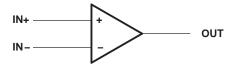


FEATURES

- Controlled Baseline
 - One Assembly/Test Site, One Fabrication Site
- Enhanced Diminishing Manufacturing Sources (DMS) Support
- Enhanced Product-Change Notification
- Qualification Pedigree (1)
- Dual-Supply Operation . . . ±5 V to ±18 V
- Low Noise Voltage . . . 4.5 nV/\/Hz
- (1) Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits.

DESCRIPTION/ORDERING INFORMATION

- Low Input Offset Voltage . . . 0.15 mV
- Low Total Harmonic Distortion . . . 0.002%
- High Slew Rate ... 7 V/µs
- High-Gain Bandwidth Product . . . 16 MHz
- High Open-Loop AC Gain . . . 800 at 20 kHz
- Large Output-Voltage Swing . . . 14.1 V to -14.6 V
- Excellent Gain and Phase Margins


The MC33078-EP is a bipolar dual operational amplifier with high-performance specifications for use in quality audio and data-signal applications. This device operates over a wide range of single- and dual-supply voltages and offers low noise, high-gain bandwidth, and high slew rate. Additional features include low total harmonic distortion, excellent phase and gain margins, large output voltage swing with no deadband crossover distortion, and symmetrical sink/source performance.

ORDERING INFORMATION

T _A	PACKA	GE ⁽¹⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING	
–55°C to 125°C	SOIC – D	Reel of 2500	MC33078MDREP	33078M	

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

SYMBOL (EACH AMPLIFIER)

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

MC33078-EP **DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER** SLOS495-OCTOBER 2006

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V _{CC+}	Supply voltage ⁽²⁾		18	V
V _{CC} -	Supply voltage ⁽²⁾		-18	V
V_{CC-} to V_{CC+}	Supply voltage		36	V
	Input voltage, either input ⁽²⁾⁽³⁾	V _{CC}	$_{-}$ or V _{CC+}	V
	Input current ⁽⁴⁾		±10	mA
	Duration of output short circuit ⁽⁵⁾		Unlimited	
θ_{JA}	Package thermal impedance ⁽⁶⁾⁽⁷⁾		97	°C/W
TJ	Operating virtual junction temperature		150	°C
T _{stg}	Storage temperature range ⁽⁸⁾	-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

All voltage values, except differential voltages, are with respect to the midpoint between V_{CC+} and V_{CC-} (2)

The magnitude of the input voltage must never exceed the magnitude of the supply voltage. (3)

Excessive input current will flow if a differential input voltage in excess of approximately 0.6 V is applied between the inputs, unless (4) some limiting resistance is used.

(5) The output may be shorted to ground or either power supply. Temperature and/or supply voltages must be limited to ensure the maximum dissipation rating is not exceeded.

Maximum power dissipation is a function of $T_{I}(max)$, θ_{IA} , and T_{A} . The maximum allowable power dissipation at any allowable ambient (6) temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability. The package thermal impedance is calculated in accordance with JESD 51-7.

(7)

Long-term high-temperature storage and/or extended use at maximum recommended operating conditions may result in a reduction of (8) overall device life. See http://www.ti.com/ep_quality for additional information on enhanced plastic packaging.

Recommended Operating Conditions

		MIN	MAX	UNIT
V _{CC-}	Supply voltage	-5	-18	V
V _{CC+}	Supply voltage	5	18	v
T _A	Operating free-air temperature	-55	125	°C

Electrical Characteristics

 $V_{\rm CC-}$ = –15 V, $V_{\rm CC+}$ = 15 V, $T_{\rm A}$ = 25°C (unless otherwise noted)

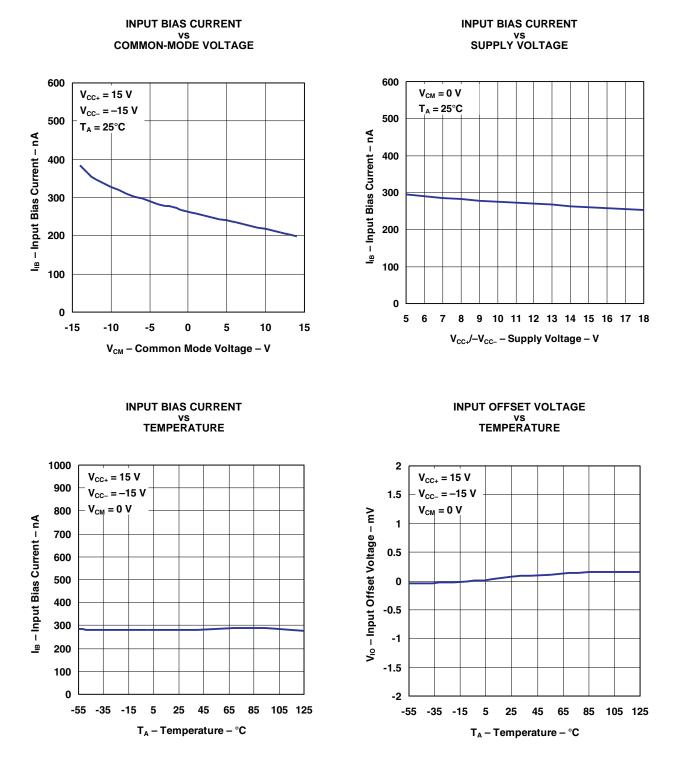
	PARAMETER		MIN	TYP	MAX	UNIT		
\ <i>\</i>	land affect welters	V 0 D 40.0	<u>۷</u>	T _A = 25°C		0.15	2	
V _{IO}	Input offset voltage	$V_{O} = 0, R_{S} = 10 \Omega,$	$V_{CM} = 0$	$T_A = -55^{\circ}C$ to $125^{\circ}C$			3	mV
αV _{IO}	Input offset voltage temperature coefficient	$V_{O} = 0, R_{S} = 10 \Omega,$	$V_{CM} = 0$	$T_A = -55^{\circ}C$ to $125^{\circ}C$		2		μV/° (
	Input biog ourrept	$\mathcal{V} = 0$	$V_{CM} = 0$	$T_A = 25^{\circ}C$		300	750	nA
I _{IB}	Input bias current	V _O = 0,	V _{CM} = 0	$T_A = -55^{\circ}C$ to $125^{\circ}C$			800	ΠA
	Input offect ourrest	V O	V 0	$T_A = 25^{\circ}C$		25	150	~^
IIO	Input offset current	V _O = 0,	$V_{CM} = 0$	$T_A = -55^{\circ}C$ to $125^{\circ}C$			175	nA
V _{ICR}	Common-mode input voltage range	$\Delta V_{IO} = 5 \text{ mV},$	$V_0 = 0$		±13	±14		V
Large-signal differer	Large-signal differential		0.1/	T _A = 25°C	90	110		dB
A _{VD} voltage amplification		$R_L \ge 2 \ k\Omega, \ V_O = \pm 1$	0 0	$T_A = -55^{\circ}C$ to $125^{\circ}C$	80			UD
			$R_L = 600 \Omega$	V _{OM+}		10.7		
				V _{OM-}		-11.9		- V
V	Maximum output	$V_{ID} = \pm 1 V$		V _{OM+}	13.2	13.8		
V _{OM}	voltage swing	$v_{\text{ID}} = \pm i v$	$R_L = 2k \Omega$	V _{OM} -	-13.2	-13.7		
			R _I = 10k Ω	V _{OM+}	13.5	14.1		
			$M_{\rm L} = 10K S_2$	V _{OM}	-14	-14.6		
CMMR	Common-mode rejection ratio	$V_{IN} = \pm 13 V$	80	100		dB		
k _{SVR} ⁽¹⁾	Supply-voltage rejection ratio	$V_{CC+} = 5 V \text{ to } 15 V$	to -15 V	80	105		dB	
	Output abort airquit aurrent			Source current	15	29		~ ^
I _{OS}	Output short-circuit current	$ V_{ID} = 1 V$, Output	IO GIND	Sink current	-20	-37		mA
	Supply current	V 0		$T_A = 25^{\circ}C$		2.05	2.5	~ ^
I _{CC}	(per channel)	$V_{O} = 0$		$T_A = -55^{\circ}C$ to $125^{\circ}C$			3.5	mA

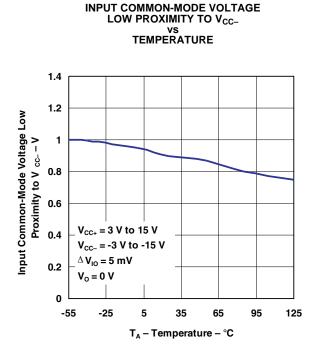
(1) Measured with $V_{CC\pm}$ differentially varied at the same time

MC33078-EP DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER SLOS495-OCTOBER 2006

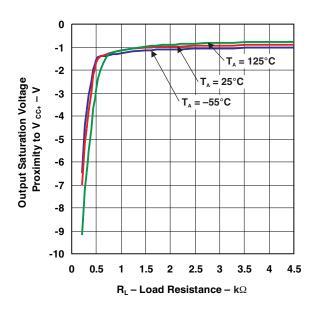
Operating Characteristics

 V_{CC-} = –15 V, V_{CC+} = 15 V, T_A = 25°C (unless otherwise noted)

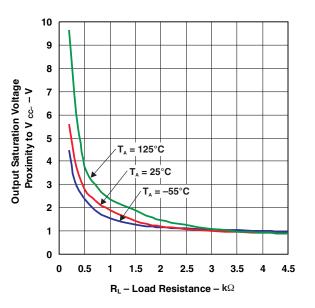

PARAMETER		т	EST CONDITIONS	MIN	TYP	MAX	UNIT
SR	Slew rate at unity gain	$A_{VD} = 1, V_{IN} = -10 V$	to 10 V, $R_L = 2 k\Omega$, $C_L = 100 pF$	5	7		V/µs
GBW	Gain bandwidth product	f = 100 kHz			16		MHz
B ₁	Unity gain frequency	Open loop			9		MHz
		D alka	C _L = 0 pF		-11		
Gain margin	$R_L = 2 k\Omega$	C _L = 100 pF		-6		dB	
	¢ _m Phase margin	D	C _L = 0 pF		55		
φm		$R_L = 2 k\Omega$	C _L = 100 pF	40			deg
	Amplifier-to-amplifier isolation	f = 20 Hz to 20 kHz		-120		dB	
	Power bandwidth	$V_0 = 27 V_{(PP)}, R_L = 2$		120		kHz	
THD	Total harmonic distortion	$V_{O} = 3 V_{rms}, A_{VD} = 1$, $R_L = 2 \text{ k}\Omega$, f = 20 Hz to 20 kHz		0.002		%
z _o	Open-loop output impedance	V _O = 0,	f = 9 MHz		37		Ω
r _{id}	Differential input resistance	$V_{CM} = 0$			175		kΩ
C _{id}	Differential input capacitance	$V_{CM} = 0$			12		pF
Vn	Equivalent input noise voltage	f = 1 kHz,	R _S = 100 Ω		4.5		nV/√Hz
l _n	Equivalent input noise current	f = 1 kHz			0.5		pA/√Hz


NOTE: All capacitors are nonpolarized.

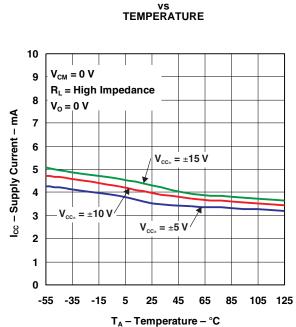
TYPICAL CHARACTERISTICS



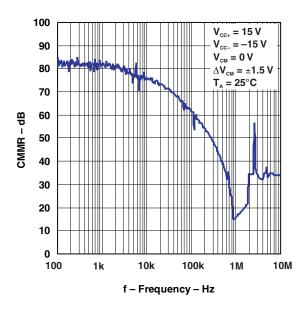
vs TEMPERATURE 0 V_{CC+} = 3 V to 15 V $V_{\rm CC-} = -3 V \text{ to } -15 V$ -0.2 Input Common-Mode Voltage High $\Delta V_{IO} = 5 \text{ mV}$ $V_{o} = 0 V$ -0.4 Proximity to V $_{\text{CC+}}$ – V -0.6 -0.8 -1 -1.2 -1.4 -55 -25 5 35 65 95 125 T_A – Temperature – °C

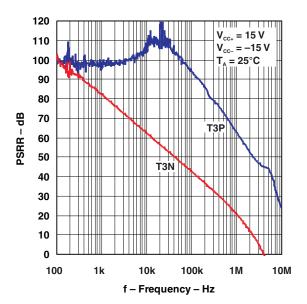

INPUT COMMON-MODE VOLTAGE

HIGH PROXIMITY TO V_{CC+}


OUTPUT SATURATION VOLTAGE PROXIMITY TO V_{CC+} vs LOAD RESISTANCE

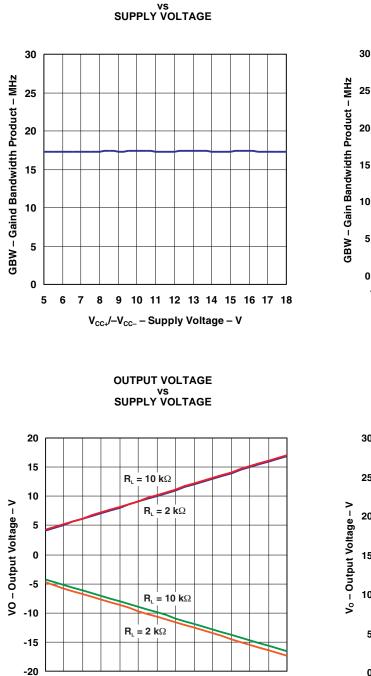
OUTPUT SATURATION VOLTAGE PROXIMITY TO V_{CC-} vs LOAD RESISTANCE


OUTPUT SHORT-CIRCUIT CURRENT vs TEMPERATURE 70 $V_{CC+} = 15 V$ los – Output Short-Circuit Current – mA $V_{cc-} = -15 V$ 60 $V_{ID} = 1 V$ 50 40 Source \$ink 30 20 10 -35 -55 -15 5 25 45 65 85 105 125 T_A – Temperature – °C



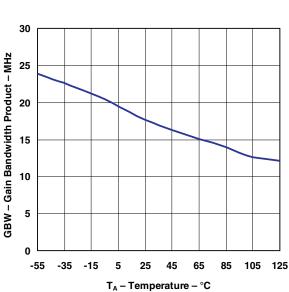
SUPPLY CURRENT

CMRR vs FREQUENCY



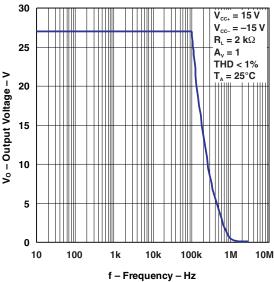
TYPICAL CHARACTERISTICS (continued)

GAIN BANDWIDTH PRODUCT

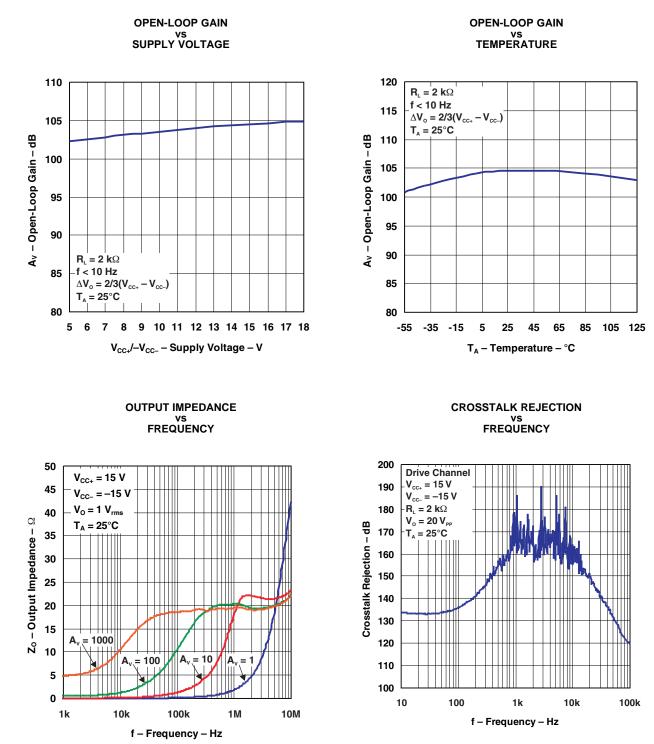


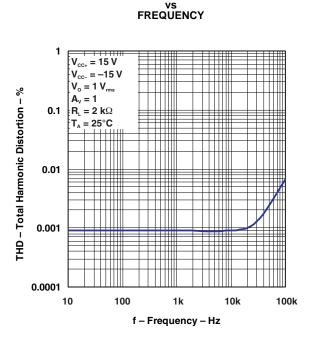
TYPICAL CHARACTERISTICS (continued)

9 10 11 12 13 14 15 16 17 18

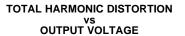

V_{cc+}/–V_{cc-} – Supply Voltage – V

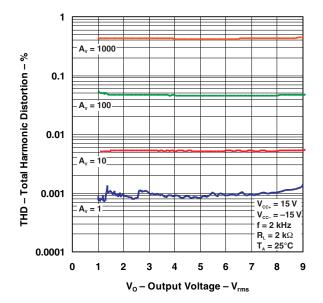
GAIN BANDWIDTH PRODUCT

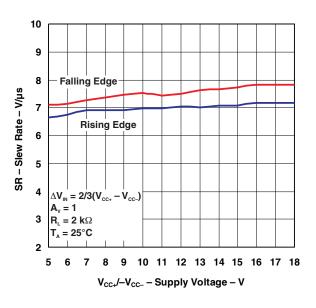

vs TEMPERATURE

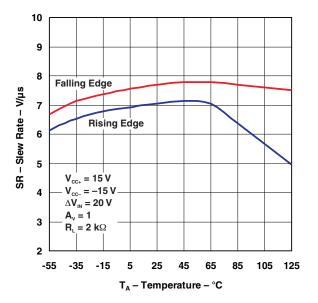


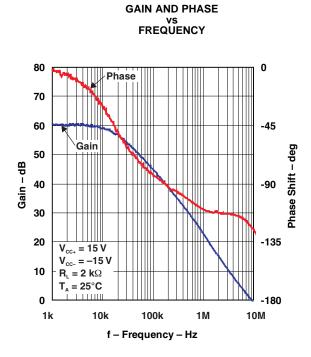
567


8

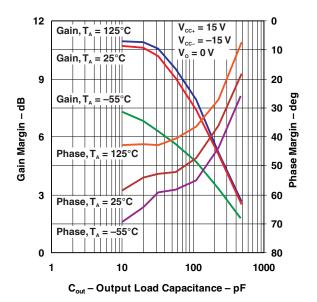


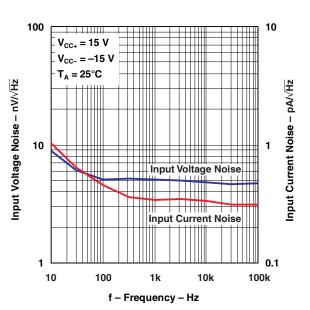

TOTAL HARMONIC DISTORTION

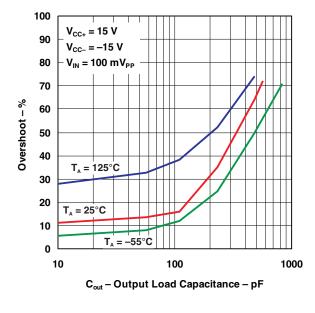


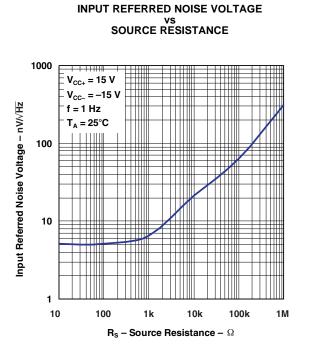


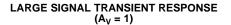
SLEW RATE vs SUPPLY VOLTAGE

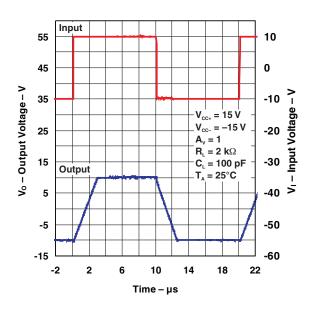


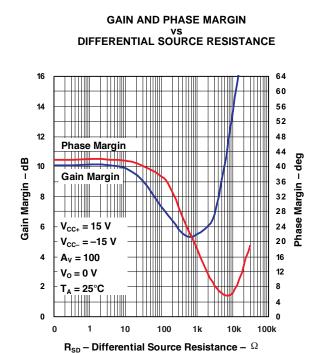


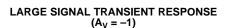

GAIN AND PHASE MARGIN vs OUTPUT LOAD CAPACITANCE

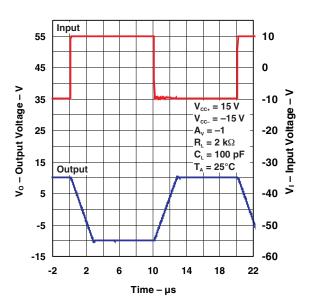

INPUT VOLTAGE AND CURRENT NOISE vs FREQUENCY

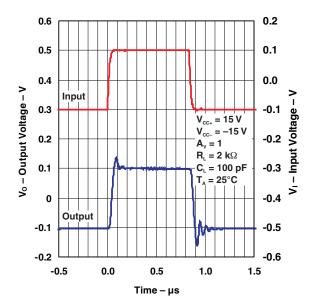


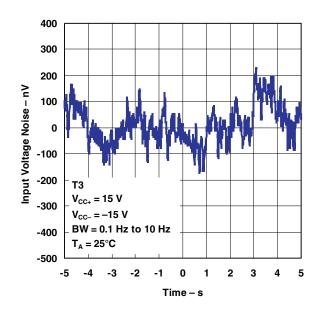

OVERSHOOT vs OUTPUT LOAD CAPACITANCE









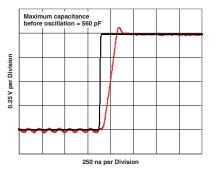


SMALL SIGNAL TRANSIENT RESPONSE

LOW_FREQUENCY NOISE

APPLICATION INFORMATION


Output Characteristics

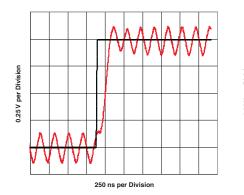

All operating characteristics are specified with 100-pF load capacitance. The MC33078 can drive higher capacitance loads. However, as the load capacitance increases, the resulting response pole occurs at lower frequencies, causing ringing, peaking, or oscillation. The value of the load capacitance at which oscillation occurs varies from lot to lot. If an application appears to be sensitive to oscillation due to load capacitance, adding a small resistance in series with the load should alleviate the problem (see Figure 2).

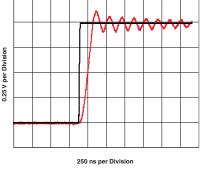
PULSE RESPONSE

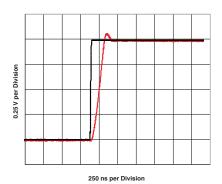
 $(R_L = 2 k\Omega, C_L = 560 pF)$

PULSE RESPONSE (R_L = 600 Ω, C_L = 380 pF)

PULSE RESPONSE $(R_L = 10 \text{ k}\Omega, C_L = 590 \text{ pF})$


0.25 V per Division


250 ns per Division


PULSE RESPONSE $(R_0 = 0 \Omega, C_0 = 1000 \text{ pF}, R_L = 2 \text{ k}\Omega)$

PULSE RESPONSE $(R_0 = 4 \Omega, C_0 = 1000 \text{ pF}, R_L = 2 \text{ k}\Omega)$

PULSE RESPONSE $(R_0 = 35 \Omega, C_0 = 1000 \text{ pF}, R_L = 2 \text{ k}\Omega)$

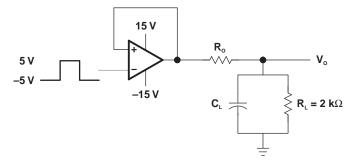


Figure 2. Output Characteristics

11-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	•	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing		Qty	(2)		(3)		(4)	
MC33078MDREP	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	33078M	Samples
MC33078MDREPG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	33078M	Samples
V62/07606-01XE	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	33078M	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com

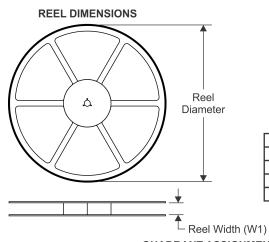
PACKAGE OPTION ADDENDUM

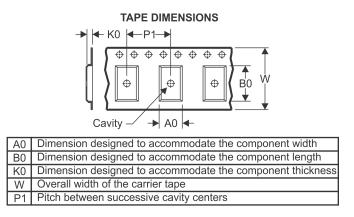
11-Apr-2013

OTHER QUALIFIED VERSIONS OF MC33078-EP :

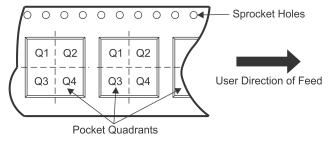
Catalog: MC33078

NOTE: Qualified Version Definitions:


• Catalog - TI's standard catalog product


PACKAGE MATERIALS INFORMATION

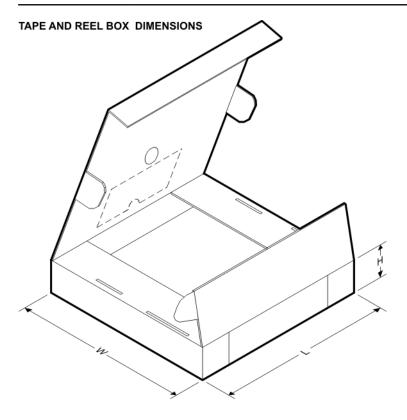
www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are ne	ominal

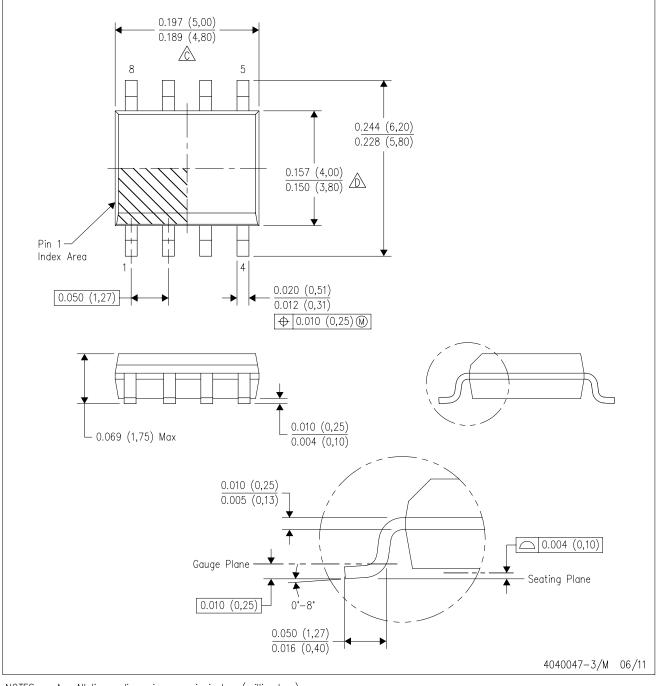

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
MC33078MDREP	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

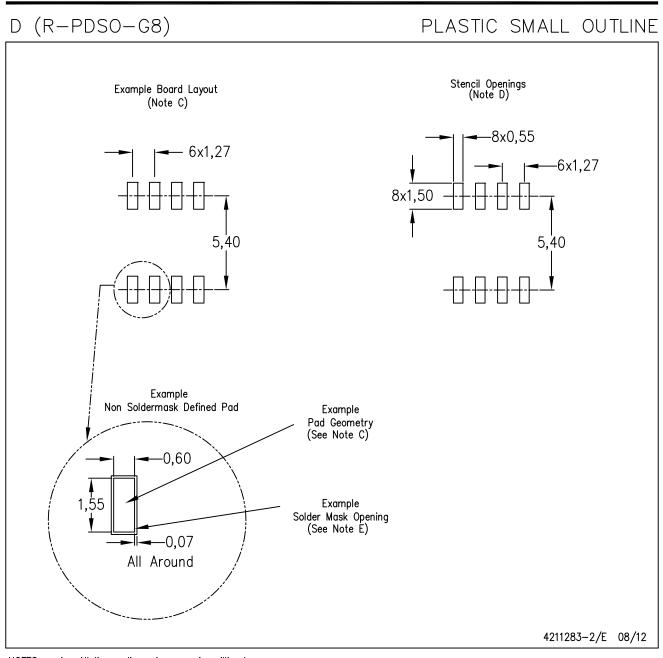
26-Jan-2013



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
MC33078MDREP	SOIC	D	8	2500	367.0	367.0	35.0

D (R-PDSO-G8)


PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated