

LP5552 PWI 2.0 and PowerWise[®] Technology Compliant Energy Management Unit

Check for Samples: LP5552

FEATURES

- High-efficiency PowerWise Technology Adaptive Voltage Scaling for Intelligent Energy Management in AVS and DVS Environments
- PWI 2.0 Open Standard Interface for System-• level Power Management
- Two Digitally Programmable 3.6MHz Buck Regulators to Power Dual-voltage Domains
- **Five Programmable LDOs for System Functions Such as:**
 - PLL/Clock Generation
 - I/O
 - Memory Retention
- Internal Soft Start
- Variable Regulator Power up Sequencing

APPLICATIONS

- **GSM/GPRS/EDGE & UMTS Cellular Handsets**
- Hand-held Radios
- **PDAs** •
- **Battery-powered Devices** •
- **Portable Instruments**

KEY SPECIFICATIONS

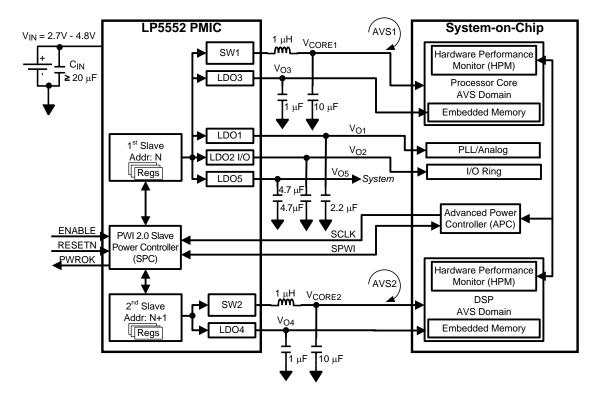
- 2.7V to 4.8V Input Voltage Range
- ±2% (typical) Output Voltage Accuracy •
- Programmable DC/DC Buck Converters
 - 800mA Output Current per Switcher
 - Up to 88% Switcher Efficiency
 - Digitally programmable from 0.6V 1.235V
- **Programmable LDOs**
 - Five digitally programmable LDOs

DESCRIPTION

The LP5552 is a PWI[™] 2.0 compliant Energy Management Unit (EMU) for reducing power consumption in lowpower, portable applications.

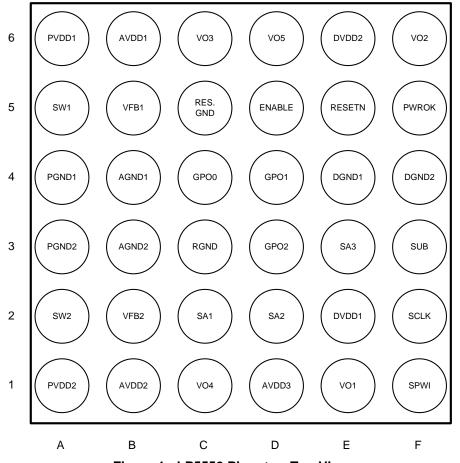
The LP5552 contains 2 advanced, digitally controlled switching regulators for supplying variable voltages to a SoC or processor. The device also incorporates 5 programmable low-dropout, low-noise linear regulators for powering I/O, peripheral logic blocks, auxiliary system functions, and maintaining memory retention (dualdomains) in shutdown-mode.

The device is controlled via the high-speed serial PWI 2.0 open-standard interface. The LP5552 operates cooperatively with PowerWise® technology-compatible processors to optimize supply voltages adaptively (AVS -Adaptive Voltage Scaling) over process and temperature variations. It also supports dynamic voltage scaling (DVS) using frequency/voltage pairs from pre-characterized lookup tables.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

www.ti.com



Texas Instruments

www.ti.com

SNVS474E - SEPTEMBER 2006 - REVISED MARCH 2013

LP5552

CONNECTION DIAGRAM

Figure 1. LP5552 Pinout — Top View

www.ti.com

INSTRUMENTS

Texas

Pin #	Pin Name	I/O ⁽¹⁾	Type ⁽¹⁾	Function
E2	DVDD1	Р	P	Power supply voltage input for digital. Connect to V _{IN.}
E6	DVDD2	Р	Р	Power supply voltage input for digital, LDO2, and LDO5. Connect to V _{IN.}
B6	AVDD1	Р	Р	Power supply voltage input for analog, switching regulator #1, and LDO3. Connect to VIN.
B1	AVDD2	Р	Р	Power supply voltage input for analog, switching regulator #2, and LDO4. Connect to $V_{\text{IN}.}$
D1	AVDD3	Р	Р	Power supply voltage input for analog, and LDO1. Connect to $V_{\mbox{IN}}$
A6	PVDD1	Р	Р	Power supply voltage input to internal PFET of switching regulator #1. Connect to V_{IN} .
A1	PVDD2	Р	Р	Power supply voltage input to internal PFET of switching regulator #2. Connect to V_{IN}
E4	DGND1	G	G	Digital Ground. Connect to system Ground.
F4	DGND2	G	G	Digital Ground. Connect to system Ground.
B4	AGND1	G	G	Analog Ground. Connect to system Ground.
B3	AGND2	G	G	Analog Ground. Connect to system Ground.
A4	PGND1	G	G	Power Ground. Connect to system Ground.
A3	PGND2	G	G	Power Ground. Connect to system Ground.
F3	SUB	G	G	Substrate Ground. Connect to system Ground.
C3	RGND	G	G	Reference/sense Ground. Should connect to the Ground node of the switchin regulators output capacitors.
D5	ENABLE	I	D	Enable input. Set this digital input high for normal operation.
F2	SCLK	I	D	PowerWise Interface (PWI) clock input
F1	SPWI	I/O	D	PowerWise Interface (PWI) bi-directional data
E5	RESETN	1	D	Active low Reset input. Set this digital input high for normal operation.
F5	PWROK	0	D	Power OK indicator. This is a digital, active high output signal.
E1	VO1	Р	Р	LDO1 output voltage.
F6	VO2	Р	Р	LDO2 output voltage. PWI signals SCLK and SPWI reference voltage.
C1	VO4	Р	Р	LDO4 output voltage. Can be programmed to track V _{CORE2} voltage.
D6	VO5	Р	Р	LDO5 output voltage.
A5	SW1	Р	Р	V _{CORE1} Switching node; connected to filter inductor.
A2	SW2	Р	Р	V _{CORE2} Switching node; connected to filter inductor.
C6	VO3	Р	Р	LDO3 output voltage. Can be programmed to track V _{CORE1} voltage.
B5	VFB1	I	A	V _{CORE1} Switcher analog feedback input. Connect to the V _{CORE1} output voltage.
B2	VFB2	I	A	V _{CORE2} Switcher analog feedback input. Connect to the V _{CORE2} output voltage.
C4	GPO0	0	D/OD	General Purpose Output 0. Can be programmed as a CMOS output referenced to V_{C} or as an open-drain output to a user selected voltage.
D4	GPO1	0	D/OD	General Purpose Output 1. Can be programmed as a CMOS output referenced to V_C or as an open-drain output to a user selected voltage.
D3	GPO2	0	D/OD	General Purpose Output 2. Can be programmed as a CMOS output referenced to $V_{\rm C}$ or as an open-drain output to a user selected voltage.
C2	SA1	I	D	PWI Slave Address Bit 1. Tie to Ground or V_{IN} for 0 or 1, respectively. (Note: SA0 i internal. '0' = Slave(N) = V_{CORE1} ; '1' = Slave(N+1) = V_{CORE2})
D2	SA2	1	D	PWI Slave Address Bit 2. Tie to Ground or V _{IN} for 0 or 1, respectively.
E3	SA3	I	D	PWI Slave Address Bit 3 (MSB). Tie to Ground or VIN for 0 or 1, respectively.
C5	Reserved	G	G	Must be tied to Ground. Failure to do so may result in undefined behavior.

(1)

A: Analog Pin I: Input Pin

D: Digital Pin I/O: Input/Output Pin

G: Ground Pin O: Output Pin

P: Power Pin **OD: Open Drain Output Pin**

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings (1) (2)(3)

V _{IN} pins (All V _{DD} pins)	-0.3V to +6.0V
SW1, SW2, V ₀₁ , V ₀₂ , V ₀₃ , V ₀₄ ,V ₀₅ to GND	-0.3V to +(V _{IN} +0.3)V
ENABLE, RESETN, SCLK, SA1, SA2, SA3	-0.3V to +(V _{IN} +0.3)V
SPWI, PWROK, V _{FB1} , V _{FB2} , GPO0, GPO1, GPO2	-0.3V to +(V _{IN} +0.3)V
Junction Temperature (T _{J-MAX})	+150°C
Storage Temperature Range	−65°C to +150°C
Max Continuous Power Dissipation, P _{D-MAX} ^{(4) (5)}	Internally limited
Maximum Lead Temperature (Soldering, 10 seconds)	+260°C

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings are conditions under which operation of the device is guaranteed. Operating Ratings do not imply guaranteed performance limits. For guaranteed performance limits and associated test conditions, see the Electrical Characteristics tables.

(2) All voltages are with respect to the potential at the GND pins.

(3) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

(4) The Absolute Maximum power dissipation depends on the ambient temperature and can be calculated using the formula: P = (T_J – T_A)/θ_{JA} where T_J is the junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction-to-ambient thermal resistance. Junction-to-ambient thermal resistance is highly application and board-layout dependent. In applications where high maximum power dissipation exists, special care must be paid to thermal dissipation issues in board design.

(5) Internal thermal shutdown circuitry protects the device from permanent damage. Thermal shutdown engages at $T_J=160^{\circ}C$ (typ.) and disengages at $T_J = 140^{\circ}C$ (typ.).

ESD Ratings⁽¹⁾

All pins	2kV HBM
	200V MM

The human-body model is a 100pF capacitor discharged through a 1.5kΩ resistor into each pin. The machine model is a 200pF capacitor discharged directly into each pin. MIL-STD-883 3015.7.

Operating Ratings (1) (2)

Input voltage range V _{IN}	2.7V to 4.8V
ENABLE, RESETN, PWROK	0V to V _{IN} V
SPWI, SCLK	0V to V _{O2} V
SA1, SA2, SA3	0V to V _{IN} V

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings are conditions under which operation of the device is guaranteed. Operating Ratings do not imply guaranteed performance limits. For guaranteed performance limits and associated test conditions, see the Electrical Characteristics tables.

(2) All voltages are with respect to the potential at the GND pins.

Thermal Properties

Junction Temperature (T _J)	-40°C to +125°C
Ambient Temperature (T _A) ⁽¹⁾	-40°C to +85°C
Junction-to-Ambient Thermal Resistance $(\theta_{JA})^{(2)}$	60°C/W

(1) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may have to be derated. Maximum ambient temperature (T_{A-MAX}) is dependent on the maximum operating junction temperature $(T_{J-MAX-OP})$, the maximum power dissipation of the device in the application (P_{D-MAX}), and the junction-to ambient thermal resistance of the part/package in the application (θ_{JA}), as given by the following equation: $T_{A-MAX} = T_{J-MAX-OP} - (\theta_{JA} \times P_{D-MAX})$.

(2) Junction-to-ambient thermal resistance (θ_{JA}) is taken from a thermal modeling result, performed under the conditions and guidelines set forth in the JEDEC standard JESD51–3. The test board is a 4-layer FR-4 board. Junction-to-ambient thermal resistance is highly application and board-layout dependent. In applications where high maximum power dissipation exists, special care must be paid to thermal dissipation issues in board design. The value of θ_{JA} of this product can vary significantly, depending on PCB material, layout, and environmental conditions. In applications where high maximum power dissipation exists (high V_{IN}, high I_{OUT}), special care must be paid to thermal dissipation issues. For more information on these topics, please refer to *Application Note 1112: DSBGA Wafer Level Chip Scale Package* and *Application Note 1610: LP5552 Evaluation Board*.

STRUMENTS www.ti.com

EXAS

General Electrical Characteristics⁽¹⁾ ⁽²⁾ ⁽³⁾

Unless otherwise noted, $V_{IN} = 3.6V$. Typical values and limits appearing in normal type apply for $T_J = 25^{\circ}C$. Limits appearing in **boldface** type apply over the entire junction temperature range for operation, $-40^{\circ}C \le T_J \le +125^{\circ}C$.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Q	Shutdown Supply Current	All circuits off; -40ºC ≤T _A = T _J ≤ +125ºC		1	75	
	Memory retention current in Deep Sleep (i.e., both slaves in Sleep state)	V_{CORE1} and V_{CORE2} in Sleep state; $V_{O1},V_{O2},$ and V_{O5} on, but unloaded; V_{03} and V_{O4} in low I_Q		130	350	μA
	No load supply current	All regulators active and unloaded; switching regulators in Burst-PWM		735	930	
JVLO-high	Under Voltage Lockout, high threshold			2.6	2.7	V
JVLO-low	Under Voltage Lockout, low threshold		2.5	2.6		V
Thermal Shut	down					
TSD	Threshold ⁽⁴⁾ Hysteresis ⁽⁴⁾		160 20			°C
Logic and Co	ntrol Inputs					
V _{IL}	Logic Input Low	ENABLE, RESETN, SPWI, SCLK 2.7V \leq V _{IN} \leq 4.8V			0.2	V
/IH-SIDEBAND	Logic Input High	ENABLE, RESETN 2.7V $\leq V_{IN} \leq 4.8V$	2.0			V
V _{IH-PWI}	Logic Input High	SPWI, SCLK $1.5V \le V_{O2} \le 3.3V$	V ₀₂ -0.2			V
IL	Input Leakage Current	ENABLE, RESETN 2.7V \leq V _{IN} \leq 4.8V	-1		+1	
	Input Leakage Current (Note: Largely due to pull-down resistors)	SPWI, SCLK 1.5V $\leq V_{O2} \leq$ 3.3V	-1		+5	μA
R _{PD-PWI}	Pull-down resistance for PWI signals	SPWI, SCLK	0.5	1	2	MΩ
Logic and (Control Outputs					
/ _{OL}	Logic Output Low	PWROK, SPWI, GPOx I _{SINK} ≤ 1mA			0.4	V
OH-SIDEBAND	Logic Output High	PWROK I _{SOURCE} ≤ 1mA	V _{IN} -0.4			V
/ _{OH-PWI}	Logic Output High	SPWI I _{SOURCE} ≤ 1mA	V _{O2} -0.4			V
OH-GPOx	Logic Output High	GPOx, GPOs set for CMOS out I _{SOURCE} ≤ 1mA	V _{O2} -0.4			V
/ _{OD-GPOx}	Maximum Open-Drain High Voltage	GPOx			V _{IN} +0.3	V
GPO	GPO Source/Sink Current			1		mA
ENL	Minimum ENABLE low pulse time		100			nS
Γ _{RSTL}	Minimum RESETN low pulse time		100			nS

All voltages are with respect to the potential at the GND pins. (1)

All limits are guaranteed by design, test and/or statistical analysis. All electrical characteristics having room-temperature limits are tested during production with $T_J = 25^{\circ}$ C. All hot and cold limits are guaranteed by correlating the electrical characteristics to process and (2) temperature variations and applying statistical process control. Capacitors: Low-ESR Multi-Layer Ceramic Capacitors are (MLCCs) used in setting electrical characteristics.

(3)

(4) Guaranteed specifically by design.

www.ti.com

Output Specification (1) (2)

Supply	Output Voltage Range (V)	Default Output Voltage (V)	Output Voltage Resolution (mV)	I _{MAX} Maximum Output Current (mA)	Typical Application
V _{CORE1}	0.6 to 1.235	1.235	5	800	Voltage Scaling Domain 1
V _{CORE2}	0.6 to 1.235	1.235	5	800	Voltage Scaling Domain 2
LDO1	0.7 to 2.2	1.2	100	100	PLL/Fixed Logic
LDO2	1.5 to 3.3	3.3	100-300	250	I/O Ring
LDO3	0.6 to 1.35	1.25	50	50	Embedded Memory Domain 1
LDO4	0.6 to 1.35	1.25	50	50	Embedded Memory Domain 2
LDO5	1.2 to 3.3	3.3	100-300	250	Peripheral(s)

(1)

All voltages are with respect to the potential at the GND pins. Capacitors: Low-ESR Multi-Layer Ceramic Capacitors are (MLCCs) used in setting electrical characteristics. (2)

V_{CORE1}/V_{CORE2} Switchers 1 and 2 Output Voltage Characteristics

Unless otherwise noted, $V_{IN} = 3.6V$. Typical values and limits appearing in normal type apply for $T_J = 25^{\circ}C$. Limits appearing in **boldface** type apply over the entire junction temperature range for operation, $-40^{\circ}C$ to $+125^{\circ}C$. ⁽¹⁾ ⁽²⁾ ⁽³⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{OUT} Accuracy	Output voltage, Static accuracy	$0.65V \le V_{OUT} \le 1.235V$ $I_{OUT} = 0 - 800mA$	-2		+2	0/
	Output voltage, Static accuracy	$0.60V \le V_{OUT} \le 0.65V$ $I_{OUT} = 0 - 800mA$	-4		+4	%
V _{OUT} Range	Programmable Output Voltage Range	$0mA \le I_{OUT} \le 800mA$	0.6	1.235 (default)	1.235	V
ΔV _{OUT}	Line regulation	$2.7V \le V_{IN} \le 4.8V,$ $I_{OUT} = 100mA$		0.05		%/V
	Load regulation	$100mA \le I_{OUT} \le 800mA$		0.001		%/mA
T _{SCALING}	V _{OUT} Setting Time	From min to max output voltage I _{OUT} = 400mA			30	μS
l _Q	Quiescent current	No Load, Burst-PWM Mode		325		μA
R _{DS-ON(P)}	P-FET resistance	$V_{IN} = V_{SG} = 3.6V$		255		mΩ
R _{DS-ON(N)}	N-FET resistance	$V_{IN} = V_{GS} = 3.6V$		135		mΩ
I _{OUT}	Continuous load current		0		800	mA
I _{LIM}	Peak switching current limit		850	1200	1560	mA
η	Efficiency peak	I_{OUT} = 200mA, V_{IN} = 2.7V, V_{COREx} = 1.235V		88		%
f _{OSC}	Oscillator frequency	PWM-mode	3.45	3.6	3.75	MHz
C _{OUT}	Output Filter Capacitance	$0mA \le I_{OUT} \le 800mA$	7	10	13	μF
	Output Capacitor ESR		0		20	mΩ
L	Output Filter Inductance	$0mA \le I_{OUT} \le 800mA$	0.7	1.0	1.3	μH
t _{SS}	Soft start ramp time			120		μs
t _{START-UP}	Start-Up Time from V _{COREx} enable to V _{OUT}	V _{COREx} = 1.235V, unloaded		200		μs

(1) All voltages are with respect to the potential at the GND pins.

All limits are guaranteed by design, test and/or statistical analysis. All electrical characteristics having room-temperature limits are tested during production with $T_J = 25^{\circ}$ C. All hot and cold limits are guaranteed by correlating the electrical characteristics to process and (2) temperature variations and applying statistical process control.

Capacitors: Low-ESR Multi-Layer Ceramic Capacitors are (MLCCs) used in setting electrical characteristics. (3)

V₀₁ LDO1 Output Voltage Characteristics

Unless otherwise noted, $V_{IN} = 3.6V$, $V_{OUT} = 1.2V$ (default). Typical values and limits appearing in normal type apply for $T_J = 25^{\circ}$ C. Limits appearing in **boldface** type apply over the full operating junction temperature range, -40° to +125°C. ^{(1) (2) (3)}

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{OUT} Accuracy	Output Voltage	$1mA \le I_{OUT} \le 100mA$, $2.7V \le V_{IN} \le 4.8V$	-2		2	%
V _{OUT} Range	Programmable Output Voltage Range	0mA ≤ I _{OUT} ≤ 100mA 16 steps of 100mV	0.7	1.2 (default)	2.2	V
I _{OUT}	Output Current	$2.7V \le V_{IN} \le 4.8V$			100	0
	Output Current Limit	$V_{O1} = 0V$ (i.e., tied to Ground)			400	mA
l _Q	Quiescent Current ⁽⁴⁾	I _{OUT} = 50mA		19		μA
ΔV _{OUT}	Line Regulation	$2.7V \le V_{IN} \le 4.8V$ $I_{OUT} = 50mA$	-0.1		0.1	%/V
	Load Regulation	$1\text{mA} \le I_{\text{OUT}} \le 100\text{mA}$	-0.005		0.005	%/mA
	Line Transient Regulation	$V_{IN} = 3.9V \rightarrow 3.6V \rightarrow 3.9V$ $T_{RISE} = T_{FALL} = 10\mu S$		10		mV
	Load Transient Regulation	$\label{eq:VIN} \begin{array}{l} V_{IN}=3.6V\\ I_{OUT}=10mA{\rightarrow}90mA{\rightarrow}10mA\\ T_{RISE}=T_{FALL}=10\mu S \end{array}$		60		mV
e _N	Output Noise Voltage	$10Hz \le f \le 100kHz$ $C_{OUT} = 2.2\mu F$		100		μVRMS
PSRR	Power Supply Ripple Rejection	f = 1kHz C _{OUT} = 2.2µF		50		- E
	Ratio	f = 10kHz $C_{OUT} = 2.2\mu F$		40		dB
C _{OUT}	Output Capacitance	0mA ≤ I _{OUT} ≤ 100mA	1	2.2	20	μF
	Output Capacitor ESR		5		500	mΩ
t _{START-UP}	Start-Up Time from LDO1 enable	$C_{OUT} = 2.2 \mu F$, $I_{OUT} = 100 mA$		50		μs

(1) All voltages are with respect to the potential at the GND pins.

(2) All limits are guaranteed by design, test and/or statistical analysis. All electrical characteristics having room-temperature limits are tested during production with T_J = 25°C. All hot and cold limits are guaranteed by correlating the electrical characteristics to process and temperature variations and applying statistical process control.

(3) Capacitors: Low-ESR Multi-Layer Ceramic Capacitors are (MLCCs) used in setting electrical characteristics.

(4) Quiescent currents for LDO1 through LDO5 do not include shared blocks such as the bandgap reference.

V₀₂ LDO2 (I/O Supply) Output Voltage Characteristics

Unless otherwise noted, $V_{IN} = 3.6V$, $I_{OUT} = 125$ mA, $V_{O2} = 3.3V$. Typical values and limits appearing in normal type apply for $T_J = 25^{\circ}$ C. Limits appearing in **boldface** type apply over the full operating junction temperature range, -40 to +125^{\circ}C. ⁽¹⁾ ⁽²⁾ ⁽³⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{OUT} Accuracy	Output Voltage	$1mA \le I_{OUT} \le 250mA$, $3.6V \le V_{IN} \le 4.8V$	-2		2	%
V _{OUT} Range	Programmable Output Voltage Range	1.5 through 2.3 in 100mV steps, 2.5, 2.8, 3.0V and 3.3V	1.5	3.3 (default)	3.3	V
I _{OUT}	Output Current	$(V_{O2} + 0.4)V \le V_{IN} \le 4.8V$			250	0
	Output Current Limit	V _{O2} = 0V (i.e., tied to Ground)			800	mA
V _{IN} - V _{O2}	Dropout Voltage (4)	I _{OUT} = 125mA		70	260	mV
l _Q	Quiescent Current ⁽⁵⁾	I _{OUT} = 125mA		19		μA

(1) All voltages are with respect to the potential at the GND pins.

(2) All limits are guaranteed by design, test and/or statistical analysis. All electrical characteristics having room-temperature limits are tested during production with T_J = 25°C. All hot and cold limits are guaranteed by correlating the electrical characteristics to process and temperature variations and applying statistical process control.

(3) Capacitors: Low-ESR Multi-Layer Ceramic Capacitors are (MLCCs) used in setting electrical characteristics.

(4) Dropout voltage is the input-to-output voltage difference at which the output voltage is 100mV below its nominal value. Other parameters are not guaranteed when the LDO is in dropout. This specification applies only when the output voltage is greater than 2.7V.
 (5) Ourseast currents for LDO1 through LDO5 do not include shared blocks such as the bodges reference.

(5) Quiescent currents for LDO1 through LDO5 do not include shared blocks such as the bandgap reference.

www.ti.com

V_{o2} LDO2 (I/O Supply) Output Voltage Characteristics (continued)

Unless otherwise noted, $V_{IN} = 3.6V$, $I_{OUT} = 125$ mA, $V_{O2} = 3.3V$. Typical values and limits appearing in normal type apply for $T_J = 25^{\circ}$ C. Limits appearing in **boldface** type apply over the full operating junction temperature range, -40 to +125^{\circ}C. ⁽¹⁾ ⁽²⁾ ⁽³⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Units
ΔV _{OUT}	Line Regulation	$(V_{O2} + 0.4)V \le V_{IN} \le 4.8V$ $I_{OUT} = 125mA$	-0.1		0.1	%/V
	Load Regulation	$V_{IN} = 3.6V$ 1mA $\leq I_{OUT} \leq 250$ mA	-0.005		+0.005	%/mA
	Line Transient Regulation	$V_{IN} = 4.0V \rightarrow 3.6V \rightarrow 4.0V$ $V_{O2} = 3.3V$ $T_{RISE} = T_{FALL} = 10\mu S$		10		mV
	Load Transient Regulation	$\begin{array}{l} V_{\text{IN}}=3.6V\\ I_{\text{OUT}}=25\text{mA}{\rightarrow}225\text{mA}{\rightarrow}25\text{mA}\\ T_{\text{RISE}}=T_{\text{FALL}}=1\mu\text{S} \end{array}$		125		mV
PSRR	Power Supply Ripple Rejection	f = 1 kHz $C_{OUT} = 4.7 \mu F$		55		dB
	Ratio	f = 10kHz $C_{OUT} = 4.7\mu F$		40		uБ
C _{OUT}	Output Capacitance	$0mA \le I_{OUT} \le 250mA$	2	4.7	20	μF
	Output Capacitor ESR	1	5		500	mΩ
t _{START-UP}	Start-Up Time from LDO2 enable	$C_{OUT} = 4.7 \mu F$, $I_{OUT} = 250 m A$		50		μs

(6) V_{IN} for line transient is above the default 3.6V to allow for 400mV of headroom from V_{IN} to V_{OUT} .

V₀₃/V₀₄ LDO3 and LDO4 Output Voltage Characteristics

Unless otherwise noted, $V_{IN} = 3.6V$. Typical values and limits appearing in normal type apply for $T_J = 25^{\circ}C$. Limits appearing in boldface type apply over the full operating junction temperature range, -40 to +125°C. ⁽¹⁾ (2) (3)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{OUT} Accuracy	Active/Independent, High I _Q	$I_{OUT} \le 50$ mA, 2.7V $\le V_{IN} \le 4.8$ V Low I_Q bit is cleared	-2.5		2.5	- %
	Active/Independent, Low I _Q	$I_{OUT} \le 5mA$, 2.7V $\le V_{IN} \le 4.8V$ Low I_Q bit is cleared	-2.5		2.5	~ %
V _{OFFSET}	$\begin{array}{l} \mbox{Active state offset from tracked} \\ \mbox{V}_{CORE} \\ \mbox{Offset} = \mbox{V}_{O3} - \mbox{V}_{FB1} \\ \mbox{Offset} = \mbox{V}_{O4} - \mbox{V}_{FB2} \end{array}$	$\begin{array}{l} 0\text{mA} \leq \text{I}_{\text{OUT}} \leq 50\text{mA}, \ \text{V}_{\text{FB}} = 0.9\text{V} \\ 2.7\text{V} \leq \text{V}_{\text{IN}} \leq 4.8\text{V} \end{array}$	0	25	70	mV
V _{OUT} Range	Programmable Output Voltage Range	16 steps of 50mV	0.6	1.25(defau lt)	1.35	V
l _Q	Quiescent Current ⁽⁴⁾	Active state/Tracking mode $I_{OUT} = 10\mu A$ Low I_Q bit is set		35		
		Sleep state or Active/Independent mode $I_{OUT} = 10\mu A$ Low I_Q bit is set		10		μΑ

(1) All voltages are with respect to the potential at the GND pins.

(2) All limits are guaranteed by design, test and/or statistical analysis. All electrical characteristics having room-temperature limits are tested during production with T_J = 25°C. All hot and cold limits are guaranteed by correlating the electrical characteristics to process and temperature variations and applying statistical process control.

- (3) Capacitors: Low-ESR Multi-Layer Ceramic Capacitors are (MLCCs) used in setting electrical characteristics.
- (4) Quiescent currents for LDO1 through LDO5 do not include shared blocks such as the bandgap reference.

STRUMENTS www.ti.com

XAS

V₀₃/V₀₄ LDO3 and LDO4 Output Voltage Characteristics (continued)

Unless otherwise noted, $V_{IN} = 3.6V$. Typical values and limits appearing in normal type apply for $T_J = 25^{\circ}C$. Limits appearing in boldface type apply over the full operating junction temperature range, -40 to +125°C. ^{(1) (2) (3)}

Symbol	Parameter	Conditions	Min	Тур	Max	Units
I _{OUT}	Output Current Low I _Q bit is cleared	$2.7V \le V_{IN} \le 4.8V$		50		
	Output Current Limit Active state/Tracking	$2.7V \le V_{IN} \le 4.8V$		50		
	Output Current Sleep state/Tracking, Low I _Q bit is set	$2.7V \le V_{IN} \le 4.8V$		5		mA
	Output Current, Independent, Low I _Q bit is set	$2.7V \le V_{IN} \le 4.8V$		5		
	Output Current Limit	V _{O2} = 0V (i.e., tied to Ground)			420	
PSRR	Power Supply Ripple Rejection Ratio	f = 1 kHz $C_{OUT} = 1.0 \mu F$		37		dB
C _{OUT}	Output Capacitance	0mA ≤ I _{OUT} ≤ 5mA	0.75	1	2.2	μF
	Output Capacitor ESR		5		500	mΩ
t _{START-UP}	Start-Up Time from LDOx enable	$C_{OUT} = 1.0 \mu F$, $I_{OUT} = 20 m A$		50		μs

V₀₅ LDO5 Output Voltage Characteristics

Unless otherwise noted, $V_{IN} = 3.6V$, $I_{OUT} = 125$ mA, $V_{O2} = 3.3V$. Typical values and limits appearing in normal type apply for $T_J = 25^{\circ}$ C. Limits appearing in boldface type apply over the full operating junction temperature range, -40 to +125°C. ^{(1) (2) (3)}

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{OUT} Accuracy	Output Voltage	$1\text{mA} \le I_{\text{OUT}} \le 250\text{mA}, V_{\text{O2}} = 3.3\text{V}$ $3.6\text{V} \le V_{\text{IN}} \le 4.8\text{V}$	-2		2	%
V _{OUT} Range	Programmable Output Voltage Range	1.2 through 2.3 in 100mV steps, 2.5, 2.8, 3.0V, and 3.3V	1.2	3.3 (default)	3.3	V
I _{OUT}	Output Current	$(V_{O5} + 0.4)V \le V_{IN} \le 4.8V$			250	~ ^
	Output Current Limit	$V_{O5} = 0V$ (i.e., tied to Ground)			800	mA
V _{IN} - V _{O5}	Dropout Voltage (4)	I _{OUT} = 125mA		70	260	mV
l _Q	Quiescent Current ⁽⁵⁾	I _{OUT} = 125mA		19		μΑ
ΔV _{OUT}	Line Regulation	$(V_{O5} + 0.4)V \le V_{IN} \le 4.8V$ $I_{OUT} = 125mA$	-0.1		0.1	%/V
	Load Regulation	$V_{IN} = 3.6V$ 1mA $\leq I_{OUT} \leq 250$ mA	-0.005		0.005	%/mA
	Line Transient Regulation	$V_{\text{IN}} = 4.0V \rightarrow 3.6V \rightarrow 4.0V$ $V_{\text{O5}} = 3.3V$ $T_{\text{RISE}} = T_{\text{FALL}} = 10\mu\text{S}$		10		m)/
	Load Transient Regulation	$\begin{array}{l} V_{\text{IN}}=3.6V\\ I_{\text{OUT}}=25\text{mA}{\rightarrow}225\text{mA}{\rightarrow}25\text{mA}\\ T_{\text{RISE}}=T_{\text{FALL}}=1\mu\text{S} \end{array}$		125		mV
PSRR	Power Supply Ripple Rejection	f = 1 kHz $C_{\text{OUT}} = 4.7 \mu \text{F}$		55		dB
	Ratio	f = 10kHz $C_{OUT} = 4.7\mu F$		40		uБ

(1) All voltages are with respect to the potential at the GND pins.

(2) All limits are guaranteed by design, test and/or statistical analysis. All electrical characteristics having room-temperature limits are tested during production with T_J = 25°C. All hot and cold limits are guaranteed by correlating the electrical characteristics to process and temperature variations and applying statistical process control.

(3) Capacitors: Low-ESR Multi-Layer Ceramic Capacitors are (MLCCs) used in setting electrical characteristics.

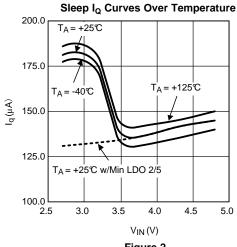
(4) Dropout voltage is the input-to-output voltage difference at which the output voltage is 100mV below its nominal value. Other parameters are not guaranteed when the LDO is in dropout. This specification applies only when the output voltage is greater than 2.7V.

- (5) Quiescent currents for LDO1 through LDO5 do not include shared blocks such as the bandgap reference.
- (6) V_{IN} for line transient is above the default 3.6V to allow for 400mV of headroom from V_{IN} to V_{OUT} .

10 Submit Documentation Feedback

www.ti.com

V₀₅ LDO5 Output Voltage Characteristics (continued)

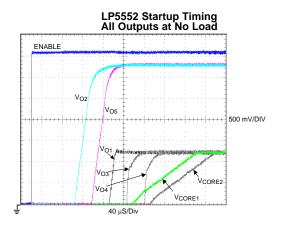
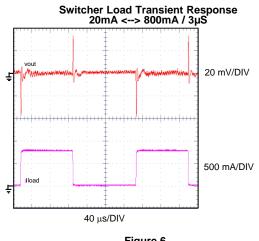
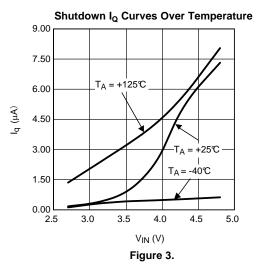
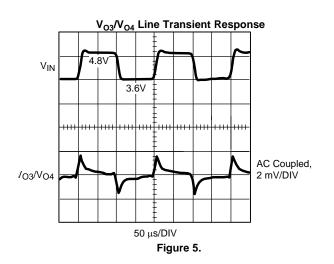

Unless otherwise noted, $V_{IN} = 3.6V$, $I_{OUT} = 125$ mA, $V_{O2} = 3.3V$. Typical values and limits appearing in normal type apply for $T_J = 25^{\circ}$ C. Limits appearing in boldface type apply over the full operating junction temperature range, -40 to +125°C. ^{(1) (2) (3)}

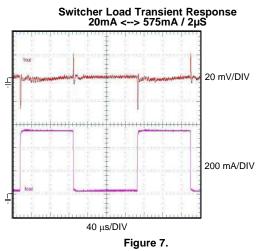
Symbol	Parameter	Conditions	Min	Тур	Max	Units
C _{OUT}	Output Capacitance	$0mA \le I_{OUT} \le 250mA$	2	4.7	20	μF
	Output Capacitor ESR		5		500	mΩ
t _{START-UP}	Start-Up Time from LDO5 enable	$C_{OUT} = 4.7 \mu F$, $I_{OUT} = 250 mA$		50		μs

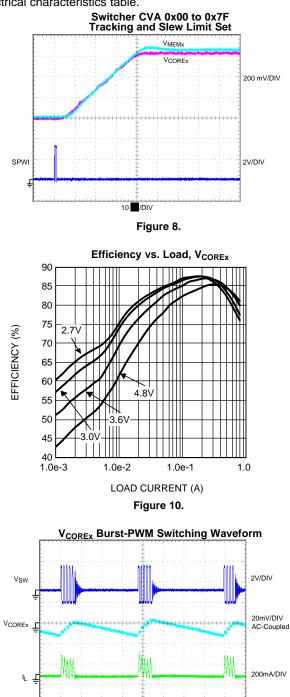
www.ti.com

Typical Performance Characteristics - LP5552

Unless otherwise specified: $V_{IN} = 3.6V$, $T_A = 25^{\circ}C$, output voltages and external components are default values specified in electrical characteristics table.

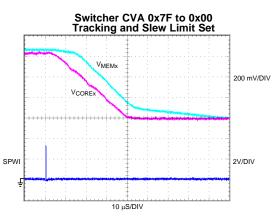






Figure 4.

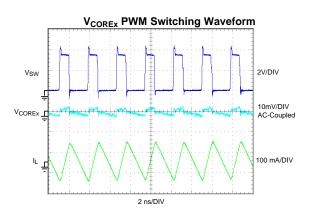

TEXAS INSTRUMENTS

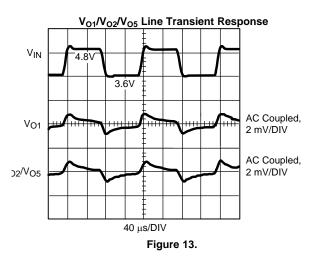
SNVS474E - SEPTEMBER 2006 - REVISED MARCH 2013

www.ti.com

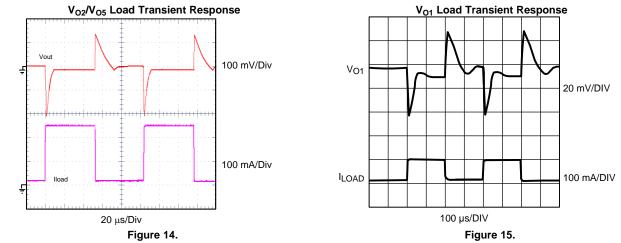

Typical Performance Characteristics - LP5552 (continued)

Unless otherwise specified: $V_{IN} = 3.6V$, $T_A = 25^{\circ}C$, output voltages and external components are default values specified in electrical characteristics table.




2 /DIV

LP5552


TEXAS INSTRUMENTS

www.ti.com

SNVS474E - SEPTEMBER 2006 - REVISED MARCH 2013

Typical Performance Characteristics - LP5552 (continued)

Unless otherwise specified: $V_{IN} = 3.6V$, $T_A = 25^{\circ}C$, output voltages and external components are default values specified in electrical characteristics table.

LP5552 PWI Register Map

The PWI 2.0 standard defines 32 8-bit base registers, and up to 256 8-bit extended registers, on each PWI slave. The table below summarizes these registers and shows default register bit values after reset, as programmed by the factory. The following sub-sections provide additional details on the use of each individual register.

	Slave Address [N]										
Base Registers											
Register	Register	Register Usage	Туре	Reset	Reset Default Value						
Address	Name			7	6	5	4	3	2	1	0
0x00	R0	Core Voltage 1 Switcher #1	R/W	0 *	1	1	1	1	1	1	1
0x01	R1	Memory Voltage 1 Independent Mode	R/W	0 *	1	1	0	1	0 *	0 *	0 *
0x02	R2	LDO3 Memory Retention Voltage 1 Sleep State	R/W	0 *	1	1	0	1	0 *	0 *	0 *
0x03	R3	Status Register 1	R/O	0 *	0 *	0 *	0 *	1 *	1 *	1 *	1 *
0x04	R4	Device Capability Register 1	R/O	0	0	0	0	0	0	1	0
0x05	R5	Not Implemented	N/A	-	-	-	-	-	-	-	-
0x06	R6	Not Implemented	N/A	-	-	-	-	-	-	-	-
0x07	R7	LDO2 voltage (I/O voltage)	R/W	0 *	1	1	1	1	0 *	0 *	0 *
0x08	R8	LDO1 voltage	R/W	0 *	0	1	0	1	0 *	0 *	0 *
0x09	R9	LDO5 voltage	R/W	0 *	1	1	1	1	0 *	0 *	0 *
0x0A	R10	Enable Control 1	R/W	0 *	1 V _{CORE1} Enable	1 LDO3 Enable	1 LDO2 Enable	1 LDO1 Enable	1 LDO5 Enable	0*	0 Force PWM Switcher #1
0x0B	R11	Not Implemented	N/A	-	-	-	-	-	-	-	-
0x0C	R12	GPO Data Register	R/W	0 *	0 *	0 *	0 *	0 *	0 GP2	0 GP1	0 GP0
0x0D	R13	Miscellaneous Control 1	R/W	0*	0*	0*	0*	1 GPO Open Drain Select	0 SW1 Slew Control	0 LDO3 Track Select	0 LDO3 Low IQ Bit
0x0E-0x1E	R14-R30	Not Implemented	N/A	-	-	-	-	-	-	-	-
0x1F	R31	Reserved Do not write to	Res.	-	-	-	-	-	-	-	-
				Extend	led Registe	rs		*			- ·
0x00-0xFF	ER0- ER255	Extended Register Space Not Implemented	N/A	-	-	-	-	-	-	-	-

www.ti.com

				Slave	Address [N	+1]					
Base Registers											
Register	Register	Register Usage	Туре	Reset	Default Va	lue ⁽¹⁾					
Address	Name			7	6	5	4	3	2	1	0
0x00	R0	Core Voltage 2 Switcher #2	R/W	0 *	1	1	1	1	1	1	1
0x01	R1	Memory Voltage 2 Independent Mode	R/W	0 *	1	1	0	1	0 *	0 *	0*
0x02	R2	LDO4 Memory Retention Voltage 2 Sleep State	R/W	0 *	1	1	0	1	0 *	0 *	0 *
0x03	R3	Status Register 2	R/O	0 *	0 *	0 *	0 *	1 *	1 *	1 *	1*
0x04	R4	Device Capability Register 2	R/O	0	0	0	0	0	0	1	0
0x05-0x09	R5-R9	Not Implemented	N/A	-	-	-	-	-	-	-	-
0x0A	R10	Enable Control 2	R/W	0*	1 V _{CORE2} Enable	1 LDO4 Enable	0*	0*	0*	0*	0 Force PWM Switcher #2
0x0B-0x0C	R11-R12	Not Implemented	N/A	-	-	-	-	-	-	-	-
0x0D	R13	Miscellaneous Control 2	R/W	0 *	0*	0*	0*	0*	0 SW2 Slew Control	0 LDO4 Track Select	0 LDO4 Low IQ Bit
0x0E-0x1F	R14-R31	Not Implemented	N/A	-	-	-	-	-	-	-	-
				Exten	ded Registe	ers					
0x00-0xFF	ER0- ER255	Extended Register Space Not Implemented	N/A	-	-	-	-	-	-	-	-

(1) Note: A bit with an asterisk (*) denotes a register bit that is always read as a fixed value. Writes to these bits will be ignored. A bit with a hyphen (-) denotes a bit in an unimplemented register location. A write into unimplemented register(s) will be ignored. A read of an unimplemented register(s) will produce a "No response frame". Please refer to PWI specification version 2.0 for further information.

Slave Address [N] - 1st Slave Device R0 - V_{CORE1} - Core Voltage 1

Address	0x00
Slave Address	Ν
Туре	R/W
Reset Default	8h'7F

Bit	Field Name	Description or Comment			
7	Sign	This bit is fixed to '0'. Reading this bit will result in a '0'. Any data written into this bit position using the Register Write command is ignored.			
6:0 Voltage		Programmed voltage value. Default value is in bold.			
		Voltage Data Code [6:0]	Voltage Value (V)		
		7h'00	0.60		
		7h'xx	Linear scaling		
		7h'7F	1.235 (default)		

www.ti.com

R1 - V_{O3} - LDO3 Memory Voltage 1 - Independent Mode

Address	0x01
Slave Address	Ν
Туре	R/W
Reset Default	8h'68

Bit	Field Name	Description or Comment				
7	Sign	This bit is fixed to '0'. Reading this bit will result in a '0'. Any data written into this bit position Register Write command is ignored.				
6:3	Voltage	Programmed voltage value. A code of all ones indicates maximum voltage while a code of all zero indicates minimum voltage. Default value is in bold .				
		Voltage Data Code [6:3]	Voltage Value (volts)			
		4h'0	0.60			
		4h'1	0.65			
		4h'2	0.70			
		4h'3	0.75			
		4h'4	0.80			
		4h'5	0.85			
		4h'6	0.90			
		4h'7	0.95			
		4h'8	1.00			
		4h'9	1.05			
		4h'A	1.10			
		4h'B	1.15			
		4h'C	1.20			
		4h'D	1.25 (default)			
		4h'E	1.30			
		4h'F	1.35			

TEXAS INSTRUMENTS

www.ti.com

R2 - V_{O3} - LDO3 Memory Retention Voltage 1 - Sleep State Value

Address	0x02
Slave Address	Ν
Туре	R/W
Reset Default	8h'68

Bit	Field Name	Description or Comment	Description or Comment					
7	Sign	This bit is fixed to '0'. Reading this bit will result in a '0'. Any data written into this bit position using the Register Write command is ignored.						
6:3	Voltage	Programmed voltage value. A code of all ones indicates maximum voltage while a code of all zero indicates minimum voltage. Default value is in bold .						
		Voltage Data Code [6:3]	Voltage Value (volts)					
		4h'0	0.6					
		4h'1	0.65					
		4h'2	0.70					
		4h'3	0.75					
		4h'4	0.80					
		4h'5	0.85					
		4h'6	0.90					
		4h'7	0.95					
		4h'8	1.00					
		4h'9	1.05					
		4h'A	1.10					
		4h'B	1.15					
		4h'C	1.20					
		4h'D	1.25 (default)					
		4h'E	1.30					
		4h'F	1.35					
2:0	Unused	These bits are fixed to '0'. Reading these bits will res the Register Write command is ignored.	sult in a '000'. Any data written into these bits usi					

R3 - Status Register 1

Bit	Field Name	Description or Comment
Reset Default		h'0F
Туре	R	ead Only
Slave Address		
Address	0:	x03

Bit	Field Name	Description or Comment
7:4	Unused	Unused, read returns 0.
3:0	Unused	Unused, read returns 1.

Copyright © 2006–2013, Texas Instruments Incorporated

SNVS474E - SEPTEMBER 2006 - REVISED MARCH 2013

R4 - Device Capability Register 1

Slave Address N Type Read Only Reset Default 8h'02	Address	0x04	
	Slave Address	Ν	
Reset Default 8h'02	Туре	Read Only	
	Reset Default	8h'02	

Bit	Field Name	Description or Comment
7:3	Optional Function Support	Extended Register Read and Write are not supported by LP5552, read returns '0'.
3:0	Version	Read transaction will return 0x2 indicating PWI 2.0 specification. Write transactions to this register are ignored.

R7 - V₀₂ - LDO2 Voltage

Address	0x07
Slave Address	Ν
Туре	R/W
Reset Default	8h'78

Bit	Field Name	Description or Comment	
7	Sign	This bit is fixed to '0'. Reading this bit will result in a '0'. Any data written into this bit position using the Register Write command is ignored.	
6:3	Voltage	Programmed voltage value. A code of all ones indicate indicates minimum voltage. Default value is in bold.	tes maximum voltage while a code of all zero
		Voltage Data Code [6:3]	Voltage Value (volts)
		4h'0	1.5
		4h'1	1.5
		4h'2	1.5
		4h'3	1.5
		4h'4	1.6
		4h'5	1.7
		4h'6	1.8
		4h'7	1.9
		4h'8	2.0
		4h'9	2.1
		4h'A	2.2
		4h'B	2.3
		4h'C	2.5
		4h'D	2.8
		4h'E	3.0
		4h'F	3.3 (default)

www.ti.com

R8 - V₀₁ - LDO1 Voltage

Address	0x08
Slave Address	Ν
Туре	R/W
Reset Default	8h'28

Bit	Field Name	Description or Comment	
7	Sign	This bit is fixed to '0'. Reading this bit will result in a '0'. Any data written into this bit position using the Register Write command is ignored.	
6:3	Voltage	Programmed voltage value. A code of all ones indication indicates minimum voltage. Default value is in bold .	tes maximum voltage while a code of all zero
		Voltage Data Code [6:3]	Voltage Value (volts)
		4h'0	0.7
		4h'1	0.8
		4h'2	0.9
		4h'3	1.0
		4h'4	1.1
		4h'5	1.2 (default)
		4h'6	1.3
		4h'7	1.4
		4h'8	1.5
		4h'9	1.6
		4h'A	1.7
		4h'B	1.8
		4h'C	1.9
		4h'D	2.0
		4h'E	2.1
		4h'F	2.2

www.ti.com

R9 - V₀₅ - LDO5 Voltage

Address	0x09
Slave Address	Ν
Туре	R/W
Reset Default	8h'78

Bit	Field Name	Description or Comment	
7	Sign	This bit is fixed to '0'. Reading this bit will result in a '0'. Any data written into this bit position using the Register Write command is ignored.	
6:3	Voltage	Programmed voltage value. A code of all ones indication indicates minimum voltage. Default value is in bold .	tes maximum voltage while a code of all zero
		Voltage Data Code [6:3]	Voltage Value (volts)
		4h'0	1.2
		4h'1	1.3
		4h'2	1.4
		4h'3	1.5
		4h'4	1.6
		4h'5	1.7
		4h'6	1.8
		4h'7	1.9
		4h'8	2.0
		4h'9	2.1
		4h'A	2.2
		4h'B	2.3
		4h'C	2.5
		4h'D	2.8
		4h'E	3.0
		4h'F	3.3 (default)

www.ti.com

R10 - Enable Control Register 1

Address	0x0A
Slave Address	Ν
Туре	R/W
Reset Default	8h'7C

Bit	Field Name	Description or Comment
7	Unused	This bit is fixed to '0'. Reading this bit will result in a '0'. Any data written into this bit position using the Register Write command is ignored.
6	R0, Core Voltage 1 Enable	1 : regulator is enabled (default) 0 : regulator is disabled
5	R2, LDO3 Voltage Enable	1 : regulator is enabled (default) 0 : regulator is disabled
4	R7, LDO2 Voltage Enable	1 : regulator is enabled (default) 0 : regulator is disabled
3	R8, LDO1 Voltage Enable	1 : regulator is enabled (default) 0 : regulator is disabled
2	R9, LDO5 Voltage Enable	1 : regulator is enabled (default) 0 : regulator is disabled
1	Unused	This bit is fixed to '0'. Reading this bit will result in a '0'. Any data written into this bit position using the Register Write command is ignored.
0	Forced PWM Mode – Switcher #1	 0 : Intelligent and Automatic PWM/Burst-PWM Transition - Most Energy Efficient (default) 1 : Forced PWM - No Burst Mode Allowed - Smallest Voltage Ripple

R12 - GPO Data Register

Address	0x0C
Slave Address	Ν
Туре	R/W
Reset Default	8h'00

Bit	Field Name	Description or Comment
7:3	Unused	These bits are fixed to '0'. Reading these bits will result in a '00000'. Any data written into these bits using the Register Write command is ignored.
2	GPO2	General purpose output - digital. This bit is drives the GP2 pin
1	GPO1	General purpose output - digital. This bit is drives the G1 pin
0	GPO0	General purpose output - digital. This bit is drives the GP0 pin

www.ti.com

R13 - Misc Control Register 1

Address	0x0D
Slave Address	Ν
Туре	R/W
Reset Default	8h'08

Bit	Field Name	Description or Comment
7:4	Unused	These bits are fixed to '0'. Reading these bits will result in a '0000'. Any data written into these bits using the Register Write command is ignored.
3	GPO Open Drain Select	'0': GPOs will behave as push-pull CMOS outputs referenced to VO2 '1': GPOs will act as open-drain outputs (default)
2	SW1 Slew Control	'0': No slew rate restriction on VCORE1 switcher output voltage (default)'1': Slew rate of VCORE1 switcher output voltage is reduced
1	LDO3 Tracking Select	'0': LDO3 at R1 register value in Active mode. LDO3 does not track VCORE1 (default) '1': LDO3 tracks VCORE1 with offset
0	LDO3 Low I _Q Bit	 '0': Selects the higher bias point for LDO3 which results in 50mA operation (default) '1': Selects the lower bias point for LDO3 which results in 5mA operation See Table 3 for a more detailed explanation of this bit

R31 - Reserved

Address	0x1F
Slave Address	Ν
Туре	Reserved
Reset Default	8h'00

Bit	Field Name	Description or Comment
7:0	Reserved	This register is reserved. The user should avoid accessing this register to prevent undefined behavior of the LP5552.

Slave Address [N+1] - 2nd Slave Device - R0 - V_{CORE2} - Core Voltage 2

Address	0x00
Slave Address	N + 1
Туре	R/W
Reset Default	8h'7F

Bit	Field Name	Description or Comment	
7	Sign	This bit is fixed to '0'. Reading this bit will result in a '0'. Any data written into this bit position using the Register Write command is ignored.	
6:0	Voltage	Programmed voltage value. Default value is in bold.	
		Voltage Data Code [6:0]	Voltage Value (V)
		7h'00	0.60
		7h'xx	Linear scaling
		7h'7F	1.235 (default)

Texas Instruments

www.ti.com

R1 - V_{O4} - LDO4 Memory Voltage 2 - Independent Mode

Address	0x01
Slave Address	N + 1
Туре	R/W
Reset Default	8h'68

Bit	Field Name	Description or Comment	
7	Sign	This bit is fixed to '0'. Reading this bit will result in a '0'. Any data written into this bit position using the Register Write command is ignored.	
6:3	Voltage	Programmed voltage value. A code of all ones indicates maximum voltage while a code of all zero indicates minimum voltage. Default value is in bold .	
		Voltage Data Code [6:3]	Voltage Value (volts)
		4h'0	0.60
		4h'1	0.65
		4h'2	0.70
		4h'3	0.75
		4h'4	0.80
		4h'5	0.85
		4h'6	0.90
		4h'7	0.95
		4h'8	1.00
		4h'9	1.05
		4h'A	1.10
		4h'B	1.15
		4h'C	1.20
		4h'D	1.25 (default)
		4h'E	1.30
		4h'F	1.35

R2 - V_{O4} - LDO4 Memory Retention Voltage 2 - Sleep State Value

Address	0x02
Slave Address	N + 1
Туре	R/W
Reset Default	8h'68

Bit	Field Name	Description or Comment	
7	Sign	This bit is fixed to '0'. Reading this bit will result in a '0'. Any data written into this bit position using th Register Write command is ignored.	
6.3	Voltage	Programmed voltage value. A code of all ones indicates maximum voltage while a code of all zero indicates minimum voltage. Default value is in bold .	
		Voltage Data Code [6:3]	Voltage Value (volts)
		4h'0	0.6
		4h'1	0.65
		4h'2	0.70
		4h'3	0.75
		4h'4	0.80
		4h'5	0.85
		4h'6	0.90
		4h'7	0.95
		4h'8	1.00
		4h'9	1.05
		4h'A	1.10
		4h'B	1.15
		4h'C	1.20
		4h'D	1.25 (default)
		4h'E	1.30
		4h'F	1.35
2:0	Unused	These bits are fixed to '0'. Reading these bits will res the Register Write command is ignored.	sult in a '000'. Any data written into these bits usir

R3 - Status Register 2

Address	0x03
Slave Address	N + 1
Туре	Read Only
Reset Default	8h'0F

Bit	Field Name	Description or Comment	
7:4	Unused	Unused, read returns 0.	
3:0	Unused	Unused, read returns 1.	

www.ti.com

R4 - Device Capability Register 2

Address	0x04
Slave Address	N + 1
Туре	Read Only
Reset Default	8h'02

Bit	Field Name	Description or Comment
7:3	Optional Function Support	Extended Register Read and Write are not supported by LP5552, read returns '0'.
2:0	Version	Read transaction will return 0x2 indicating PWI 2.0 specification. Write transactions to this register are ignored.

R10 - Enable Control Register 2

Address	0x0A
Slave Address	N + 1
Туре	R/W
Reset Default	8h'60

Bit	Field Name	Description or Comment		
7	Unused	This bit is fixed to '0'. Reading this bit will result in a '0'. Any data written into this bit position using the Register Write command is ignored.		
6	R0, Core Voltage 2 Enable	: regulator is enabled (default) : regulator is disabled		
5	R2, LDO4 Voltage Enable	1 : regulator is enabled (default) 0 : regulator is disabled		
4:1	Unused	These bits are fixed to '0'. Reading these bits will result in a '000'. Any data written into these bits u the Register Write command is ignored.		
0	Forced PWM Mode - Switcher #2	0 : Intelligent and Automatic PWM/Burst-PWM Transition - Most Energy Efficient (default) 1 : Forced PWM - No Burst Mode Allowed - Smallest Voltage Ripple		

R13 - Misc Control Register 2

Address	0x0D
Slave Address	N + 1
Туре	R/W
Reset Default	8h'00

Bit	Field Name	Description or Comment	
7:3	Unused	These bits are fixed to '0'. Reading these bits will result in a '00000'. Any data written into these bits using the Register Write command is ignored.	
2	SW2 Slew Control	0': No slew rate restriction on VCORE1 switcher output voltage (default) 1': Slew rate of VCORE1 switcher output voltage is reduced	
1	LDO4 Tracking Select	'0': LDO4 at R1 register value in Active mode. LDO4 does not track V_{CORE2} (default) '1': LDO4 tracks V_{CORE2} with offset	
0	LDO4 Low I _Q Bit	'0': Selects the higher bias point for LDO4 which results in 50mA operation (default) '1': Selects the lower bias point for LDO4 which results in 5mA operation See Table 3 for a more detailed explanation of this bit	

SNVS474E - SEPTEMBER 2006 - REVISED MARCH 2013

LP5552 Operation

GENERAL DESCRIPTION

The LP5552 is a PowerWise Interface (PWI) 2.0 compliant energy management unit (EMU) for application or baseband processors in mobile phones and other portable equipment. It operates cooperatively with processors using National Semiconductor's Advanced Power Controller (APC) to provide Adaptive Voltage Scaling (AVS) which drastically improves efficiencies compared to conventional power delivery methods. The LP5552 consists of two high-efficiency switching DC/DC buck converters to supply two voltage scaling domains, and five LDOs for supplying additional support circuitry.

VOLTAGE SCALING

The LP5552 is designed to be used in a voltage scaling system to lower the power dissipation of the system. By scaling supply voltage with the clock frequency of a processor, dramatic power savings can be achieved. Two types of voltage scaling are supported, dynamic voltage scaling (DVS) and adaptive voltage scaling (AVS). Both Switcher 1 and Switcher 2 support AVS and DVS modes. DVS systems switch between pre-characterized voltages, which are paired to clock frequencies used for frequency scaling in the processor. AVS systems track the processor performance and optimize the supply voltage to the required performance. AVS is a closed loop system that provides process and temperature compensation such that for any given processor, temperature, or clock frequency, the minimum supply voltage is delivered.

POWERWISE INTERFACE

What follows is only a brief description of the parts of the PWI 2.0 spec that are relevant to the LP5552. Please see the PWI 2.0 spec for a complete description.

To support DVS and AVS, the LP5552 is programmable via the low-power, 2-wire PowerWise Interface (PWI). This serial interface controls the various voltages and states of all the regulators in the LP5552.

Both slaves in the LP5552 support the full PWI command set, other than the optional Extended Register Read and Write, as described in the PWI 2.0 specification:

- Core Voltage Adjust
- Reset
- Sleep
- Shutdown
- Wakeup
- Register Read
- Register Write
- Authenticate

The 2-wire PWI interface is composed of the SCLK and SPWI pins on the LP5552. SCLK is always an input to the LP5552 and should be driven by a PowerWise master in the system. The SCLK clock rate can operate from 32kHz – 15MHz. SPWI is the bi-directional serial data line. It can drive a 50pF line and meet timing standards for a 15MHz PWI bus. Both signals are referenced to the voltage present at V_{O2}, the LDO2 output voltage. Both signals contain an internal pull-down resistor of ~1M Ω , in accordance with the PWI 2.0 specification.

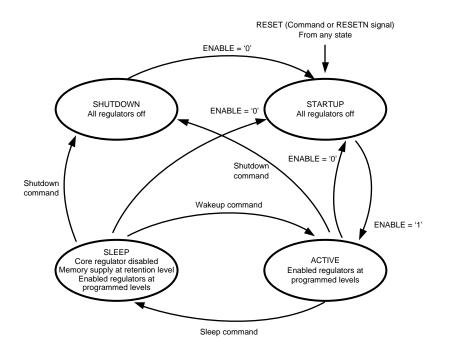
SLAVE ADDRESSING DESCRIPTION

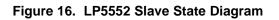
PWI 2.0 supports up to 16 logical slaves in the same system. Four slave address bits are included at the start of every PWI communications frame to identify which slave is being targeted by the PWI master. The LP5552 contains 2 logical slaves in its package. The 3 MSBs of the LP5552's slave address are set by the SA1, SA2, and SA3 pins. They are actively decoded by the LP5552 on every transaction. The LSB of the slave address is hard-wired inside the LP5552. Slave 'N' will always be located at SA[0] = 0, and slave 'N+1' will always exist at SA[0] = 1. As an example, if we were to tie SA1 = SA3 = VDD and SA2 = GND in our system, then the LP5552's slave 'N' would be located at SA[3:0] = 0xA and slave 'N+1' would be SA[3:0] = 0xB.

CONTROL AND STATUS SIGNALS

The LP5552 implements all 3 of the PWI 2.0 control and status signals. ENABLE and RESETN are inputs to the LP5552 that allow for power-up and power-down sequencing, as well as resetting the EMU to a known state. Both ENABLE and RESETN must be a logic '1' during normal operation. PWROK is an indicator to the system that the LP5552 is in regulation and power is stable. Its output is dependent upon the state of the two slave devices. See Table 1, "PWROK Value Per Slave State," below for details. All 3 signals are asynchronous signals.

Table 1. PWROK Va	alue Per	Slave State
-------------------	----------	-------------


		SLAVE (N+1)			
		STARTUP	ACTIVE	SLEEP	SHUTDOWN
SLAVE (N)	STARTUP	0	1	1	0
	ACTIVE	1	1	1	1
	SLEEP	1	1	1	1
	SHUTDOWN	0	1	1	0


General Purpose Outputs

The LP5552 contains 3 digital output pins that can be used as the system designer sees fit. By default, they are configured as open-drain outputs, outputting a logic '0'. They can be changed to a push-pull CMOS output by clearing Slave 'N', R13[3]. In the open-drain configuration, they can be referenced to any voltage less than the VDD of the LP5552. The push-pull output mode will reference the high-side to the voltage of LDO2.

SLAVE OPERATING STATES

Each slave in the LP5552 has four operating states: Startup, Active, Sleep, and Shutdown. (Figure 16.)

The Startup state is the default state for both slaves after reset. All regulators are off and PWROK output is a '0'.

SNVS474E-SEPTEMBER 2006-REVISED MARCH 2013

The device will move to the Active state when the external ENABLE and RESETN signals are both pulled high. After the state transition completes, both slaves will be in the Active state, but each slave will maintain its own independent state thereafter.

The default, factory-programmed power-up sequence of the LP5552 can be seen in Figure 17. From the global ENABLE of the chip, there is ~80uS of time for powering on and stabilizing internal support circuitry. Once this time has expired, the start-up time slots begin. Table 2 shows the time slots that each regulator begins in. Note that for the switchers, there is an additional ~75uS of set-up time from the beginning of the time slot until the soft-start ramp begins.

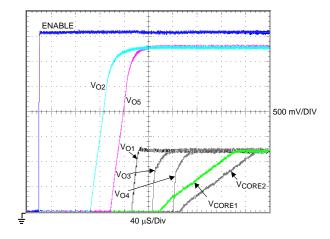


Figure 17. LP5552 Startup Timing

Table 2.	Factory	Programmed	Startup	Time Slots
----------	---------	------------	---------	------------

Time slot	Start time (μS)	Regulator(s)
0	0	LDO2
1	32	LDO5/AVS1
2	64	LDO1/AVS2
3	96	LDO3
4	128	LDO4

In the Active state, all regulators that are enabled are on, and their outputs are defined by their programmed register values. If the Active state has been reached from the Startup state, the regulators will be programmed to their default value. In the Active state, the PWI master has complete control over the LP5552's operation. The PWROK output is '1' if either slave is in this state.

The Sleep state is entered by issuing the Sleep command on the PWI bus. The core regulator of the addressed slave, and the associated memory LDO will both respond to the Sleep command. For the first 32uS after the command is decoded, the core regulator will transition to its zero-code value of 0.6V, and the LDO will move to its POR value of 1.25V. After the 32uS has expired, the core regulator will be turned off and the LDO will transition to its memory retention value as programmed in register R2. See Figure 18. LDO1, LDO2, and LDO5 are unaffected by the Sleep command and will maintain their programmed values. They may be turned off manually, if desired. The LP5552 will still respond to all PWI traffic as long as LDO2 remains active.

www.ti.com

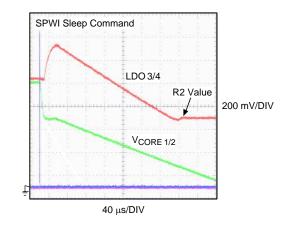


Figure 18. Sleep Behavior of Core and Memory

A slave may return to the Active state by issuing the Wakeup command. This will result in the core regulator turning on after a ~75uS delay and a soft-start ramp. It will wake up at its maximum value of 1.235V. The associated memory LDO will go to its default POR value of 1.25V until the core has reached the end of its soft-start period and then will transition to its programmed configuration (i.e., either tracking the core or to the value programmed in R1). See Figure 19. The PWROK output is '1' if either slave is in this state.

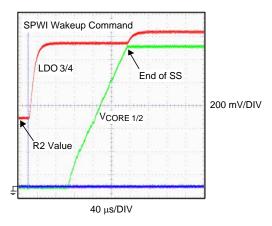


Figure 19. Wakeup Behavior of Core and Memory

The Shutdown command will place the addressed slave in the Shutdown state. This command may be issued to any slave in either the Active or Sleep states. All regulators within that state will turn off. The LP5552 holds out one exception to this rule. LDO1, LDO2, and LDO5 act as a shared resource between the two slave devices in the EMU. Therefore, placing just slave 'N' into Shutdown will not turn off these regulators even though their registers exist within that space. Slave 'N' can be in the Shutdown state, but as long as Slave 'N+1' is still in either Active or Sleep states, these shared LDOs will remain on, and PWI traffic will be decoded. Once the Shutdown command has been sent to both slaves, all regulators on the LP5552 will be turned off. The PWROK signal will be '0' if both slaves are in the Shutdown state. The only way to transition away from the Shutdown state is by disabling or resetting the LP5552. By taking the ENABLE pin or the RESETN pin low, the LP5552 will transition to the Startup state.

Power-down sequencing is not actively managed by the LP5552 logic, but can be handled by turning off regulators in the desired order within the application, prior to Shutdown.

www.ti.com

PWM/BURST-PWM OPERATION

The switching regulators in the LP5552 have two modes of operation, pulse width modulation (PWM) and "Burst"-PWM. In PWM, the converter switches at 3.6MHz. Each period can be split into two cycles. During the first cycle, the high-side switch is on and the low-side switch is off. During this cycle, the inductor current is rising. In the second cycle, the high-side switch is off and the low-side switch is on causing the inductor current to decrease. The output ripple voltage is lowest in PWM mode. As the load current decreases, the converter efficiency becomes worse due to switching losses. The LP5552 will automatically transition to Burst mode at light load current levels. The exact transition point is dependent upon the present operating environment, and the mode assessment is constantly evaluated. The transition is approximately equal to:

$$I_{PWM/Burst-PWM} \approx \frac{V_{OUT}}{V_{IN}} \times \frac{V_{IN} - V_{OUT}}{2 \times L \times f_{S}}$$
(1)

In this mode, the output voltage will be allowed to coast with no switching action by the regulator. When the output voltage dips to 1% below nominal, the switches are enabled, the voltage is boosted back up to the programmed value, and the coast process repeats itself. If the user desires tighter control of the output voltage, at the expense of light-load efficiency, the switchers can be commanded to stay in PWM-only mode by setting bit 0 of R10 in the slave's registers.

CURRENT LIMITING

A current limit feature exists for all regulators to help protect the LP5552 and external components during overload conditions. The switcher's current limit feature will trip around 1.2A (typ). Once the fault has occurred and current limit has been entered, the switcher will not resume operation until the output current has decreased to a hysteretic low-level set point. Normal operation will proceed after the fault has been cleared. Likewise, the LDOs all implement current limit and will turn off their pass element when their trip point is reached. Please refer to the Electrical Characteristics section for details.

SOFT START

Both switching regulators implement a digital soft-start feature to limit in-rush current during the Startup to Active state transition. The voltage output of the switchers will be gradually increased to the default value of 1.235V. An unloaded switcher output will reach its final value in 120μ S (typ.) while a fully loaded switcher – 800mA -- will reach its output in 135μ S (typ). Because the LP5552 uses voltage increments to handle soft-start, its turn-on time is less dependent on output capacitance and load current than regulators that gradually increase current limit to implement soft-start.

LDO2

The on-board LDO2 regulator has special significance to the LP5552. All digital data on the SCLK, SPWI, and the GPOx pins while in push-pull mode, is referenced to this voltage. This regulator is used internally to power the I/O drivers. As such, this regulator must be on in order to communicate with the LP5552. The user should ensure that this regulator does not go into dropout or PWI communication will most likely not be possible. If it is not desirable to use this regulator in the system, the user can turn this regulator off by setting bit 4 of R10 in Slave 'N' during system initialization while back-driving the required I/O voltage onto the pin.

TRACKING, SLEW RATE LIMITING, AND LOW IQ BITS

There are 3 bits in each slave's R13 register that determine the performance and operational behavior of the V_{COREx} and V_{O3}/V_{O4} outputs. Their significance and interaction is described below.

The Low I_Q bit setting in R13, bit 0, of each slave allows the selection of a lower I_Q bias point at the expense of decreased output current capability for V_{O3} and V_{O4} . At reset, the default setting is high I_Q mode (i.e., bit 0 is cleared) which results in a 50mA output capability for the associated LDO. If bit 0 is set, the quiescent current draw of the part will decrease, but the output current capability of the associated LDO will drop to 5mA. Setting V_{O3} and V_{O4} up for low I_Q mode is useful in situations where just a trickle of current is required, such as when maintaining some type of low-power memory.

The Tracking bit, bit 1 in R13, determines whether or not the LDO3 voltage will track the V_{CORE1} voltage in Slave 'N'. Slave 'N+1' has its own tracking bit which will determine whether LDO4 tracks V_{CORE2} . Each slave device can be independently configured to tracking or independent mode. When set to operate independently, LDO3 and LDO4 will maintain a voltage output equal to the programmed value of R1 while in the Active state. When set to operate in tracking mode, LDO3 and LDO4 will track the output voltage of their associated switcher, attempting to maintain approximately a 25mV positive offset.

There is some interaction between the Low I_Q and Tracking bits based on the state of the slave device, and that is detailed in the following table:

	Input	Output	
Tracking, R13[1] Low I _Q , R13[0]		State	LDO3/LDO4 Capability
0	0	Active	50mA
0	0	Sleep	50mA
0	1	Active	5mA
0	1	Sleep	5mA
1	0	Active	50mA
1	0	Sleep	50mA
1	1	Active	50mA
1	1	Sleep	5mA

Table 3. Tracking, IQ Bit, Slave State Truth Table

The final bit, the Slew Rate Limiting bit (R13[2]), places a limit on how fast the output voltage of the V_{COREx} regulators can change. If slew rate limiting is not enabled while in tracking mode (i.e., R13[2] is cleared), then the switcher will achieve its new programmed value faster than the tracking LDO can change its output. By setting the Slew Rate Limiting bit, the LP5552 will attempt to keep the positive offset of the tracking LDO in relation to the V_{COREx} output.

For AVS systems, the expected configuration is to have all 3 bits, R13[2:0] set to '1'. It generally will not make sense to set the Slew Rate Limiting bit while not in tracking mode. Setting all 3 bits will result in a system which has the following properties:

- 1. The tracking LDO will maintain positive offset from V_{COREx} in Active state.
- 2. Tracking LDO will be 50mA output capable in Active state, and 5mA capable in Sleep state.

(3)

(4)

www.ti.com

SNVS474E - SEPTEMBER 2006 - REVISED MARCH 2013

Application Hints

SWITCHERS

Input Capacitors

The input capacitor to a switching regulator supplies the AC switching current drawn from the switching action of the internal power FETs. The input current of a buck converter is discontinuous, so the ripple current supplied by the input capacitor is large. The input capacitor must be rated to handle this current:

$$I_{\text{RMS}_\text{CIN}} = I_{\text{OUT}} \frac{\sqrt{V_{\text{OUT}} \times (V_{\text{IN}} - V_{\text{OUT}})}}{V_{\text{IN}}}$$
(A) (2)

The power dissipated in the input capacitor is given by:

 $P_{D_{CIN}} = I_{RMS_{CIN}}^2 \times R_{ESR_{CIN}} (W)$

The input capacitor must be rated to handle both the RMS current and the dissipated power. A 10µF ceramic capacitor, rated to handle at least 10V, is recommended for each PVDDx/PGNDx pair.

Inductor

A 1μ H inductor should be used for the switchers' output filter. The inductor should be rated to handle the peak load current plus the ripple current:

Table 4. Suggested Inductors and Their Suppliers

Model	Vendor	Dimensions LxWxH (mm)	DCR (Typical)
LPS3010-102	Coilcraft	3.0 x 3.0 x 1.0	85mΩ
LQM31PN1R0MC0	muRata	3.2 x 1.6 x 0.5	140mΩ

Output Capacitors

The switchers in the LP5552 are designed to be used with 10μ F of capacitance in the output filter. It is recommended that a 10μ F ceramic capacitor, rated to handle at least 10V, and comprised of X5R dielectric material, be chosen. The output capacitor of a switching regulator absorbs the AC ripple current from the inductor and provides the initial response to a load transient. The ripple voltage at the output of the converters is the product of the ripple current flowing through the output capacitor and the impedance of the capacitor. The impedance of the capacitor can be dominated by capacitive, resistive, or inductive elements within the capacitor or the PCB interconnect, depending upon the frequency of the ripple current. Ceramic capacitors are predominantly used in portable systems and have very low ESR and should remain capacitive given good PCB layout practices. The switcher peak-to-peak output voltage ripple in steady state can be calculated as:

$$V_{PP} = I_{LPP} \left(R_{ESR} + \frac{1}{F_{S} \times 8 \times C_{OUT}} \right)$$

(5)

Table 5. Suggested Switcher Output Capacitors and Their Suppliers

Model	Vendor	Value	Туре	Voltage	Case Size (Height)
GRM219R61A106KE44	muRata	10µF	Ceramic, X5R	10V	0805 (0.85mm)
LMK212BJ106KD	Taiyo Yuden	10µF	Ceramic, X5R	10V	0805 (0.85mm)

www.ti.com

A NOTE ABOUT CAPACITORS

Capacitors are typically specified by their manufacturers as a particular value +/-X%. These specified values are only valid for a particular test condition that is often not applicable to the final application circuit. If you were to take a ceramic 10 μ F capacitor in 0805 package and measure it with an LCR meter, a typical result would be around 7 μ F. This is before you even insert the capacitor into the application circuit. Capacitance will decrease with increasing frequency and DC bias point, and will generally vary with temperature. A typical 6.3V, 10 μ F, 0603 capacitor may only be providing 4 - 5 μ F of capacitance when used as the output capacitor in the switching regulators' loop filter. It is highly recommended that measurements be done on your selected capacitor(s) to ensure you have the proper amount of capacitance.

LDOs

Input Capacitors

While not mandatory, it is highly recommended that some input capacitance be provided for the DVDDx and AVDDx pins. Typical values may be in the $0.1 - 1.0\mu$ F range. These capacitors will provide bypass for the LP5552 control electronics and LDOs.

Output Capacitors

The output capacitor of an LDO sets a low frequency pole and a high frequency zero in the control loop of an LDO, as well as providing the initial response for a load transient. The capacitance and the equivalent series resistance (ESR) of the capacitor must be within a specified range to meet stability requirements. The LDOs in the LP5552 are designed to be used with ceramic output capacitors. The following table can be used to select suitable output capacitors:

	Output Capacitance Range (Recommended Typical Value)	ESR Range						
LDO1	1.0μF — 20μF (2.2μF)	5mΩ - 500mΩ						
LDO2	2.0μF — 20μF (4.7μF)	5mΩ - 500mΩ						
LDO3	0.7μF — 2.2μF (1.0μF)	5mΩ - 500mΩ						
LDO4	0.7μF — 2.2μF (1.0μF)	5mΩ - 500mΩ						
LDO5	2.0μF — 20μF (4.7μF)	5mΩ - 500mΩ						

 Table 6. LDO Output Capacitor Selection Guide

Dropout Voltages

All linear regulators are subject to dropout. Dropout Voltage is the minimum voltage required across the regulator $(V_{IN} - V_{OUT})$ to maintain a constant, specified output voltage. The LP5552 has a V_{IN} range of 2.7V – 4.8V. V_{O1} , V_{O3} , and V_{O4} cannot be programmed to a level that would make dropout a factor. However, V_{O2} and V_{O5} can reach as high as 3.3V on their outputs. Both of those regulators have a dropout voltage of 260mV (MAX). To ensure proper operation of those regulators, the user should ensure that $V_{IN} \ge (V_{Ox-PROGRAMMED} + 260mV)$. If a regulator does go into dropout, the output voltage will start to track the input: $V_O = V_{IN} - V_{DROPOUT}$. Also, the PSRR will go to zero, meaning any noise on the input will be seen at the output.

BOARD LAYOUT CONSIDERATIONS

PC board layout is an important part of DC-DC converter design. Poor board layout can disrupt the performance of a DC-DC converter and surrounding circuitry by contributing to EMI, ground bounce, and resistive voltage loss in the traces. These can send erroneous signals to the DC-DC converter IC, resulting in poor regulation or instability. It is highly recommended that the user consult Application Note AN-1610 for detailed guidelines and best methods for PCB layout of the LP5552. It is also recommended that the user reference AN-1112 for information on the DSBGA package and its requirements.

REVISION HISTORY

Cł	nanges from Revision D (March 2013) to Revision E	Page
•	Changed layout of National Data Sheet to TI format	34

11-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	•	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing		Qty	(2)		(3)		(4)	
LP5552TL/NOPB	ACTIVE	DSBGA	YZR	36	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 125	SLKB	Samples
LP5552TLX/NOPB	ACTIVE	DSBGA	YZR	36	1000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 125	SLKB	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

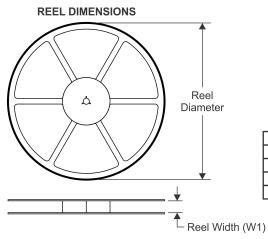
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

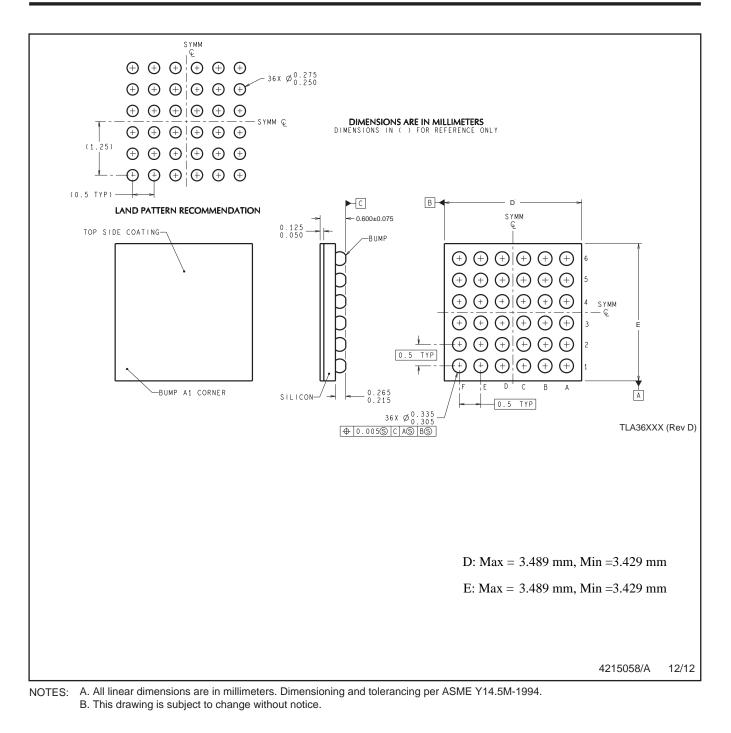
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LP5552TL/NOPB	DSBGA	YZR	36	250	178.0	12.4	3.63	3.63	0.76	8.0	12.0	Q1
LP5552TLX/NOPB	DSBGA	YZR	36	1000	178.0	12.4	3.63	3.63	0.76	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION


21-Mar-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LP5552TL/NOPB	DSBGA	YZR	36	250	210.0	185.0	35.0
LP5552TLX/NOPB	DSBGA	YZR	36	1000	210.0	185.0	35.0

YZR0036

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated