SPECIFICATION

SPEC. No. A-150°C-a

D A T E : 2013 Sep.

То

Non-Controlled Copy

CUSTOMER'S PRODUCT NAME

TDK PRODUCT NAME

MULTILAYER CERAMIC CHIP CAPACITORS

CGA Series / Automotive Grade

High Temperature Application

Please return this specification to TDK representatives.

If orders are placed without returned specification, please allow us to judge that specification is accepted by your side.

RECEIPT CONFIRMATION

DATE: YEAR MONTH DAY

TDK Corporation
Sales
Electronic Components
Sales & Marketing Group

TDK-EPC Corporation

Engineering

Ceramic Capacitors Business Group

APPROVED	Person in charge

APPROVED	CHECKED	Person in charge

1. SCOPE

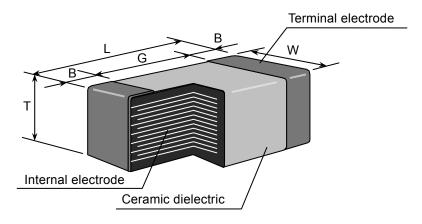
This specification is applicable to chip type multilayer ceramic capacitors with a priority over the other relevant specifications.

Production places defined in this specification shall be TDK-EPC Corporation Japan,

TDK (Suzhou) Co., Ltd and TDK Components U.S.A. Inc.

EXPLANATORY NOTE:

This specification warrants the quality of the ceramic chip capacitor. The chips should be evaluated or confirmed a state of mounted on your product.


If the use of the chips go beyond the bounds of the specification, we can not afford to guarantee.

2. CODE CONSTRUCTION

(Example)

Catalog Number :	CGA3	<u>E</u>	<u>2</u>	<u> X8R</u>	<u>1 E</u>	<u>104</u>	<u>K</u>	<u>080</u>	<u>A</u>	<u>A</u>
(Web)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Item Description :	<u>CGA3</u>	<u>E</u> (2)	<u>2</u> (3)	X8R (4)	<u>1 E</u> (5)	<u>104</u> (6)	<u>K</u> (7)	<u>T</u> (11)	<u>xxxx</u> (12)	

(1)Type

Please refer to product list for the dimension of each product.

(2) Thickness

* As for dimension tolerance, please contact with our sales representative.

Thickness	Dimension(mm)
В	0.50
С	0.60
E	0.80
F	0.85
Н	1.15
J	1.25
L	1.60
М	2.00
N	2.30
Р	2.50
R	3.20

(3) Voltage condition in the life test (Max. operating Temp./1000h)

Sign	Condition
1	Rated Voltage x 1
2	Rated Voltage x 2
3	Rated Voltage x 1.5
4	Rated Voltage x 1.2

- (4) Temperature Characteristics (Details are shown in table 1 No.7 and No.8 at page 5)
- (5) Rated Voltage

Symbol	Rated Voltage
2 A	DC 100 V
1 H	DC 50 V
1 E	DC 25 V
1 C	DC 16 V

(6) Rated Capacitance

Stated in three digits and in units of pico farads (pF). The first and second digits identify the first and second significant figures of the Capacitance, the third digit identifies the multiplier.

Example 104 → 100,000pF

(7) Capacitance tolerance

Symbol	Tolerance	Capacitance
С	± 0.25 pF	10pE and under
D	± 0.5 pF	10pF and under
J	± 5%	
K	± 10 %	Over 10pF
М	± 20 %	

- (8) Thickness code (Only Catalog Number)
- (9) Package code (Only Catalog Number)
- (10) Special code (Only Catalog Number)
- (11) Packaging (Only Item Description)
 (Bulk is not applicable for CGA2 type.)

Symbol	Packaging
В	Bulk
Т	Taping

(12) Internal code (Only Item Description)

3. RATED CAPACITANCE AND TOLERANCE

3.1 Standard combination of rated capacitance and tolerances

Class	Temperature Characteristics	Capacitar	nce tolerance	Rated capacitance	
2		10pF and	C (±0.25pF)	1, 1.5, 2, 2.2, 3, 3.3, 4, 4.7, 5	
		under	D (±0.5pF)	6, 6.8, 7, 8, 9, 10	
	NP0	12pF to 10,000pF	J (± 5%)	E – 12 series	
		Over 10,000pF	3 (± 3 %)	E – 6 series	
	X8R	0.1µF and under	K (± 10 %)	E – 6 series	
		Over 0.1uF			

3.2 Capacitance Step in E series

E series		Capacitance Step										
E- 6	1	1.0 1.5 2.2 3.3 4.7 6.8					.8					
E-12	1.0	1.2	1.5	1.8	2.2	2.7	3.3	3.9	4.7	5.6	6.8	8.2

4. OPERATING TEMPERATURE RANGE

T.C.	Min. operating Temperature				
NP0 X8R	-55°C	150°C	25°C		

5. STORING CONDITION AND TERM

5 to 40°C at 20 to 70%RH

6 months Max.

6. P.C.BOARD

When mounting on an aluminum substrate, large case sizes such as CGA6, CGA8 and CGA9 types are more likely to be affected by heat stress from the substrate. Please inquire separate specification for the large case sizes when mounted on the substrate.

7. INDUSTRIAL WASTE DISPOSAL

Dispose this product as industrial waste in accordance with the Industrial Waste Law.

8. PERFORMANCE

table 1

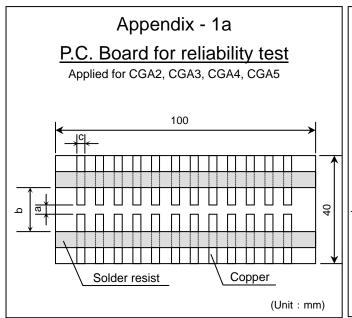
No.	Item	Perfor	mance	Test or inspection method					
1	External Appearance	No defects which performance.	may affect	Inspect with magnifying glass(3×)					
2	Insulation Resistance	10,000M Ω or 500l (As for the capacity voltage 16V DC at 10,000 M Ω or 100 whichever smaller	tors of rated nd the item below, MΩ·μF min.,)	Apply ra	ted voltag	e for 60s.			
3	Voltage Proof	Withstand test vol insulation breakdo damage.		C	lass	Apply vol	tage		
				CI	ass1	3 × rated vo	oltage		
				CI	ass2	2.5 × rated \	/oltage		
			Above D 1 to 5s. Charge exceed						
4	Capacitance	Within the specifie	ed tolerance.		Rated	Measuring	Measuring		
				Class	Capacitance		voltage		
				Class1	1,000pF and under	1MHz±10%	0.5-5 Vrms.		
					Over 1,000pf	1kHz±10%			
				Class2	10uF and under	1kHz±10%	1.0±0.2Vms.		
					Over 10uF	120Hz±20%	0.5±0.2Vms.		
5	Q			measuri our sale	ng voltage s represer	nich product , please cor ntative.	ntact with		
-	(Class1)	Rated Capacitance	Q	conditio			g		
		30pF and over	1,000 min.						
		Under 30pF	400+20×C min.						
		C : Rated capacita	ance (pF)						
6	Dissipation Factor (Class2)			See No.		ble for mea	suring		
	(3/4002)	1.C. D.F.		For information which product has which					
		X8R	0.03 max. 0.05 max.	Dissipat		, please con			

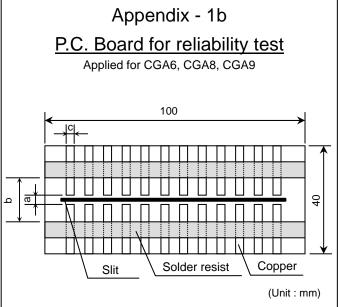
(continued)

No.	Item	Performance		Test or inspection method		
7	Temperature Characteristics of Capacitance (Class1)	T.C.	Temperature Coefficient (ppm/°C) 0 ± 30	Temperature coefficient shall be calculated based on values at 25°C and 85°C temperature.		
		Capacitan	l ace drift 0.2% or ±0.05pF,	Measuring temperature below 20°C shabe -10°C and -25°C.		
8	Temperature Characteristics of Capacitance (Class2)		acitance Change (%) No voltage applied	Capacitance shall be measured by the steps shown in the following table after thermal equilibrium is obtained for each step. ΔC be calculated ref. STEP3 reading		
			X8R: ±15	Step Temperature(°C) 1 Reference temp. ± 2 2 Min. operating temp. ± 3 3 Reference temp. ± 2 4 Max. operating temp. ± 2 For information which product has which applied voltage, please contact with our sales representative.		
9	Robustness of Terminations	off, break	f termination coming age of ceramic, or ormal signs.	Reflow solder the capacitor on a P.C.Board shown in Appendix1a and 1b and apply a pushing force of 17.7N with 10±1s. (2N is applied for CGA2 type) Pushing force P.C.Board		
10	Bending	No mecha	anical damage.	Reflow solder the capacitor on a P.C.Board shown in Appendix 2a and 2b and Bend it for 2mm. (1mm is applied for 0.85mm thickness of Class2 items.)		

(cont	continued)								
No.		em	Perfo	ormance	Test or inspection method				
11	Solderabilit	у	termination. 25% may have spots but not co spot. Ceramic surfactshall not be exp		Completely soak both terminations in solder at 235±5°C for 2±0.5s. Solder: H63A(JIS Z 3282) Flux: Isopropyl alcohol(JIS K 8839)				
12	Resistance	External	No cracks are	allowed and	Completely soak both terminations in				
	to solder heat	appearance	terminations shateleast 60% with	nall be covered at	solder at 260±5°C for 5±1s.				
	Heat	Capacitance	least 00 /0 With	new solder.	Preheating condition				
			Characteristics	Change from the value before test	Temp.: 150±10°C Time : 1∼2min.				
			NP0	Capacitance drift within ± 2.5% or ± 0.25pF, whichever larger.	Flux : Isopropyl alcohol(JIS K 8839) Rosin(JIS K 5902) 25% solid solution.				
			X8R	± 7.5 %	Solder : H63A(JIS Z 3282)				
		Q			Leave the capacitors in ambient				
		(Class1)	Capacitance	Q	condition for 48±4h before				
			30pF and over	r 1,000 min.	measurement.				
			Under 30pF	400+20×C min.					
			C : Rated capa	citance (pF)					
		D.F. (Class2)	Meet the initial	spec.					
		Insulation	Meet the initial	spec.					
		Resistance Voltage		reakdown or other					
13	Vibration	proof External	damage. No mechanical	damage.	Reflow solder the capacitors on a				
		appearance			P.C.Board shown in Appendix 1				
		Capacitance		Change from the	before testing.				
			Characteristics	value before test	Vibrate the capacitor with following conditions.				
			NP0	Capacitance drift within ± 2.5% or ± 0.25pF, whichever larger.	Applied force : 5G max. Frequency : 10-2000Hz				
			X8R	± 7.5 %	Duration : 20 min.				
					Cycle: 12 cycles in each 3 mutually perpendicular directions.				
		Q (Class1)	Consoitance						
			Capacitance	Q 1,000 min.					
			30pF and over						
			Under 30pF C : Rated capa	400+20×C min.					
		D.F.	Meet the initial						
		(Class2)	wicet the lilital	<u> </u>					

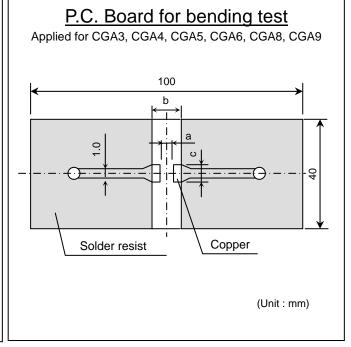
(continued)


(con	tinued)		1			•			
No.	Ite	em	Perf	fori	mance	Test or inspection method			
14	Temperature cycle	External appearance	No mechanical damage.			Reflow solder the capacitors on a P.C.Board shown in Appendix 1 before testing.			
		Capacitance	Characteristics	,	Change from the value before test apacitance drift	Expose the capacitors in the condition step1 through 4 and repeat 1,000			
			NP0	W ±	ithin ± 2.5% or 0.25pF, hichever larger.	Lea	times consecutively. Leave the capacitors in ambient condition for 48±4h before		
			X8R		± 7.5 %	mea	asurer	ment.	
		Q	Conscitones			-	Step	Temperature(°C)	Time(min.)
		(Class1)	Capacitance		Q 4.000 min	-	1	Min. operating	30±3
			30pF and ove)	1,000 min.	=		temp. ± 3 Reference temp.	
			Under 30pF		400+20×C min.		2	per para.4.	2~5
		D.F.	C : Rated capa			-	3	Max. operating temp. ± 2	30±2
		(Class2)	Meet the initial			<u>-</u>	4	Reference temp. per para.4.	2~5
		Insulation Resistance	Meet the initial			per parar.			
		Voltage proof	No insulation I damage.	bre	eakdown or other				
15	Moisture Resistance (Steady	External appearance	No mechanical damage.		Reflow solder the capacitors on a P.C.Board shown in Appendix 1 before testing.				
	State)	Capacitance			Change from the	Lea	ve at	temperature 40±2°	°C, 90 to
			NP0	V ±	value before test Capacitance drift within ± 5% or ± 0.5pF, whichever larger.	Lea con	ve the	or 500 +24,0h. e capacitors in amb for 48±4h before ment.	pient
			X8R		± 12.5 %				
		Q	Capacitance	,	Q				
		(Class1)	30pF and ove		350 and over				
			10pF and ov to under 30pF		275+5/2×C min.				
			Under 10pF		200+10×C min.				
			C : Rated capacitance (pF)		tance (pF)				
		D.F. (Class2)	200% of initial spec max.						
		Insulation Resistance	1,000MΩ or 50MΩ·μF min. (As for the capacitors of rated voltage 16V DC and the item below, 1,000 MΩ or 10MΩ·μF min.,) whichever smaller.		itors of rated and the item or 10MΩ·μF				


(continued)

No.		em		ormance	Test or inspection method				
16	Moisture Resistance	External appearance Capacitance	No mechanical	damage.	Reflow solder the capacitors on a P.C.Board shown in Appendix 1 before testing.				
		Сараска	Characteristics	Change from the value before test	Apply the rated voltage at				
						NP0 Capacitance drift within ± 7.5% or ± 0.75pF,	within ± 7.5% or	temperature 85°C and 85%RH for 1,000 +48,0h.	
			X8R	± 12.5 %	Charge/discharge current shall not exceed 50mA.				
		Q (Class1)			Leave the capacitors in ambient				
		(010001)	Capacitance	Q	condition for 6 to 24h (Class1) or 24±2h (Class2) before measuremen				
			30pF and over	200 and over	· · · · · · · · · · · · · · · · · · ·				
			Under 30pF	100+10/3×C min.	Voltage conditioning (only for class2				
			C : Rated capa	citance (pF)	Voltage treat the capacitor under testing temperature and voltage for				
		D.F.	200% of initial s	spec max.	1hour.				
		(Class2) Insulation	500MΩ or 25MΩ	Jul Emin	Leave the capacitors in ambient				
		Resistance	(As for the capa voltage 16V DC	icitors of rated and item or 5MΩ·μF min.,)	condition for 24±2h before measurement. Use this measurement for initial value.				
17	Life	External	No mechanical		Reflow solder the capacitors on a				
		appearance			P.C.Board shown in Appendix 1				
		Capacitance	Characteristics	Change from the	before testing.				
									value before test Capacitance drift within ±3% or
			NP0	± 0.3pF,	Applied voltage				
				whichever larger.	Rated voltage x2				
			X8R	± 15 %	Rated voltage x1.5				
					Rated voltage x1.2				
		Q			Rated voltage x1				
		(Class1)	Capacitance	Q	For information which product has which applied voltage, please conta				
			30pF and over	350 and over	with our sales representative.				
			10pF and over tunder 30pF	275+5/2×C min.	Charge/discharge current shall not				
			Under 10pF	200+10×C min.	exceed 50mA.				
			C : Rated capa	citance (pF)	Leave the capacitors in ambient				
		D.F. (Class2)	200% of initial spec max.		Leave the capacitors in ambient condition for 6 to 24h (Class1) or 24±2h (Class2) before measuremen				
		Insulation	1,000MΩ or 50ľ						
		Resistance	(As for the capacitors of rated voltage 16V DC and the item below, 1,000 MΩ or 10MΩ·μF min.,) whichever smaller.		Voltage conditioning (only for class: Voltage treat the capacitor under testing temperature and voltage for 1hour.				
					Leave the capacitors in ambient condition for 24±2h before measurement. Use this measurement for initial value.				

^{*}As for the initial measurement of capacitors on number 8,12,13,14 and 15, leave capacitors at 150 -10,0°C for 1h and measure the value after leaving capacitors for 48±4h in ambient condition.



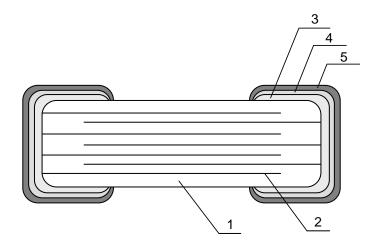
Appendix - 2b

Appendix - 2a P.C. Board for bending test Applied for CGA2

Material: Glass Epoxy (As per JIS C6484 GE4)

P.C. Board thickness : Appendix-2a 0.8mm

Appendix-1a, 1b, 2b 1.6mm


Copper (thickness 0.035mm)

Solder resist

Dimensions (mm)					
а	b	С			
0.4	1.5	0.5			
1.0	3.0	1.2			
1.2	4.0	1.65			
2.2	5.0	2.0			
2.2	5.0	2.9			
3.5	7.0	3.7			
4.5	8.0	5.6			
	a 0.4 1.0 1.2 2.2 2.2 3.5	a b 0.4 1.5 1.0 3.0 1.2 4.0 2.2 5.0 2.2 5.0 3.5 7.0			

9. INSIDE STRUCTURE AND MATERIAL

No.	NAME	MATERIAL				
NO.	INAIVIE	Class1	Class2			
1	Dielectric	CaZrO ₃	BaTiO ₃			
2	Electrode	Nickel (Ni)				
3		Сорре	er (Cu)			
4	Termination	Nickel (Ni)				
5		Tin (Sn)				

10. RECOMMENDATION

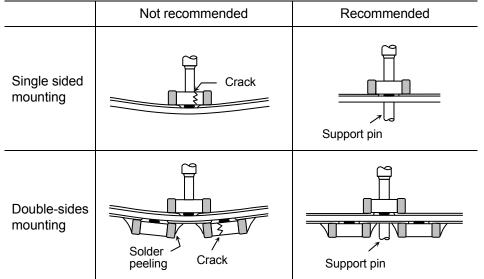
As for CGA6, CGA8 and CGA9 type, It is recommended to provide a slit (about 1mm wide) in the board under the components to improve washing Flux. And please make sure to dry detergent up completely before.

11. SOLDERING CONDITION

As for CGA2, CGA6, CGA8 and CGA9 types, reflow soldering only.

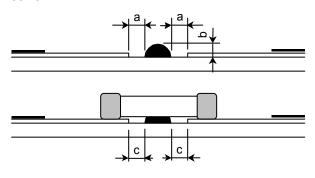
12. Caution

No.	Process	Condition
1	Operating Condition (Storage,	 1-1. Storage 1) The capacitors must be stored in an ambient temperature of 5 to 40°C with a relative humidity of 20 to 70%RH. The products should be used within 6 months upon receipt.
	Transportation)	2) The capacitors must be operated and stored in an environment free of dew condensation and these gases such as Hydrogen Sulphide, Hydrogen Sulphate, Chlorine, Ammonia and sulfur.
		3) Avoid storing in sun light and falling of dew.
		4) Do not use capacitors under high humidity and high and low atmospheric pressure which may affect capacitors reliability.
		5) Capacitors should be tested for the solderability when they are stored for long time.
		1-2. Handling in transportation
		In case of the transportation of the capacitors, the performance of the capacitors may be deteriorated depending on the transportation condition. (Refer to JEITA RCR-2335B 9.2 Handling in transportation)
2	Circuit design	 2-1. Operating temperature
		2) Surface temperature including self heating should be below maximum operating
		temperature. (Due to dielectric loss, capacitors will heat itself when AC is applied. Especially at high frequencies around its SRF, the heat might be so extreme that it may damage itself or the product mounted on. Please design the circuit so that the maximum temperature of the capacitors including the self heating to be below the maximum allowable operating temperature. Temperature rise at capacitor surface shall be below 20°C)
		 3) The electrical characteristics of the capacitors will vary depending on the temperature. The capacitors should be selected and designed in taking the temperature into consideration. 2-2. Operating voltage 1) Operating voltage across the terminals should be below the rated voltage. When AC and DC are super imposed, V_{0-P} must be below the rated voltage.
		AC or pulse with overshooting, V _{P-P} must be below the rated voltage. (1) and (2)
		When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use the capacitors within rated voltage containing these Irregular voltage.
		Voltage (1) DC voltage (2) DC+AC voltage (3) AC voltage
		Positional Measurement (Rated voltage) 0 Vo-P 0 Vo-P 0
		Voltage (4) Pulse voltage (A) (5) Pulse voltage (B)
		Positional Measurement (Rated voltage)


	T									
No.	Process	Condition								
2	Circuit design (1) Caution	Even below the reliability	he rated voltage of the capacitors	•	-	quency AC	or pul	se is applied,		
		The capacito	3) The effective capacitance will vary depending on applied DC and AC voltages. The capacitors should be selected and designed in taking the voltages into consideration.							
			2-3. Frequency When the capacitors (Class 2) are used in AC and/or pulse voltages, the capacitors may vibrate themselves and generate audible sound.							
3	Designing P.C.board	 The amount of solder at the terminations has a direct effect on the reliability of the capacitors. 1) The greater the amount of solder, the higher the stress on the chip capacitors, and the more likely that it will break. When designing a P.C.board, determine the shape and size of the solder lands to have proper amount of solder on the terminations. 								
		Avoid using of solder land for solder lan	ommon solder la or each terminati		termin	ations and	provide	e individual		
		3) Size and reco	ommended land	dimensions.						
			(Chip capacitors	Sold	er land				
		Solder resist						resist		
			В	Α	£2					
		Flow solder	ing	1			(mm)			
		Type Symbol	CGA3 (CC0603)	CGA4 (CC0805	5)	CGA (CC120				
		Α	0.7 - 1.0	1.0 - 1.3	3	2.1 - 2	.5			
		B	0.8 - 1.0	1.0 - 1.2	2	1.1 - 1	.3			
		C	0.6 - 0.8	0.8 - 1.1		1.0 - 1	.3			
		Reflow sold	•				Г	(mm)		
		Type Symbol	CGA2 (CC0402)	CGA3 (CC0603)		CGA4 (C0805)		GA5 1206)		
		A	0.3 - 0.5	0.6 - 0.8	0.	.9 - 1.2	2.0	- 2.4		
		В	0.35 - 0.45	0.6 - 0.8		.7 - 0.9		- 1.2		
		C	0.4 - 0.6	0.6 - 0.8	0.	.9 - 1.2	1.1	- 1.6		
		Type Symbol	CGA6 (CC1210)	CGA8 (CC1812)		CGA9 C2220)	•			
		A	2.0 - 2.4	3.1 - 3.7	,	.1 - 4.8	•			
		В	1.0 - 1.2	1.2 - 1.4		.2 - 1.4	•			
		С	1.9 - 2.5	2.4 - 3.2	4.	.0 - 5.0				

NI-	Drasses		Condition			
No. 3	Process Designing P.C.board	4) Recommended	Recommended chip capacitors layout is as following.			
	1.0.00010		Disadvantage against bending stress	Advantage against bending stress		
		Mounting face	Perforation or slit Break P.C.board with	Perforation or slit Break P.C.board with		
			mounted side up.	mounted side down.		
		Chip arrangement (Direction)	Mount perpendicularly to perforation or slit Perforation or slit	Mount in parallel with perforation or slit Perforation or slit		
		Distance from slit	Closer to slit is higher stress $\ell_1 \qquad \qquad \ell_1 \qquad \qquad (\ell_1 < \ell_2 \)$	Away from slit is less stress $\ell_2 \qquad \qquad \ell_2 \qquad \qquad (\ell_1 < \ell_2 \)$		

Condition No. **Process** 3 5) Mechanical stress varies according to location of chip capacitors on the P.C.board. Designing P.C.board E Perforation 00000 00000 В Slit The stress in capacitors is in the following order. A > B = C > D > E6) Layout recommendation Use of common Use of common Soldering with Example solder land with solder land chassis other SMD Lead wire Chassis Solder Excessive solder chip Solder Need to avoid Excessive solder PCB Adhesive Solder land Missing Solder land solder Lead wire Solder resist Solder resist Recommendation Solder resist


 $\ell^2 > \ell^1$

			0 111			
No.	Process		Condition			
4	Mounting	If the mounting he capacitors to result of the surface and not 2) Adjust the mount of the mount of the surface and not 2) To minimize the	 4-1. Stress from mounting head If the mounting head is adjusted too low, it may induce excessive stress in the chip capacitors to result in cracking. Please take following precautions. 1) Adjust the bottom dead center of the mounting head to reach on the P.C.board surface and not press it. 2) Adjust the mounting head pressure to be 1 to 3N of static weight. 3) To minimize the impact energy from mounting head, it is important to provide support from the bottom side of the P.C.board. 			
			Not recommended	Recommended		

When the centering jaw is worn out, it may give mechanical impact on the capacitors to cause crack. Please control the close up dimension of the centering jaw and provide sufficient preventive maintenance and replacement of it.

4-2. Amount of adhesive

Example: CGA4 (CC0805), CGA5 (CC1206)

а	0.2mm min.
b	70 - 100μm
С	Do not touch the solder land

Soldering	activity may also degra	•	ter solderability	boto no co				
	 5-1. Flux selection Although highly-activated flux gives better solderability, substances which increase activity may also degrade the insulation of the chip capacitors. To avoid such degradation, it is recommended following. 1) It is recommended to use a mildly activated rosin flux (less than 0.1wt% chlorine). Strong flux is not recommended. 2) Excessive flux must be avoided. Please provide proper amount of flux. 							
	3) When water-soluble f	3) When water-soluble flux is used, enough washing is necessary.						
	5-2. Recommended soldering profile by various methods Wave soldering Soldering Soldering							
	Preheating	Natural cooling	→ ←		Natural cooling			
	Peak Temp Over 60 sec. Peak Temp Over 60 sec.	Over 60 sec.	Jemp	r 60 sec.	Temp time			
			APPI	ICATION				
	(Solder iron) As for CGA3 (CC06) CGA5 (CC1206), a and reflow solderin As for CGA2 (CC06) CGA8 (CC1812), C				to wave soldering CGA6 (CC1210),			
	5-3. Recommended sold	ering peak temp	and peak tem	p duration				
	Temp./Duration	Wave so	ldering	Reflow so	oldering			
	Solder	Peak temp(°C)	Duration(sec.)	Peak temp(°C)	Duration(sec.)			
	Pb-Sn Solder	250 max.	3 max.	230 max.	20 max.			
	Lead Free Solder	260 max.	5 max.	260 max.	10 max.			
	Sn-37Pb (Pb-Sn sol	der)						
		Peak Temp Over 60 sec. Peak Tem Manual s (Solde 300 Temp./Duration Solder Pb-Sn Solder Lead Free Solder Recommended solde Sn-37Pb (Pb-Sn sol	Peak Temp time Manual soldering (Solder iron) 300 AT Preheating 3sec. (As short a 5-3. Recommended soldering peak temp Temp./Duration Wave so Solder Pb-Sn Solder 250 max.	Peak Temp time Manual soldering (Solder iron) Appl. As for CGAS and real As for CGAS only to C	Peak temp (°C) Solder Peak temp (°C) Peak temp (°C)			

No.	Process		Condition					
5	Soldering	5-4. Avoiding thermal shock						
		1) Preheating condition						
		Soldering	Туре	Temp. (°C)				
		Wave soldering	CGA3(CC0603), CGA4(CC0805), CGA5(CC1206)	ΔT ≤ 150				
		Deflow coldering	CGA2(CC0402), CGA3(CC0603), CGA4(CC0805), CGA5(CC1206)	ΔT ≤ 150				
		Reflow soldering	CGA6(CC1210), CGA8(CC1812), CGA9 (CC2220)	ΔT ≤ 130				
	Manual soldering	CGA2(CC0402), CGA3(CC0603), CGA4(CC0805), CGA5(CC1206)	ΔT ≤ 150					
		iviariuai soideririg	CGA6(CC1210), CGA8(CC1812), CGA9 (CC2220)	ΔT ≤ 130				
			Excessive solder will induce higher tensile force in chip capacitors who					
		Excessive solder	Excessive solder will induce higher tensile force in chip capacitors whe					
		•	temperature changes and it may result in chip cracking. In sufficient solder made detach the capacitors from the P.C.board.					
	sc	Excessive solder		er tensile force in cause				
		Adequate	Maximum a Minimum a					
		Insufficient solder ====	cause chip o	robustness may e contact failure or capacitors come off C.board.				
		land size. The higher heat shock may caus Please make sure the time in accordance w		che peak temp and (Please preheat the				

No.	Process	Condition											
5	Soldering	Recommen	Recommended solder iron condition (Pb-Sn Solder and Lead Free Solder										
		Temp	o. (°C)	Duration (sec.)	Wattage (W)	Shape (mm)							
		300	max.	3 max.	20 max.	Ø 3.0 max.							
		Direct contact of the soldering iron with ceramic dielectric of chip capacitors may cause crack. Do not touch the ceramic dielectric and the terminations by solder iron.											
		5-7. Sn-Zn solder Sn-Zn solder a Please contact	ffects pro	oduct reliability. advance when utiliz	ze Sn-Zn solder.								
		patterns should the capacitors a soldering.	ent betwe I be minii are mour	een the mounted p mized. The tombe nted (in longitudinal of 335B Annex A (Info	stone phenomeno direction) in the sar	pacitors and the land in may occur especially me direction of the reflow mendations to prevent the							
9	Cleaning	stick to chip o	apacitors	•	orate especially the	foreign articles may e insulation resistance.							
		2)-1. Insufficien (1) Terminal		g es may corrode by	Halogen in the flu	IX.							
		(2) Halogen the insula		•	n the surface of c	apacitors, and lower							
		(3) Water soluble flux has higher tendency to have above mentioned problems (1) and (2).											
		2)-2. Excessive w	ashing/										
		When ultrasonic cleaning is used, excessively high ultrasonic energy or can affect the connection between the ceramic chip capacitor's body ar terminal electrode. To avoid this, following is the recommended conditions.											
				Power : 20 W/l r									
				Frequency: 40 k									
		Washing time: 5 minutes max. 2)-3. If the cleaning fluid is contaminated, density of Halogen increases, and it may bring the same result as insufficient cleaning.											

No.	Process		Condition							
7	Coating and	1) When the P.C.board is coated, please verify the quality influence on the product.								
	molding of the P.C.board	2) Please venission	 Please verify carefully that there is no harmful decomposing or reaction gas emission during curing which may damage the chip capacitors. 							
		3) Please verify the curing temperature.								
8	Handling after chip mounted	1) Please pay attention not to bend or distort the P.C.board after soldering in handling otherwise the chip capacitors may crack.								
	⚠ Caution		Bend	Twist						
		2) When functional check of the P.C.board is performed, check pin pressure tend to be adjusted higher for fear of loose contact. But if the pressure is excessing and bend the P.C.board, it may crack the chip capacitors or peel the termination off. Please adjust the check pins not to bend the P.C.board.								
		Item	Not recommended	Recommended						
			Termination peeling	Support pin						
		Board bending	Check pin	Check pin						
9	Handling of loose chip capacitors	the large handle wi	case sized chip capacitors are tenderth care.	ce dropped do not use it. Especially, ency to have cracks easily, so please — Crack — Crack — coard to cause crack.						

No.	Process	Condition
10	Capacitance aging	The capacitors (Class 2) have aging in the capacitance. They may not be used in precision time constant circuit. In case of the time constant circuit, the evaluation should be done well.
11	Estimated life and estimated failure rate of capacitors	As per the estimated life and the estimated failure rate depend on the temperature and the voltage. This can be calculated by the equation described in JEITA RCR-2335B Annex 6 (Informative) Calculation of the estimated lifetime and the estimated failure rate (Voltage acceleration coefficient: 3 multiplication rule, Temperature acceleration coefficient: 10°C rule) The failure rate can be decreased by reducing the temperature and the voltage but they will not be guaranteed.
12	Others Caution	The products listed on this specification sheet are intended for use in general electronic equipment (AV equipment, telecommunications equipment, home appliances, amusement equipment, computer equipment, personal equipment, office equipment, measurement equipment, industrial robots) under a normal operation and use condition. The products are not designed or warranted to meet the requirements of the applications listed below, whose performance and/or quality require a more stringent level of safety or reliability, or whose failure, malfunction or trouble could cause serious damage to society, person or property. Please understand that we are not responsible for any damage or liability caused by use of the products in any of the applications below or for any other use exceeding the range or conditions set forth in this specification sheet. If you intend to use the products in the applications listed below or if you have special requirements exceeding the range or conditions set forth in this specification, please contact us. (1) Aerospace/Aviation equipment (2) Transportation equipment (cars, electric trains, ships, etc.) (3) Medical equipment (4) Power-generation control equipment (5) Atomic energy-related equipment (6) Seabed equipment (7) Transportation control equipment (8) Public information-processing equipment (9) Military equipment (10) Electric heating apparatus, burning equipment (11) Disaster prevention/crime prevention equipment (12) Safety equipment (13) Other applications that are not considered general-purpose applications. When designing your equipment even for general-purpose applications, you are kindly requested to take into consideration securing protection circuit/device or providing backup circuits in your equipment.

13. Packaging label

Packaging shall be done to protect the components from the damage during transportation and storing, and a label which has the following information shall be attached.

- 1) Inspection No.
- 2) TDK P/N
- 3) Customer's P/N
- 4) Quantity

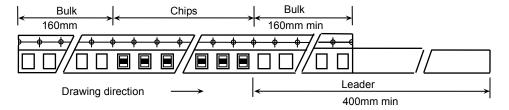
*Composition of Inspection No.

Example
$$\underline{F}$$
 $\underline{2}$ \underline{A} - \underline{OO} - \underline{OOO} (a) (b) (c) (d) (e)

- a) Line code
- b) Last digit of the year
- c) Month and A for January and B for February and so on. (Skip I)
- d) Inspection Date of the month.
- e) Serial No. of the day

14. Bulk packaging quantity

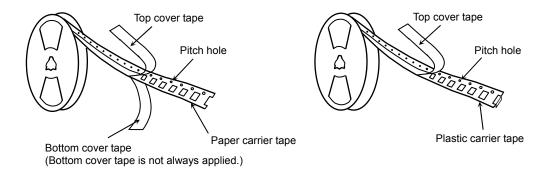
Total number of components in a plastic bag for bulk packaging : 1,000pcs. As for CGA2 type, not available for bulk packaging.


15. TAPE PACKAGING SPECIFICATION

1. CONSTRUCTION AND DIMENSION OF TAPING

1-1. Dimensions of carrier tape

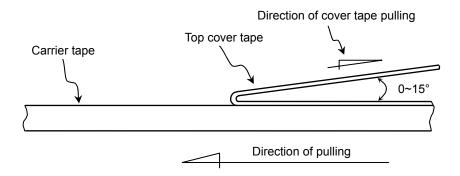
Dimensions of paper tape shall be according to Appendix 3, 4. Dimensions of plastic tape shall be according to Appendix 5, 6.


1-2. Bulk part and leader of taping

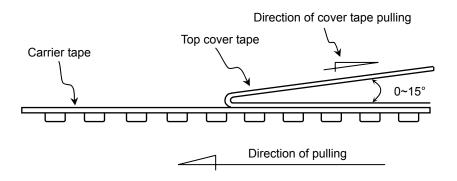
1-3. Dimensions of reel

Dimensions of ϕ 178 reel shall be according to Appendix 7, 8. Dimensions of ϕ 330 reel shall be according to Appendix 9, 10.

1-4. Structure of taping

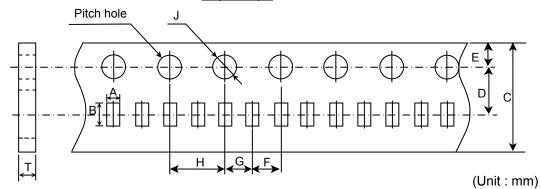

2. CHIP QUANTITY

QUANTITI					
T	Thickness	Taping	Chip qua	ntity(pcs.)	
Type	of chip	Material	Ø 178mm reel	Ø 330mm reel	
CGA2 (CC0402)	0.50 mm	Paper	10,000	50,000	
CGA3 (CC0603)	0.80 mm	Paper/ Plastic	4,000	10,000	
0004	0.60 mm	Danor	4,000		
CGA4 (CC0805)	0.85 mm	Paper	4,000	10,000	
(CC0803)	1.25 mm	Plastic	2,000		
CGA5 (CC1206)	0.60 mm	Danor	4,000	10,000	
	0.85 mm	Paper	4,000		
	1.15 mm	Plastic	2,000		
	1.60 mm	riasiic	2,000	8,000	
	1.25 mm		2,000	8,000	
CGA6	1.60 mm		2,000	0,000	
(CC1210)	2.00 mm	Plastic	1,000	5,000	
(001210)	2.30 mm				
	2.50 mm				
	1.60 mm		1,000		
CGA8	2.00 mm	Plastic	1,000	3,000	
(CC1812)	2.50 mm	i idolio	500		
_	3.20 mm			2,000	
	1.60 mm		1,000		
CGA9 (CC2220)	2.00 mm	-		3,000	
	2.30 mm	Plastic	500	_,	
()	2.50 mm				
	2.80 mm			2,000	


3. PERFORMANCE SPECIFICATIONS

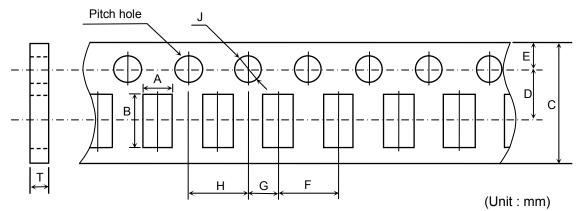
3-1. Fixing peeling strength (top tape) 0.05-0.7N. (See the following figure.)

TYPE 1 (Paper)


TYPE 2 (Plastic)

- 3-2. Carrier tape shall be flexible enough to be wound around a minimum radius of 30mm with components in tape.
- 3-3. The missing of components shall be less than 0.1%
- 3-4. Components shall not stick to fixing tape.
- 3-5. The fixing tapes shall not protrude beyond the edges of the carrier tape not shall cover the sprocket holes.

Paper Tape

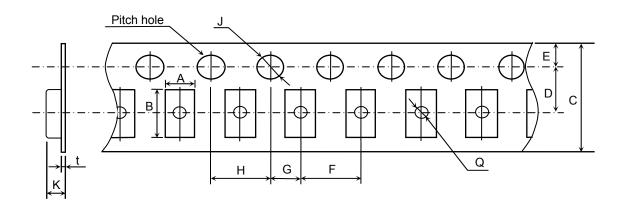

Symbol Type	А	В	С	D	E	F
CGA2 (CC0402)	(0.65)	(1.15)	8.00 ± 0.30	3.50 ± 0.05	1.75 ± 0.10	2.00 ± 0.05
Symbol	G	н	.1	Т		

Symbol Type	G	Н	J	Т
CGA2 (CC0402)	2.00 ± 0.05	4.00 ± 0.10	Ø 1.5 $\frac{+0.10}{0}$	0.60 ± 0.05

^{*} The values in the parentheses () are for reference

Appendix 4

Paper Tape



Symbol Type	А	В	С	D	E	F
CGA3 (CC0603)	(1.10)	(1.90)				
CGA4 (CC0805)	(1.50)	(2.30)	8.00 ± 0.30	3.50 ± 0.05	1.75 ± 0.10	4.00 ± 0.10
CGA5 (CC1206)	(1.90)	(3.50)				

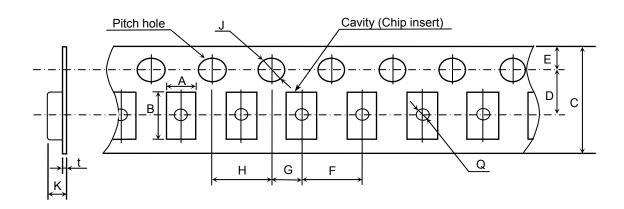
Symbol Type	G	Н	J	Т
CGA3 (CC0603)				
CGA4 (CC0805)	2.00 ± 0.05	4.00 ± 0.10	Ø 1.5 +0.10	1.20 max.
CGA5 (CC1206)				

^{*} The values in the parentheses () are for reference.

Plastic Tape

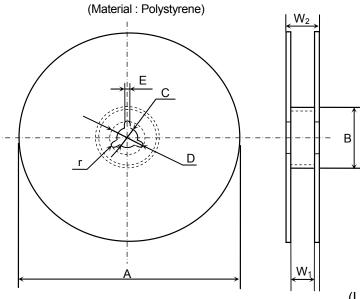
(Unit: mm)

						(OHIL HIIII)
Symbol Type	Α	В	С	D	Е	F
CGA3 (CC0603)	(1.10)	(1.90)				
CGA4 (CC0805)	(1.50)	(2.30)	8.00 ± 0.30	3.50 ± 0.05	1.75 ± 0.10	4.00 ± 0.10
CGA5 (CC1206)	(1.90)	(3.50)	[12.0 ± 0.30]	[5.50 ± 0.05]	1.75 ± 0.10	4.00 ± 0.10
CGA6 (CC1210)	(2.90)	(3.60)				
Symbol	0			17		0
Type	G	Н	J	K	t	Q
CGA3 (CC0603)				1.50 max.		
CGA4 (CC0805)	2.00 ± 0.05	4.00 ± 0.10	Ø 1.5 +0.10	2.50 may	0.30 max.	0 0 50 min
CGA5 (CC1206)	2.00 ± 0.05	4.00 ± 0.10	0 1.5	2.50 max.		Ø 0.50 min.
CGA6 (CC1210)				3.20 max.	0.60 max.	


 $^{^{\}star}$ The values in the parentheses ($\,$) are for reference.

^{*} Exceptionally no hole in the cavity is applied. Please inquire if hole in cavity is mandatory.

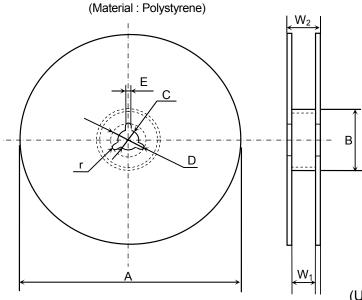
^{*} As for 2.5mm thickness products, apply values in the brackets [].


Plastic Tape

						(Unit : mm)
Symbol Type	Α	В	С	D	E	F
CGA8 (CC1812)	(3.60)	(4.90)	12.0 ± 0.30	5.50 ± 0.05	1.75 ± 0.10	8.00 ± 0.10
CGA9 (CC2220)	(5.40)	(6.10)	12.0 ± 0.30	5.50 ± 0.05	1.75 ± 0.10	6.00 ± 0.10
Symbol Type	G	Н	J	К	t	Q
CGA8 (CC1812) CGA9 (CC2220)	2.00 ± 0.05	4.00 ± 0.10	Ø 1.5 ^{+0.10} ₀	6.50 max.	0.60 max.	Ø 1.50 min.

^{*} The values in the parentheses () are for reference.

CGA2, CGA3, CGA4, CGA5, CGA6 (As for CGA6 type, any thickness of the item except 2.5mm)


(Unit: mm)

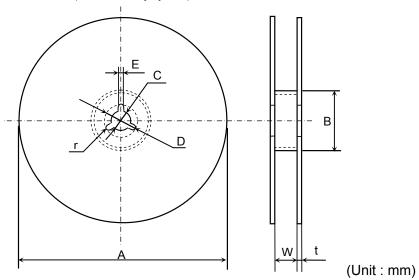
Symbol	А	В	С	D	E	W ₁
Dimension	Ø178 ± 2.0	Ø60 ± 2.0	Ø13 ± 0.5	Ø21 ± 0.8	2.0 ± 0.5	9.0 ± 0.3

Symbol	W_2	r
Dimension	13.0 ± 1.4	1.0

Appendix 8

CGA6, CGA8, CGA9 (As for CGA6 type, applied to 2.5mm thickness products)

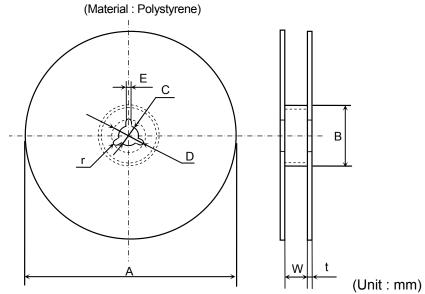
(Unit: mm)


Symbol	Α	В	С	D	Е	W_1
Dimension	Ø178 ± 2.0	Ø60 ± 2.0	Ø13 ± 0.5	Ø21 ± 0.8	2.0 ± 0.5	13.0 ± 0.3

Symbol	W_2	r
Dimension	17.0 ± 1.4	1.0

CGA2, CGA3, CGA4, CGA5, CGA6 (As for CGA6 type, any thickness of the item except 2.5mm)

(Material : Polystyrene)



Symbol	Α	В	С	D	E	W
Dimension	Ø382 max. (Nominal Ø330)	Ø50 min.	Ø13 ± 0.5	Ø21 ± 0.8	2.0 ± 0.5	10.0 ± 1.5

Symbol	t	r
Dimension	2.0 ± 0.5	1.0

Appendix 10

CGA6, CGA8, CGA9 (As for CGA6 type, applied to 2.5mm thickness products)

Symbol	А	В	С	D	E	W
Dimension	Ø382 max. (Nominal Ø330)	Ø50 min.	Ø13 ± 0.5	Ø21 ± 0.8	2.0 ± 0.5	14.0 ± 1.5

Symbol	t	r
Dimension	2.0 ± 0.5	1.0

