

LM160/LM360 High Speed Differential Comparator

Check for Samples: LM160, LM360

FEATURES

- Ensured high speed: 20 ns max
- Tight delay matching on both outputs
- Complementary TTL outputs
- High input impedance
- Low speed variation with overdrive variation
- Fan-out of 4
- Low input offset voltage
- Series 74 TTL compatible

DESCRIPTION

The LM160/LM360 is a very high speed differential input, complementary TTL output voltage comparator with improved characteristics over μΑ760/μΑ760C, for which it is a pin-for-pin replacement. The device has been optimized for greater speed, input impedance and fan-out, and lower input offset voltage. Typically delay varies only 3 ns for overdrive variations of 5 mV to 400 mV.

Complementary outputs having minimum skew are provided. Applications involve high speed analog to digital convertors and zero-crossing detectors in disk file systems.

CONNECTION DIAGRAMS

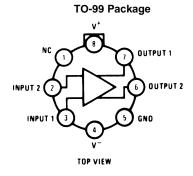


Figure 1. Package Number LMC0008C (1)

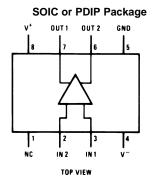


Figure 2. Package Number D0008A or P0008E

(1) Also available in SMD# 5962-8767401

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

Absolute Maximum Ratings (1) (2)

	0-				
Positive Supply Voltage		+8V			
Negative Supply Voltage		-8V			
Peak Output Current	Peak Output Current				
Differential Input Voltage	±5V				
Input Voltage	$V^+ \ge V_{IN} \ge V^-$				
ESD Tolerance (3)		1600V			
Operating Temperature	LM160	−55°C to +125°C			
Range	LM360	0°C to +70°C			
Storage Temperature Range	−65°C to +150°C				
Lead Temperature	(Soldering, 10 sec.)	260°C			
Soldering Information					
PDIP Package	Soldering (10 seconds)	260°C			
SOIC Package	Vapor Phase (60 seconds)	215°C			
	Infrared (15 seconds)	220°C			
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.					

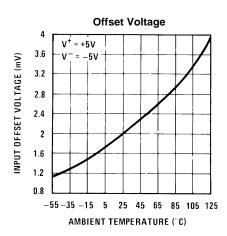
The device may be damaged if used beyond the maximum ratings.

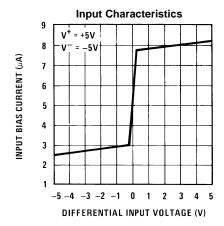
Submit Documentation Feedback

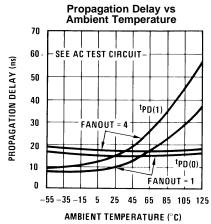
⁽²⁾ (3) Refer to RETS 160X for LM160H, LM160J-14 and LM160J military specifications. Human body model, 1.5 k Ω in series with 100 pF.

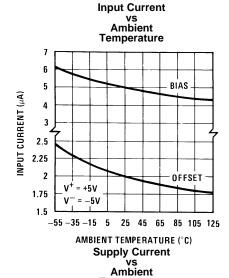
Electrical Characteristics

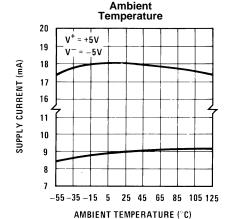
 $(T_{MN} \leq T_A \leq T_{MAX})$

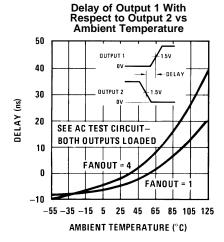

Parameter	Conditions	Min	Тур	Max	Units
Operating Conditions	25.13.115.13		.,,,,		
Supply Voltage V _{CC} ⁺		4.5	5	6.5	V
Supply Voltage V _{CC} ⁻		-4.5	-5	-6.5	V
Input Offset Voltage	R _S ≤ 200Ω		2	5	mV
Input Offset Current	- C		0.5	3	μA
Input Bias Current			5	20	μA
Output Resistance (Either Output)	V _{OUT} = V _{OH}		100		Ω
Response Time	$T_A = 25^{\circ}C$, $V_S = \pm 5V^{(1)}$ (2)		13	25	ns
	$T_A = 25$ °C, $V_S = \pm 5V^{(3)}$ (2)		12	20	ns
	$T_A = 25^{\circ}C$, $V_S = \pm 5V^{(4)(2)}$		14		ns
Response Time Difference between Outputs					
$(t_{pd} \text{ of } +V_{IN1}) - (t_{pd} \text{ of } -V_{IN2})$	$T_A = 25^{\circ}C^{(1)(2)}$		2		ns
$(t_{pd} \text{ of } +V_{IN2}) - (t_{pd} \text{ of } -V_{IN1})$	$T_A = 25^{\circ}C^{(1)(2)}$		2		ns
$(t_{pd} \text{ of } +V_{IN1}) - (t_{pd} \text{ of } +V_{IN2})$	$T_A = 25^{\circ}C^{(1)(2)}$		2		ns
$(t_{pd} \text{ of } -V_{IN1}) - (t_{pd} \text{ of } -V_{IN2})$	$T_A = 25^{\circ}C^{(1)(2)}$		2		ns
Input Resistance	f = 1 MHz		17		kΩ
Input Capacitance	f = 1 MHz		3		pF
Average Temperature Coefficient of Input Offset Voltage	$R_S = 50\Omega$		8		μV/°C
Average Temperature Coefficient of Input Offset Current			7		nA/°C
Common Mode Input Voltage Range	V _S = ±6.5V	±4	±4.5		V
Differential Input Voltage Range		±5			V
Output High Voltage (Either Output)	$I_{OUT} = -320 \mu A, V_S = \pm 4.5 V$	2.4	3		V
Output Low Voltage (Either Output)	I _{SINK} = 6.4 mA		0.25	0.4	V
Positive Supply Current	$V_S = \pm 6.5 V$		18	32	mA
Negative Supply Current	$V_S = \pm 6.5 V$		-9	-16	mA

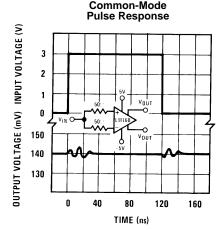

 ⁽¹⁾ Response time measured from the 50% point of a 30 mVp-p 10 MHz sinusoidal input to the 50% point of the output.
 (2) Measurements are made in AC Test Circuit, Fanout = 1

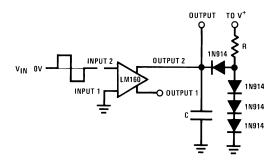

Submit Documentation Feedback Product Folder Links: LM160 LM360


⁽³⁾ (4) Response time measured from the 50% point of a 2 Vp-p 10 MHz sinusoidal input to the 50% point of the output. Response time measured from the start of a 100 mV input step with 5 mV overdrive to the time when the output crosses the logic threshold.

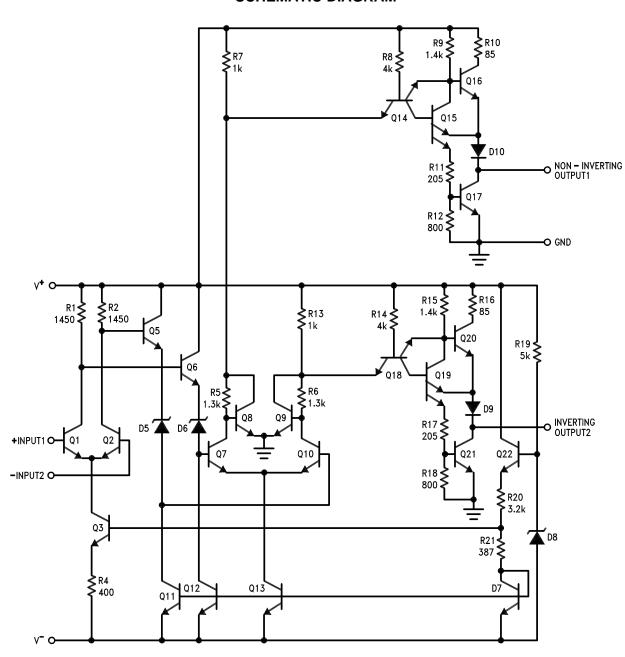

Typical Performance Characteristics






Typical Performance Characteristics (continued) Common-Mode Pulse Response

Submit Documentation Feedback


AC TEST CIRCUIT

 V_{IN} =±50 mV FANOUT=1 FANOUT=4 V^{+} =+5V R=2.4k R=630 Ω V=-5V C=15 pF C=30 pF

SCHEMATIC DIAGRAM

SNOSBJ4C -MAY 1999-REVISED MARCH 2013

REVISION HISTORY

Ch	nanges from Revision B (March 2013) to Revision C	Page
•	Changed layout of National Data Sheet to TI format	

1-Nov-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing		Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
	(1)		Drawing		۳.,	(2)	(6)	(3)		(4/5)	
LM360M	NRND	SOIC	D	8	95	TBD	Call TI	Call TI	0 to 70	LM	
										360M	
LM360M/NOPB	ACTIVE	SOIC	D	8	95	Green (RoHS	SN CU SN	Level-1-260C-UNLIM	0 to 70	LM	Samples
						& no Sb/Br)				360M	Sattiples
LM360MX	NRND	SOIC	D	8	2500	TBD	Call TI	Call TI	0 to 70	LM	
										360M	
LM360MX/NOPB	ACTIVE	SOIC	D	8	2500	Green (RoHS	SN CU SN	Level-1-260C-UNLIM	0 to 70	LM	c 1
						& no Sb/Br)	, , , , ,			360M	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

PACKAGE OPTION ADDENDUM

1-Nov-2013

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 26-Mar-2013

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM360MX	SOIC	D	8	2500	330.0	12.4	6.5	5.4	2.0	8.0	12.0	Q1
LM360MX/NOPB	SOIC	D	8	2500	330.0	12.4	6.5	5.4	2.0	8.0	12.0	Q1

www.ti.com 26-Mar-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM360MX	SOIC	D	8	2500	367.0	367.0	35.0
LM360MX/NOPB	SOIC	D	8	2500	367.0	367.0	35.0

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>