurement Technique

For DC output ripple measurements, a modified oscilloscope test probe must be utilized in order to reduce spurious signals due to pickup. Details of the probe modification are provided in Figure 44 and Figure 45.

The 5125BA probe adapter is affixed with two capacitors tied in parallel across the probe tip. The capacitors include one (1) 0.1 μ F/50 V ceramic type and one (1) 1.0 μ F/50 V aluminum electrolytic. *The aluminum electrolytic type capacitor is polarized, so proper polarity across DC outputs must be maintained (see below).*

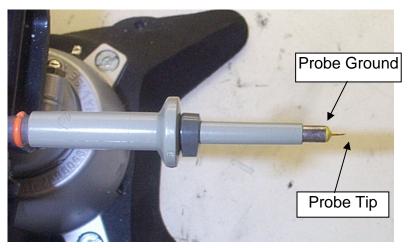


Figure 44 – Oscilloscope Probe Prepared for Ripple Measurement. (End Cap and Ground Lead Removed)

Figure 45 – Oscilloscope Probe with Probe Master 5125BA BNC Adapter. (Modified with wires for probe ground for ripple measurement, and two parallel decoupling capacitors added)

11.5.2 Measurement Results - 28 V Positive

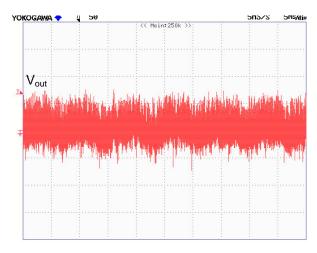


Figure 46 – +28 V Ripple, 90 VAC, 889 mA Load. 5 ms, 5 mV / div.

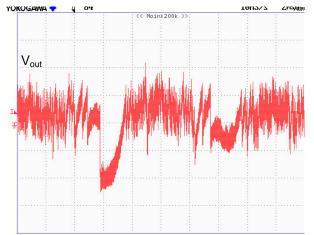


Figure 48 – +28 V Ripple, 90 VAC, 3.57 A Load on Both Outputs. 2 ms, 20 mV /div.

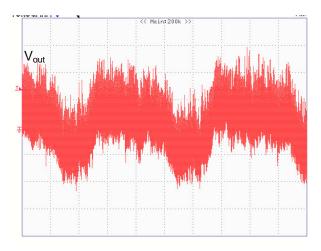
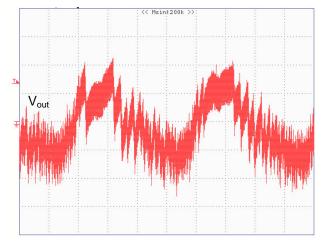



Figure 47 – +28 V Ripple, 90 VAC, 675 mA Load. 2 ms, 5 mV / div.

11.5.3 Measurement Results – 28 V Negative

Figure 49 – -28 V Ripple, 90 VAC, 889 mA Load. 2 ms, 5 mV / div.

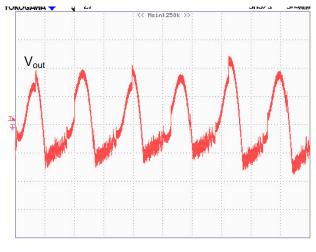


Figure 51 – -28 V Ripple, 90 VAC, 3.57 A Load. 5 ms, 50 mV /div.

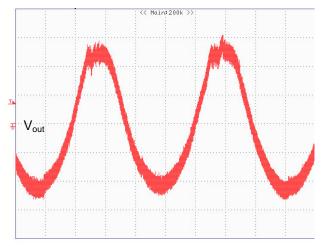
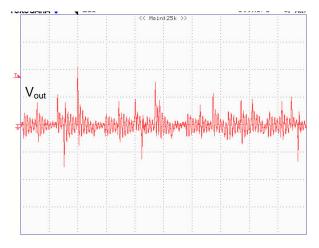



Figure 50 – -28 V Ripple, 90 VAC, 856 mA Load. 2 ms, 10 mV / div.

11.5.4 Measurement Results - 12 V

Figure 52 – +12 V Ripple, 90 VAC, 333 mA Load (889 mA on Main) 5 μs, 20 mV / div.

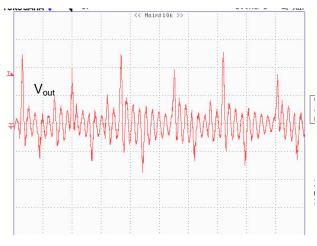


Figure 53 – +12 V Ripple, 90 VAC, 333 mA Load. (3.57 A load on Main) 2 µs, 20 mV / div.

12 Non-Linear Loading

A sinusoidal pulse load was applied to the power supply output to simulate the loading of an audio amplifier. The loading was applied as a half-wave rectified sinusoid with a frequency of 10 Hz. Output voltage ripple was monitored during this test and it was confirmed that voltage did not droop below acceptable levels.

12.1 Measurement Results – 28 V Positive

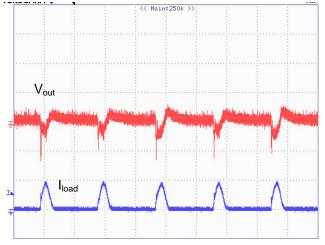


Figure 54 – +28 V Sine Load, 115 VAC, 444 mA Load. Upper: Output Voltage, 20 mV / div. Lower: Load Current, 500 mA / div & 50 ms / div.

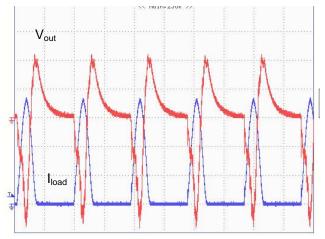


Figure 56 – +28 V Sine Load, 115 VAC, 3.57 A Load. Upper: Output Voltage, 50 mV / div. Lower: Load Current, 1 A / div & 50 ms / div.

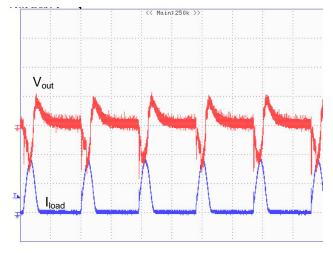
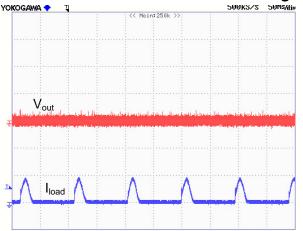
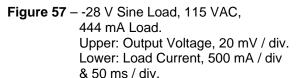
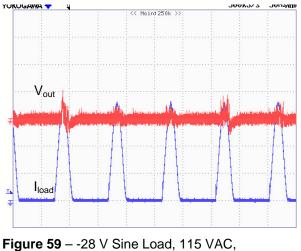





Figure 55 – +28 V Sine Load, 115 VAC, 889 mA Load. Upper: Output Voltage, 20 mV / div. Lower: Load Current, 500 mA / div & 50 ms / div.

12.2 Measurement Results – 28 V Negative

3.57 A Load. Upper: Output Voltage, 20 mV / div. Lower: Load Current, 1 A / div & 50 ms / div.

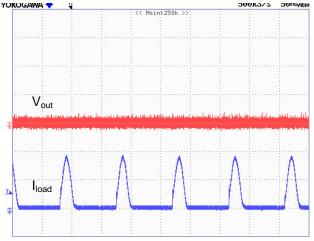
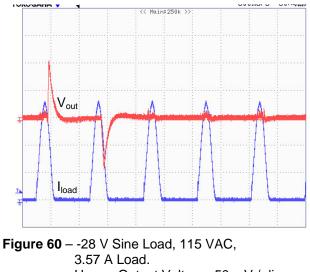



Figure 58 – -28 V Sine Load, 115 VAC, 889 mA Load. Upper: Output Voltage, 20 mV / div. Lower: Load Current, 500 mA / div & 50 ms / div.

3.57 A Load. Upper: Output Voltage, 50 mV / div. Lower: Load Current, 1 A / div & 50 ms / div. *(See note below)*

Note: During transient loading, the controller internal to the PeakSwitch device U3 (U2) will adjust the primary current limit for optimum power delivery. This change in current limit will manifest as a fluctuation in output voltage as seen in Figure 60 above. This fluctuation occurs at random intervals as the controller adjusts the current limit to meet operating condition demands. The voltage variation does not violate acceptable regulation limits under any conditions.

13 Line Surge

Differential input line 1.2/50 μ s surge testing was completed on a single test unit to IEC61000-4-5. Input voltage was set at 230 VAC / 60 Hz. Output was loaded at full load and operation was verified following each surge event.

Surge Level (V)	Input Voltage (VAC)	Injection Location	Injection Phase (°)	Test Result (Pass/Fail)
+250	230	L to N	90	Pass
-250	230	L to N	90	Pass
+500	230	L to N	90	Pass
-500	230	L to N	90	Pass
+750	230	L to N	90	Pass
-750	230	L to N	90	Pass
+1000	230	L to N	90	Pass
-1000	230	L to N	90	Pass
+1000	230	L,N to GND	90	Pass
-1000	230	L,N to GND	90	Pass
+2000	230	L,N to GND	90	Pass
-2000	230	L,N to GND	90	Pass

Unit passes under all test conditions.

14 Conducted EMI

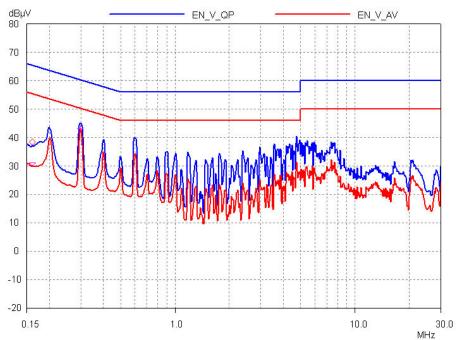


Figure 61 – Conducted EMI, Line Scan, Maximum Steady State Load, 115 VAC, 60 Hz, EN55022 B Limits, Output Return Floating.

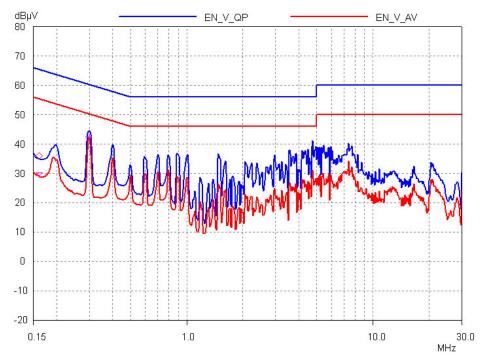


Figure 62 – Conducted EMI, Neutral Scan, Maximum Steady State Load, 115 VAC, 60 Hz, EN55022 B Limits, Output Return Floating.

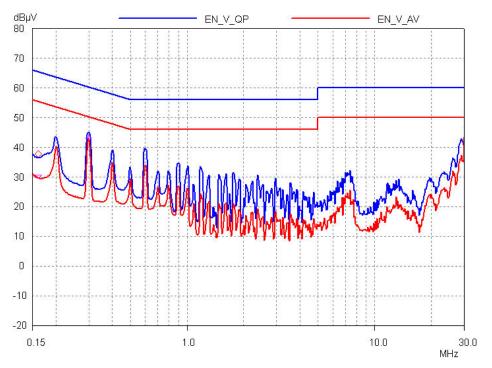


Figure 63 — Conducted EMI, Line Scan, Maximum Steady State Load, 115 VAC, 60 Hz, EN55022 B Limits, Output Return Earth Grounded.

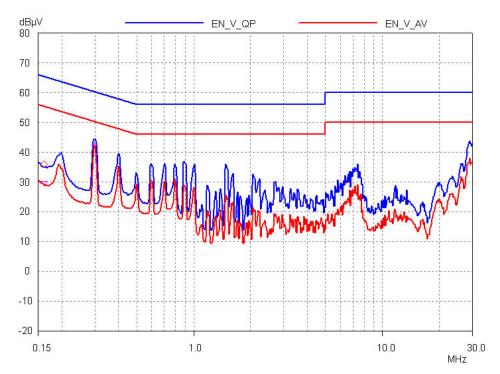


Figure 64 – Conducted EMI, Neutral Scan, Maximum Steady State Load, 115 VAC, 60 Hz, EN55022 B Limits, Output Return Earth Grounded.

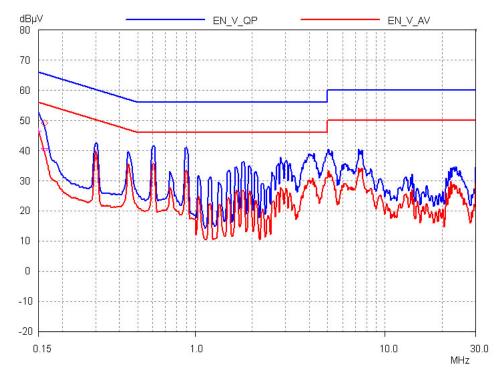


Figure 65 — Conducted EMI, Line Scan, Maximum Steady State Load, 230 VAC, 60 Hz, EN55022 B Limits, Output Return Floating.

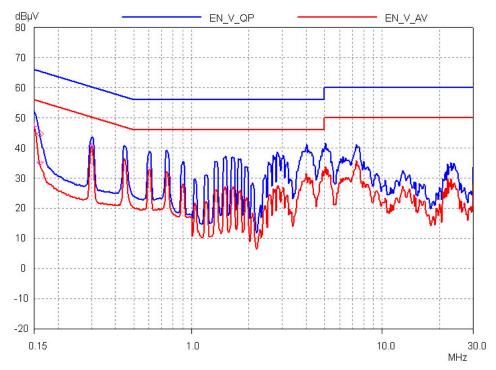


Figure 66 – Conducted EMI, Neutral Scan, Maximum Steady State Load, 230 VAC, 60 Hz, EN55022 B Limits, Output Return Floating.

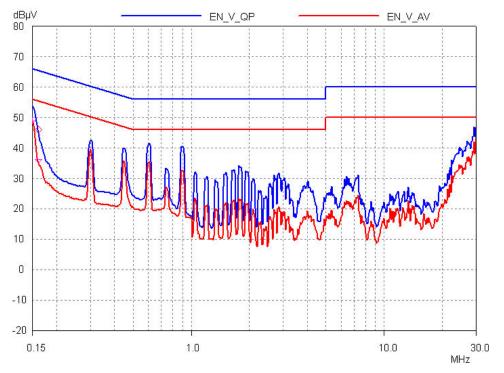
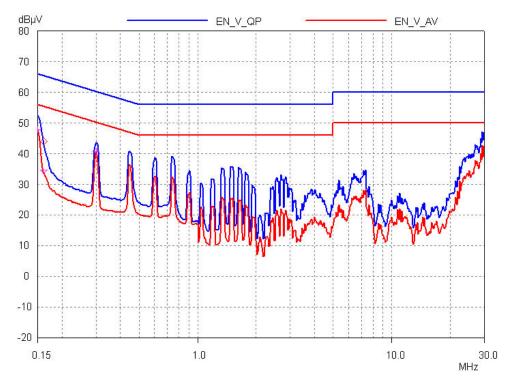
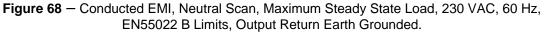




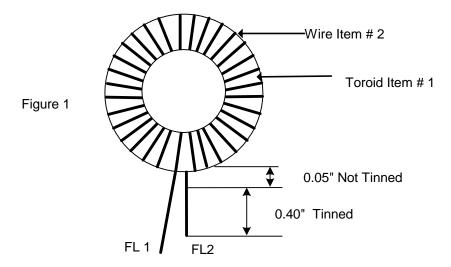
Figure 67 – Conducted EMI, Line Scan, Maximum Steady State Load, 230 VAC, 60 Hz, EN55022 B Limits, Output Return Earth Grounded.

15 Appendix A – Differential Mode Inductor

15.1 TOROIDAL FILTER INDUCTOR (L3, L4, L5 & L6)

FLECTRICAL SPECIFICATIONS

LLECTRICAL OF LCIFICATIONS.				
Inductance	Measured at 100KHz	70.0 uH min.		
	with 0.4 Vrms signal			


MATERIALS:

Item	Description			
[1]	Core: Powder IronToroid Micrometals T50-26 or equivalent Epoxy coated			
	(available from Lodestone Pacific)			
[2]	Magnet Wire: #25 AWG Heavy Nyleze			

COIL WINDING INSTRUCTION:

Use item [2]. Wind 48 turns; spread evenly around circumference of the core, as illustrated in Figure 1.

ILLUSTRATION:

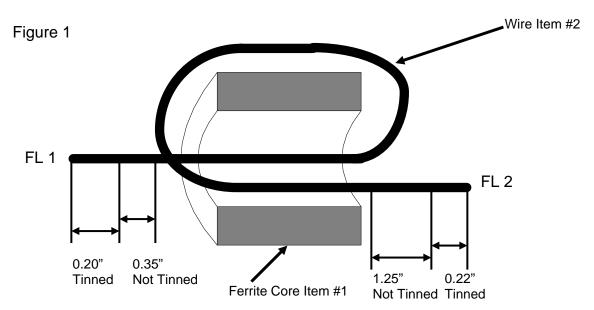
16 Appendix B – Common Mode Inductor

16.1 FERRITE BEAD CHOKE (L9)

5T # 20AWG

ELECTRICAL SPECIFICATIONS:

Inductance	Measured at 100KHz with 0.4	45 uH min.
	Vrms signal	


MATERIALS:

Item	Description		
[1]	Core: Fair-Rite Part # 2643023002, 43 Shield Bead		
[2]	Copper Strand Wire: #20 AWG TFE Teflon Insulated Hook-up Wire, Earth Return, UL 1180 rated earth return wire, Green/Yellow Striped		

COIL WINDING INSTRUCTION:

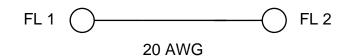
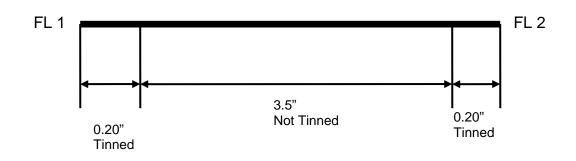

Use item [2]. Wind 5 turns around ferrite bead, as illustrated in Figure 1.

ILLUSTRATION:

17 Appendix C – Earth Return Jumper (JP_L9)



MATERIALS:

Item	Description		
[1]	Copper Strand Wire: #20 AWG TFE Teflon Insulated Hook-up Wire, Earth		
	Return, UL 1180 rated earth return wire, Green/Yellow Striped		

ILLUSTRATION:

18 Revision History

Date	Author	Revision	Description & changes	Reviewed
07-Apr-09	Apps	1.0	Initial Release	

For the latest updates, visit our website: www.powerint.com

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

PATENT INFORMATION

The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.

The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, PeakSwitch, EcoSmart, Clampless, E-Shield, Filterfuse, StackFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©Copyright 2008 Power Integrations, Inc.

Power Integrations Worldwide Sales Support Locations

WORLD HEADQUARTERS

5245 Hellyer Avenue San Jose, CA 95138, USA. Main: +1-408-414-9200 Customer Service: Phone: +1-408-414-9665 Fax: +1-408-414-9765 *e-mail: usasales@powerint.com*

CHINA (SHANGHAI)

Rm 1601/1610, Tower 1, Kerry Everbright City No. 218 Tianmu Road West, Shanghai, P.R.C. 200070 Phone: +86-21-6354-6323 Fax: +86-21-6354-6325 *e-mail: chinasales*@powerint.com

CHINA (SHENZHEN)

Rm A, B & C 4th Floor, Block C, Electronics Science and Technology Building, 2070 Shennan Zhong Rd, Shenzhen, Guangdong, China, 518031 Phone: +86-755-8379-3243 Fax: +86-755-8379-5828 *e-mail: chinasales*@powerint.com

GERMANY

Rueckertstrasse 3 D-80336, Munich Germany Phone: +49-89-5527-3911 Fax: +49-89-5527-3920 *e-mail: eurosales@powerint.com*

INDIA

#1, 14th Main Road Vasanthanagar Bangalore-560052 India Phone: +91-80-41138020 Fax: +91-80-41138023 *e-mail: indiasales @powerint.com*

ITALY

Via De Amicis 2 20091 Bresso MI – Italy Phone: +39-028-928-6000 Fax: +39-028-928-6009 *e-mail: eurosales@powerint.com*

JAPAN

Kosei Dai-3 Bldg., 2-12-11, Shin-Yokohama, Kohoku-ku, Yokohama-shi, Kanagawa 222-0033 Phone: +81-45-471-1021 Fax: +81-45-471-3717 *e-mail: japansales*@powerint.com

KOREA

RM 602, 6FL Korea City Air Terminal B/D, 159-6 Samsung-Dong, Kangnam-Gu, Seoul, 135-728, Korea Phone: +82-2-2016-6610 Fax: +82-2-2016-6630 *e-mail:* koreasales@powerint.com

SINGAPORE

51 Newton Road, #15-08/10 Goldhill Plaza, Singapore, 308900 Phone: +65-6358-2160 Fax: +65-6358-2015 *e-mail:* singaporesales@powerint.com

TAIWAN

5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu Dist. Taipei, Taiwan 114, R.O.C. Phone: +886-2-2659-4570 Fax: +886-2-2659-4550 *e-mail: taiwansales@powerint.com*

UNITED KINGDOM

1st Floor, St. James's House East Street, Farnham Surrey, GU9 7TJ United Kingdom Phone: +44 (0) 1252-730-141 Fax: +44 (0) 1252-727-689 *e-mail: eurosales* @powerint.com

APPLICATIONS HOTLINE World Wide +1-408-414-9660

APPLICATIONS FAX World Wide +1-408-414-9760

