

40V Extended Temperature Range, Precision Single-Supply, Rail-to-Rail Output, Operational Amplifier

ISL28118M

The ISL28118M is a single, low-power precision amplifier optimized for single-supply applications over the extended temperature range of -55 $^{\circ}$ C to +125 $^{\circ}$ C. This device features a common mode input voltage range extending to 0.5V below the V- rail, a rail-rail differential input voltage range for use as a comparator, and rail-to-rail output voltage swing, which makes it ideal for single-supply applications where input operation at ground is important.

The ISL28118M features low power, low offset voltage, and low temperature drift, making it the ideal choice for applications requiring both high DC accuracy and AC performance. The op amp is designed to operate over a single supply range of 3V to 4OV or a split supply voltage range of +1.8V/-1.2V to ±20V. The combination of precision and small footprint provides the user with outstanding value and flexibility relative to similar competitive parts.

Applications include precision instrumentation, data acquisition, precision power supply controls, and industrial controls

The ISL28118M is offered in the 8 Ld MSOP package and operate over the extended temperature range of -55 $^{\circ}$ C to +125 $^{\circ}$ C.

Features

- Below-Ground (V-) Input Capability to -0.5V
- Rail-to-Rail Input Differential Voltage Range for Comparator Applications
- Single-Supply Range 3V to 40V
- Low Current Consumption850µA
- Low Noise Voltage 5.6nV/√Hz
- Low Input Offset Voltage...... 150µV Max.
- • Superb Offset Voltage Temperature Drift.. . . 1.2 μ V/ °C, Max.
- Operating Temperature Range.....55°C to +125°C
- No Phase Reversal

Applications

- · Precision Instruments
- · Medical Instrumentation
- Data Acquisition
- Power Supply Control
- Industrial Process Control

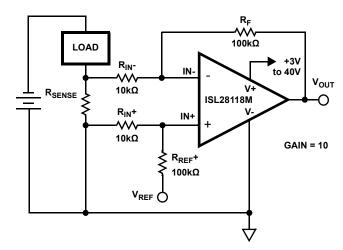


FIGURE 1. TYPICAL APPLICATION: SINGLE-SUPPLY, LOW-SIDE CURRENT SENSE AMPLIFIER

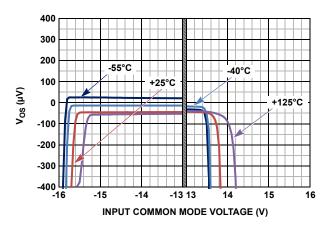
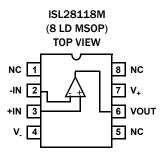
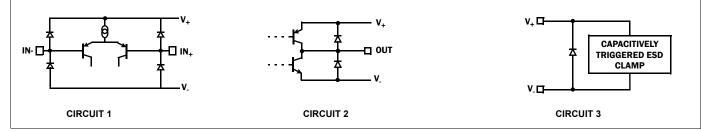




FIGURE 2. INPUT OFFSET VOLTAGE vs INPUT COMMON MODE VOLTAGE, -40°C to +125°C, V_c = ±15V

Pin Descriptions

ISL28118M (8 LD MSOP)	PIN NAME	EQUIVALENT CIRCUIT	DESCRIPTION
3	+IN	1	Amplifier A non-inverting input
2	-IN	1	Amplifier A inverting input
6	VOUT	2	Amplifier A output
4	V-	3	Negative power supply
7	V+	3	Positive power supply
1, 5, 8	NC	-	No Connect

Ordering Information

PART NUMBER (Notes 1, 2, 3)	PART MARKING	TEMPERATURE RANGE (°C)	PACKAGE (Pb-Free)	PKG. DWG. #
ISL28118MUZ	8118M	-55 to +125	8 Ld MSOP	M8.118

NOTES:

- 1. Add "-T*" suffix for tape and reel. Please refer to TB347 for details on reel specifications.
- These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte
 tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil
 Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
- 3. For Moisture Sensitivity Level (MSL), please see device information pages for ISL28118M. For more information on MSL, please see Technical Brief ISL28118M. For more information on MSL, please see Technical Brief ISL28118M. For more information on MSL, please see Technical Brief ISL28118M. For more information on MSL, please see Technical Brief ISL28118M. For more information on MSL, please see Technical Brief ISL28118M. For more information on MSL, please see Technical Brief ISL28118M. For more information on MSL, please see Technical Brief ISL28118M. For more information on MSL, please see Technical Brief ISL28118M. For more information on MSL, please see Technical Brief ISL28118M. For more information on MSL, please see Technical Brief ISL28118M. For more information on MSL, please see Technical Brief ISL28118M. For more information on MSL, please see Technical Brief ISL28118M. For more information on MSL, please see Technical Brief ISL28118M. For more information on MSL, please see Technical Brief ISL28118M. For more information on MSL, please see Technical Brief ISL28118M. For more information on MSL, please see Technical Brief ISL28118M. For more information on MSL, please see Technical Brief ISL28118M. For more information on MSL, please see Technical Brief ISL28118M. For more information on MSL, please see Technical Brief ISL28118M. For more information on MSL, please see Technical Brief ISL28118M. For more information on MSL, please see Technical Brief ISL28118M. For more information on MSL, please see Technical Brief ISL28118M. For more informa

Absolute Maximum Ratings

Maximum Supply Voltage
Maximum Differential Input Current
Maximum Differential Input Voltage
Min/Max Input Voltage42V or V_{-} - 0.5V to V_{+} + 0.5V
Max/Min Input Current
Output Short-Circuit Duration (1 output at a time) Indefinite
ESD Tolerance
Human Body Model (Tested per JESD22-A114F)3kV
Machine Model (Tested per JESD22-A115-A)300V
Charged Device Model (Tested per CDM-22CI0ID) 2kV

Thermal Information

Thermal Resistance (Typical)	$\theta_{JA}(^{c}C/W)$	θ_{JC} (°C/W)
8 Ld MSOP Package (Notes 4, 5)	165	57
Storage Temperature Range	6	5°C to +150°C
Pb-free Reflow Profile		see link below
http://www.intersil.com/pbfree/Pb-FreeRe	eflow.asp	

Operating Conditions

Ambient Operating Temperature Range	55°C to +125°C
Maximum Operating Junction Temperature	+150°C
Supply Voltage 3V (+1.8V/-	1.2V) to 40V (±20V)

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

NOTES

- 4. θ_{JA} is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.
- 5. For θ_{JC} the "case temp" location is taken at the package top center.

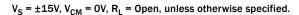
Electrical Specifications $V_S \pm 15V$, $V_{CM} = 0$, $V_0 = 0V$, $R_L = 0$ pen, $T_A = +25$ °C, unless otherwise noted. **Boldface limits apply over the operating temperature range, -55**°C to +125°C. Temperature data established by characterization.

PARAMETER	DESCRIPTION	CONDITIONS	MIN (Note 6)	ТҮР	MAX (Note 6)	UNIT
V _{OS}	Input Offset Voltage		-150	25	150	μV
			-270		270	μV
TCV _{OS}	Input Offset Voltage Temperature Coefficient		-1.2	0.2	1.2	μV/°C
I _B	Input Bias Current		-575	-230		nA
			-800			nA
TCIB	Input Bias Current Temperature Coefficient			-0.8		nA/°C
I _{os}	Input Offset Current		-50	4	50	nA
			-75		75	nA
CMRR	Common-Mode Rejection Ratio	$V_{CM} = V_{-} - 0.5V \text{ to } V_{+} - 1.8V$		118		dB
		V _{CM} = V ₋ to V ₊ -1.8V	102	118		dB
			97			dB
V _{CMIR}	Common Mode Input Voltage Range	Guaranteed by CMRR test	V ₋ - 0.5		V ₊ - 1.8	٧
			V_		V ₊ - 1.8	٧
PSRR	Power Supply Rejection Ratio	V _S = 3V to 40V, V _{CMIR} = Valid Input Voltage	109	124		dB
			105			dB
A _{VOL}	Open-Loop Gain	V_0 = -13V to +13V, R_L = 10k Ω to ground	120	136		dB
			114			dB
V _{OL}	Output Voltage Low, V _{OUT} to V ₋	$R_L = 10k\Omega$			70	mV
					85	mV
V _{OH}	Output Voltage High,	$R_L = 10k\Omega$			110	mV
	V ₊ to V _{OUT}				120	m۷
I _S	Supply Current/Amplifier	R _L = Open		0.85	1.2	mA
					1.6	mA
I _{SC+}	Output Short Circuit Source Current	$R_L = 10\Omega$ to V_L		16		mA

Electrical Specifications $V_S \pm 15V$, $V_{CM} = 0$, $V_0 = 0V$, $R_L = 0$ pen, $T_A = +25$ °C, unless otherwise noted. **Boldface limits apply over the operating temperature range, -55**°C to +125°C. Temperature data established by characterization. (Continued)

PARAMETER	DESCRIPTION	CONDITIONS	MIN (Note 6)	TYP	MAX (Note 6)	UNIT
I _{SC-}	Output Short Circuit Sink Current	$R_L = 10\Omega$ to V_+		28		mA
V _{SUPPLY}	Supply Voltage Range	Guaranteed by PSRR	3		40	٧
AC SPECIFICATI	ons					
GBWP	Gain Bandwidth Product	$A_{CL} = 101, V_{OUT} = 100 \text{mV}_{P-P}; R_L = 2 \text{k}$		4		MHz
e _{np-p}	Voltage Noise	0.1Hz to 10Hz, V _S = ±18V		300		nV _{P-P}
e _n	Voltage Noise Density	f = 10Hz, V _S = ±18V		8.5		nV/√Hz
e _n	Voltage Noise Density	f = 100Hz, V _S = ±18V		5.8		nV/√Hz
e _n	Voltage Noise Density	f = 1kHz, V _S = ±18V		5.6		nV/√Hz
e _n	Voltage Noise Density	f = 10kHz, V _S = ±18V		5.6		nV/√Hz
in	Current Noise Density	f = 1kHz, V _S = ±18V		355		fA/√Hz
THD + N	Total Harmonic Distortion + Noise	1kHz, G = 1, V_0 = 3.5 V_{RMS} , R_L = 10k Ω		0.0003		%
TRANSIENT RES	SPONSE	1				
SR	Slew Rate	$A_V = 1$, $R_L = 2k\Omega$, $V_0 = 10V_{P-P}$		±1.2		V/µs
t _r , t _f , Small Signal	Rise Time 10% to 90% of V _{OUT}	A_V = 1, V_{OUT} = 100m V_{P-P} , R_f = 0 Ω , R_L = 2k Ω to V_{CM}		100		ns
	Fall Time 90% to 10% of V _{OUT}	$\begin{aligned} &\textbf{A}_{V} = \textbf{1}, \textbf{V}_{OUT} = \textbf{100mV}_{\textbf{P-P}}, \textbf{R}_{f} = \textbf{0}\Omega, \\ &\textbf{R}_{L} = \textbf{2}k\Omega \text{ to } \textbf{V}_{CM} \end{aligned}$		100		ns
t _s	Settling Time to 0.01% 10V Step; 10% to V _{OUT}	$A_V = 1, V_{OUT} = 10V_{P-P}, R_f = 0\Omega$ $R_L = 2k\Omega \text{ to } V_{CM}$		8.5		μs

Electrical Specifications $V_S \pm 5V$, $V_{CM} = 0$, $V_0 = 0V$, $T_A = +25$ °C, unless otherwise noted. Boldface limits apply over the operating temperature range, -55°C to +125°C. Temperature data established by characterization.


PARAMETER	DESCRIPTION	CONDITIONS	MIN (Note 6)	TYP	MAX (Note 6)	UNIT
V _{OS}	Input Offset Voltage		-150	25	150	μV
			-270		270	μV
TCV _{OS}	Input Offset Voltage Temperature Coefficient		-1.2	0.2	1.2	μV/°C
I _B	Input Bias Current		-575	-230		nA
			-800			nA
TCIB	Input Bias Current Temperature Coefficient			-0.8		nA/°C
I _{OS}	Input Offset Current		-50	4	50	nA
			-75		75	nA
CMRR	Common-Mode Rejection Ratio	V _{CM} = V ₋ - 0.5V to V ₊ - 1.8V		119		dB
		V _{CM} = V ₋ to V ₊ -1.8V	101	117		dB
			96			dB
V _{CMIR}	Common Mode Input Voltage Range	Guaranteed by CMRR test	V ₋ - 0.5		V ₊ - 1.8	V
			V_		V ₊ - 1.8	٧
PSRR	Power Supply Rejection Ratio	$V_S = 3V$ to 10V, $V_{CMIR} = Valid Input Voltage$	108	124		dB
			103			dB

Electrical Specifications $V_S \pm 5V$, $V_{CM} = 0$, $V_O = 0V$, $T_A = +25$ °C, unless otherwise noted. Boldface limits apply over the operating temperature range, -55°C to +125°C. Temperature data established by characterization. (Continued)

PARAMETER	DESCRIPTION	CONDITIONS	MIN (Note 6)	TYP	MAX (Note 6)	UNIT
A _{VOL}	Open-Loop Gain	V_0 = -3V to +3V, R_L = 10k Ω to ground	120	132		dB
			110			dB
V _{OL}	Output Voltage Low,	$R_L = 10k\Omega$			38	mV
	V _{OUT} to V ₋				45	mV
V _{OH}	Output Voltage High,	$R_L = 10k\Omega$			65	mV
	V ₊ to V _{OUT}				70	mV
I _S	Supply Current/Amplifier	R _L = Open		0.85	1.1	mA
					1.4	mA
I _{SC+}	Output Short Circuit Source Current	$R_L = 10\Omega \text{ to V}_{-}$		13		mA
I _{SC-}	Output Short Circuit Sink Current	$R_L = 10\Omega$ to V_+		20		mA
AC SPECIFICAT	IONS			1		"
GBWP	Gain Bandwidth Product	A _{CL} = 101, V _{OUT} = 100mV _{P-P} ; R _L = 2k		3.2		MHz
e _{np-p}	Voltage Noise	0.1Hz to 10Hz		320		nV _{P-P}
e _n	Voltage Noise Density	f = 10Hz		9		nV/√Hz
e _n	Voltage Noise Density	f = 100Hz		5.7		nV/√Hz
e _n	Voltage Noise Density	f = 1kHz		5.5		nV/√Hz
e _n	Voltage Noise Density	f = 10kHz		5.5		nV/√Hz
in	Current Noise Density	f = 1kHz		380		fA/√Hz
THD + N	Total Harmonic Distortion + Noise	1kHz, G = 1, V_0 = 1.25 V_{RMS} , R_L = 10k Ω		0.0003		%
TRANSIENT RE	SPONSE			1		"
SR	Slew Rate	$A_V = 1$, $R_L = 2k\Omega$, $V_0 = 4V_{P-P}$		±1		V/µs
t _r , t _f , Small Signal	Rise Time 10% to 90% of V _{OUT}	$A_V = 1$, $V_{OUT} = 100$ mV _{P-P} , $R_f = 0$ Ω , $R_L = 2$ k Ω to V_{CM}		100		ns
	Fall Time 90% to 10% of V _{OUT}	$\begin{aligned} &A_V = 1, V_{OUT} = \mathbf{100m} V_{P-P}, \ R_f = 0\Omega, \\ &R_L = 2k\Omega \ to \ V_{CM} \end{aligned}$		100		ns
t _s	Settling Time to 0.01% 4V Step; 10% to V _{OUT}	$A_V = 1$, $V_{OUT} = 4V_{P-P}$, $R_f = 0\Omega$ $R_L = 2k\Omega$ to V_{CM}		4		μs

NOTE:

6. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.

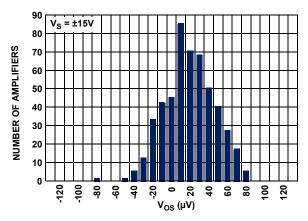


FIGURE 3. ISL28118M INPUT OFFSET VOLTAGE DISTRIBUTION, $V_S = \pm 15V$

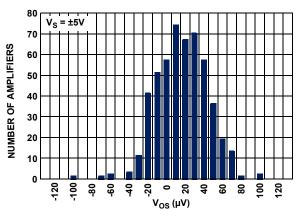


FIGURE 4. ISL28118M INPUT OFFSET VOLTAGE DISTRIBUTION, $\rm V_S = \pm 5V$

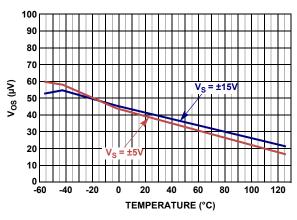


FIGURE 5. V_{OS} vs TEMPERATURE

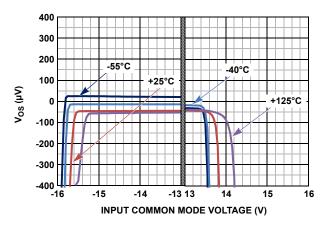


FIGURE 6. INPUT OFFSET VOLTAGE vs INPUT COMMON MODE VOLTAGE, -55°C to +125°C, V_S = ±15V

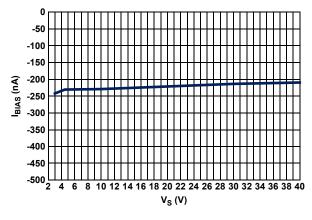


FIGURE 7. $I_{\rm BIAS}$ vs $V_{\rm S}$

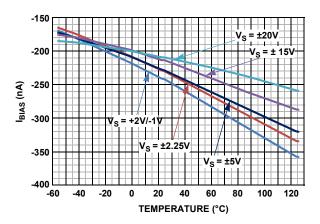


FIGURE 8. I_{BIAS} vs TEMPERATURE vs SUPPLY

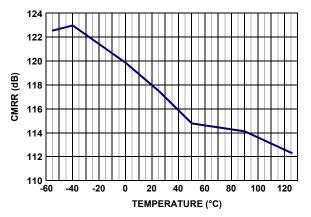
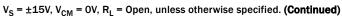



FIGURE 9. ISL28118M CMRR vs TEMPERATURE, $V_S = \pm 15V$

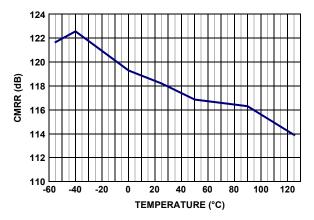


FIGURE 10. ISL28118M CMRR vs TEMPERATURE, $V_S = \pm 5V$

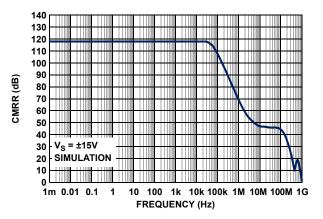


FIGURE 11. CMRR vs FREQUENCY, $V_S = \pm 15V$

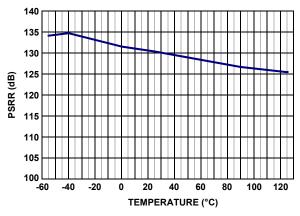


FIGURE 12. PSRR vs TEMPERATURE, $V_S = \pm 15V$

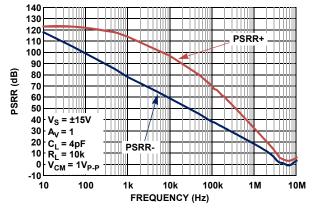


FIGURE 13. PSRR vs FREQUENCY, $V_S = \pm 15V$

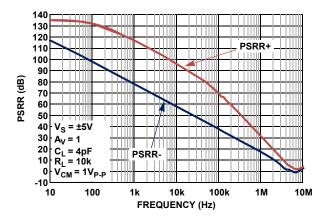
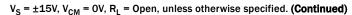



FIGURE 14. PSRR vs FREQUENCY, $V_S = \pm 5V$

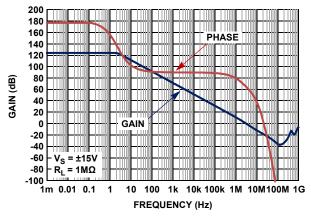


FIGURE 15. OPEN-LOOP GAIN, PHASE vs FREQUENCY, $V_S = \pm 15V$

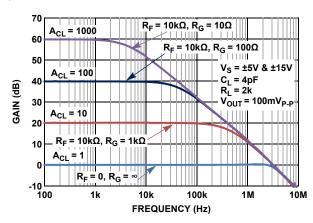


FIGURE 16. FREQUENCY RESPONSE vs CLOSED LOOP GAIN

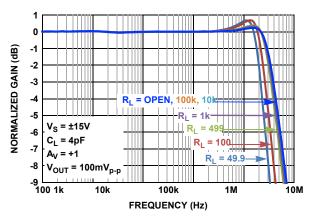


FIGURE 17. GAIN vs FREQUENCY vs R_1 , $V_S = \pm 15V$

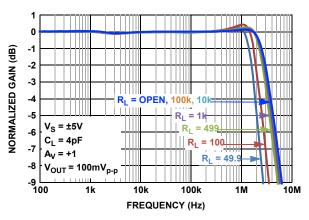


FIGURE 18. GAIN vs FREQUENCY vs R_1 , $V_S = \pm 5V$

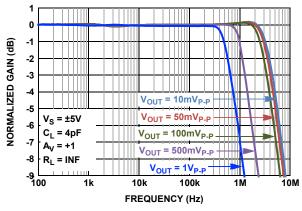


FIGURE 19. GAIN vs FREQUENCY vs OUTPUT VOLTAGE

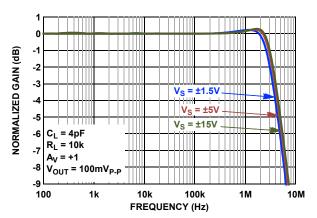


FIGURE 20. GAIN vs FREQUENCY vs SUPPLY VOLTAGE

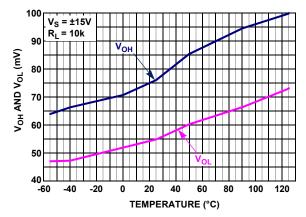
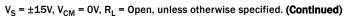



FIGURE 21. OUTPUT OVERHEAD VOLTAGE vs TEMPERATURE, $\label{eq:VS} V_S = \pm 15 V, \, R_1 = 10 k$

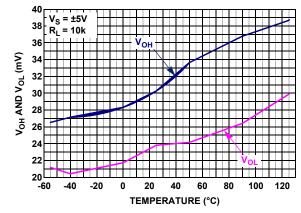


FIGURE 22. OUTPUT OVERHEAD VOLTAGE vs TEMPERATURE, $V_S = \pm 5V, R_L = 10k$

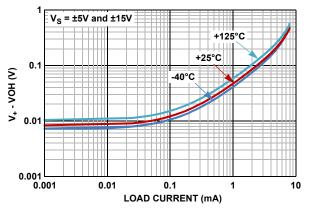


FIGURE 23. OUTPUT OVERHEAD VOLTAGE HIGH vs LOAD CURRENT, -40 °C to +125 °C, $V_S = \pm 5V$ AND $\pm 15V$

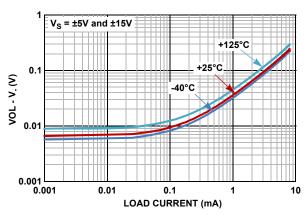


FIGURE 24. OUTPUT OVERHEAD VOLTAGE LOW vs LOAD CURRENT, -40 °C to +125 °C, $V_S = \pm 5 V$ AND $\pm 15 V$

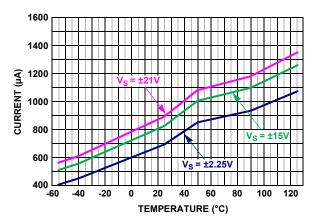


FIGURE 25. ISL28118M SUPPLY CURRENT vs TEMPERATURE vs SUPPLY VOLTAGE

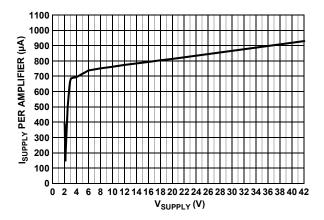
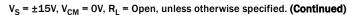



FIGURE 26. SUPPLY CURRENT vs SUPPLY VOLTAGE

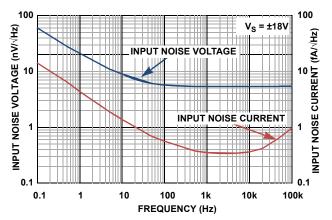


FIGURE 27. INPUT NOISE VOLTAGE (en) AND CURRENT (in) vs FREQUENCY, $V_S = \pm 18V$

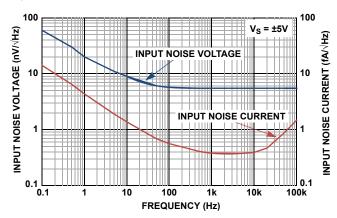


FIGURE 28. INPUT NOISE VOLTAGE (en) AND CURRENT (in) vs FREQUENCY, $V_S = \pm 5V$

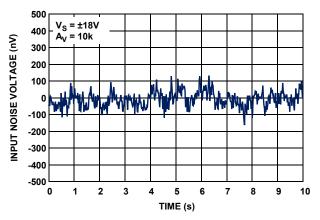


FIGURE 29. INPUT NOISE VOLTAGE 0.1Hz TO 10Hz, $V_S = \pm 18V$

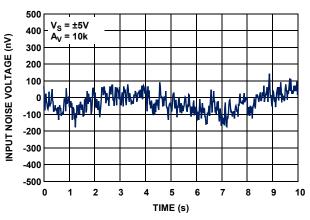


FIGURE 30. INPUT NOISE VOLTAGE 0.1Hz TO 10Hz, $V_S = \pm 5V$

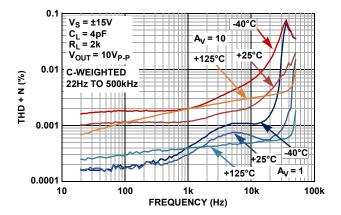


FIGURE 31. THD+N vs FREQUENCY vs TEMPERATURE, $A_V = 1, 10, R_L = 2k$

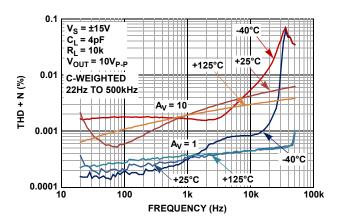


FIGURE 32. THD+N vs FREQUENCY vs TEMPERATURE, $A_V = 1$, 10, $R_1 = 10k$

 $V_S = \pm 15$ V, $V_{CM} = 0$ V, $R_L = 0$ pen, unless otherwise specified. (Continued)

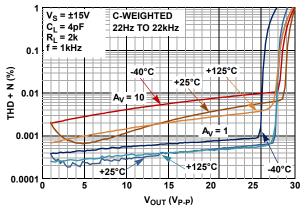


FIGURE 33. THD+N vs OUTPUT VOLTAGE (V_{OUT}) vs TEMPERATURE, $A_V=1,\, 10,\, R_L=2\, k$

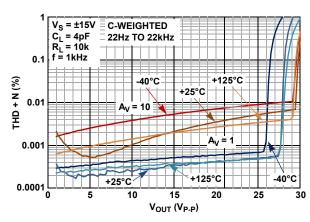


FIGURE 34. THD+N vs OUTPUT VOLTAGE (V_{OUT}) vs TEMPERATURE, $A_V = 1, 10, R_1 = 10k$

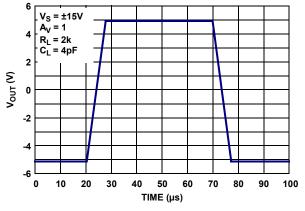


FIGURE 35. LARGE SIGNAL 10V STEP RESPONSE, $V_S = \pm 15V$

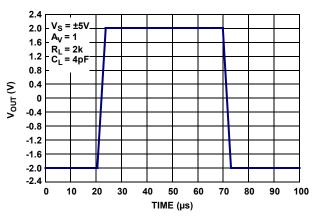


FIGURE 36. LARGE SIGNAL 4V STEP RESPONSE, $V_S = \pm 5V$

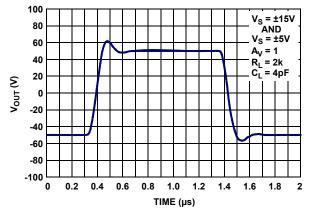


FIGURE 37. SMALL SIGNAL TRANSIENT RESPONSE, $V_S = \pm 5V, \pm 15V$

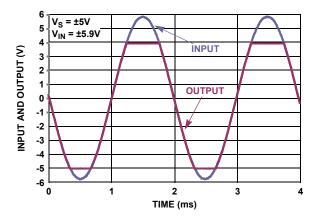
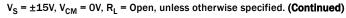
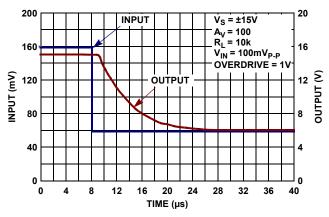
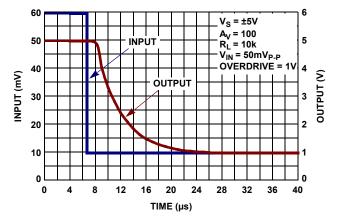




FIGURE 38. NO PHASE REVERSAL



INPUT -40 -8 (X) INALNO INPUT (mV) -80 -120 OUTPUT V_S = ±15V $A_{V} = 100$ -16 -160 R_L = 10k $V_{IN}^{-} = 100 \text{mV}_{P-P}$ OVERDRIVE = 1V -20 -200 8 12 24 28 32 36 0 20 40 TIME (µs)

FIGURE 39. POSITIVE OUTPUT OVERLOAD RESPONSE TIME, $V_S = \pm 15 \text{V} \label{eq:vs}$

FIGURE 40. NEGATIVE OUTPUT OVERLOAD RESPONSE TIME, $V_S = \pm 15V$

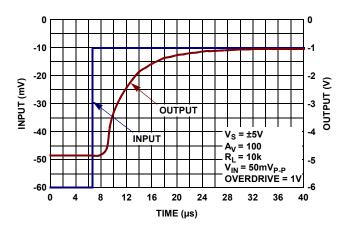
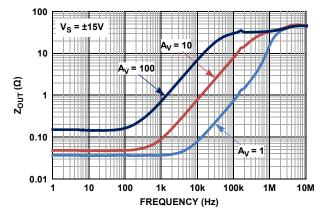



FIGURE 41. POSITIVE OUTPUT OVERLOAD RESPONSE TIME, $V_S = \pm 5 \text{V} \label{eq:VS}$

FIGURE 42. NEGATIVE OUTPUT OVERLOAD RESPONSE TIME, $V_S = \pm 5V$

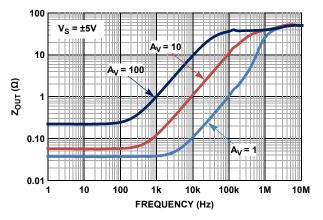


FIGURE 43. OUTPUT IMPEDANCE vs FREQUENCY, $V_S = \pm 15V$

FIGURE 44. OUTPUT IMPEDANCE vs FREQUENCY, $V_S = \pm 5V$

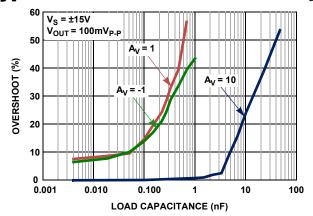
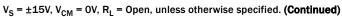



FIGURE 45. OVERSHOOT vs CAPACITIVE LOAD, $V_S = \pm 15V$

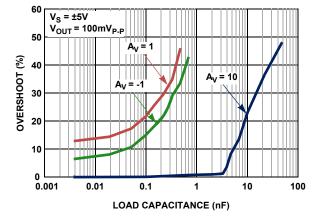


FIGURE 46. OVERSHOOT vs CAPACITIVE LOAD, $V_S = \pm 5V$

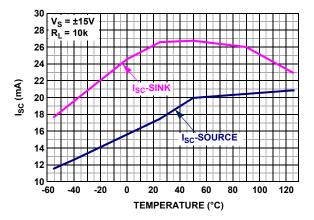


FIGURE 47. ISL28118M SHORT CIRCUIT CURRENT vs TEMPERATURE, $V_S = \pm 15V$

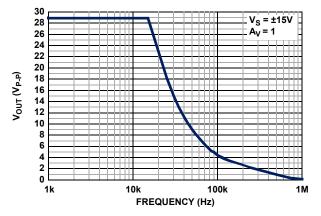


FIGURE 48. MAX OUTPUT VOLTAGE vs FREQUENCY

Applications Information

Functional Description

The ISL28118M is a 3.2MHz, single-supply, rail-to-rail output amplifier with a common mode input voltage range extending to a range of 0.5V below the V- rail. The input stage is optimized for precision sensing of ground-referenced signals in single-supply applications. The input stage is able to handle large input differential voltages without phase inversion, making this amplifier suitable for high-voltage comparator applications. The bipolar design features high open loop gain, excellent DC input/output temperature stability with a low quiescent current of 850µV, and low temperature drift. The op amp is fabricated in a new precision 40V complementary bipolar DI process and is immune from latch-up.

Operating Voltage Range

The op amp is designed to operate over a single supply range of 3V to 40V or a split supply voltage range of +1.8V, -1.2V to +/-20V. The device is fully characterized at 10V (\pm 5V) and 30V (\pm 15V). Both DC and AC performance remain virtually unchanged over the complete operating voltage range. Parameter variation with operating voltage is shown in the "Typical Performance Curves" beginning on page 6.

The input common mode voltage to the V+ rail (V+ -1.8V over the full temperature range) may limit amplifier operation when operating from split V+ and V- supplies. Figure 6 shows the common mode input voltage range variation over temperature.

Input Stage Performance

The ISL28118M PNP input stage has a common mode input range extending up to 0.5V below ground at +25°C (Figure 6). Full amplifier performance is guaranteed with input voltage down to ground (V-) over the -55°C to +125°C temperature range. For common mode voltages down to -0.5V below ground (V-), the amplifiers are fully functional, but performance degrades slightly over the full temperature range. This feature provides excellent CMRR, AC performance, and DC accuracy when amplifying low-level, ground-referenced signals.

The input stage has a maximum input differential voltage equal to a diode drop greater than the supply voltage (max 42V) and does not contain the back-to-back input protection diodes found on many similar amplifiers. This feature enables the device to function as a precision comparator by maintaining very high input impedance for high-voltage differential input comparator voltages. The high differential input impedance also enables the device to operate reliably in large signal pulse applications, without the need for anti-parallel clamp diodes required on MOSFET and most bipolar input stage op amps. Thus, input signal distortion caused by nonlinear clamps under high slew rate conditions is avoided.

In applications where one or both amplifier input terminals are at risk of exposure to voltages beyond the supply rails, current-limiting resistors may be needed at each input terminal (see Figure 52, R_{IN}+, R_{IN}-) to limit current through the power-supply ESD diodes to 20mA.

14

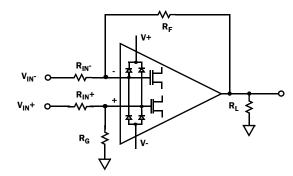


FIGURE 49. INPUT ESD DIODE CURRENT LIMITING

Output Drive Capability

The bipolar rail-to-rail output stage features low saturation levels that enable an output voltage swing to less than 15mV when the total output load (including feedback resistance) is held below 50μA. With ±15V supplies, this can be achieved by using feedback resistor values >300k Ω .

The output stage is internally current limited. The amplifiers can withstand a short circuit to either rail as long as the power dissipation limits are not exceeded. Continuous operation under these conditions may degrade long-term reliability.

The amplifiers perform well when driving capacitive loads (Figures 45 and 46). The unity gain, voltage follower (buffer) configuration provides the highest bandwidth but is also the most sensitive to ringing produced by load capacitance found in BNC cables. Unity gain overshoot is limited to 35% at capacitance values to 0.33nF. At gains of 10 and higher, the device is capable of driving more than 10nF without significant overshoot.

Output Phase Reversal

Output phase reversal is a change of polarity in the amplifier transfer function when the input voltage exceeds the supply voltage. The ISL28118M is immune to output phase reversal for input voltage to 0.5V beyond the rail (VABS MAX) limit (Figure 38).

Power Dissipation

It is possible to exceed the +150°C maximum junction temperatures under certain load and power supply conditions. It is therefore important to calculate the maximum junction temperature (T_{JMAX}) for all applications to determine if power supply voltages, load conditions, or package type need to be modified to remain in the safe operating area. These parameters are related using Equation 1:

$$T_{JMAX} = T_{MAX} + \theta_{JA} x PD_{MAXTOTAL}$$
 (EQ. 1)

where

- ullet $P_{DMAXTOTAL}$ is the sum of the maximum power dissipation of each amplifier in the package (PD_{MAX})
- T_{MAX} = Maximum ambient temperature
- Θ_{JA} = Thermal resistance of the package

PD_{MAX} for each amplifier can be calculated using Equation 2:

$$PD_{MAX} = V_{S} \times I_{qMAX} + (V_{S} - V_{OUTMAX}) \times \frac{V_{OUTMAX}}{R_{L}}$$
 (EQ. 2)

where:

- PD_{MAX} = Maximum power dissipation of 1 amplifier
- V_S = Total supply voltage
- I_{aMAX} = Maximum quiescent supply current of one amplifier
- V_{OUTMAX} = Maximum output voltage swing of the application
- R_I = Load resistance

ISL28118M SPICE Model

Figure 50 shows the SPICE model schematic and Figure 51 shows the net list for the SPICE model. The model is a simplified version of the actual device and simulates important AC and DC parameters. AC parameters incorporated into the model are: 1/f and flatband noise voltage, slew rate, CMRR, and gain and phase. The DC parameters are 1_{OS} , total supply current, and output voltage swing. The model uses typical parameters given in the "Electrical Specifications" table beginning on page 3. The AVOL is adjusted for 136dB with the dominant pole at 0.6Hz. The CMRR is set at 120dB, f = 50kHz. The input stage models the actual device to present an accurate AC representation. The model is configured for an ambient temperature of +25°C.

Figures 52 through 66 show the characterization vs. simulation results for the noise voltage, open loop gain phase, closed loop gain vs. frequency, gain vs. frequency vs. RL, CMRR, large signal 10V step response, small signal 0.1V step, and output voltage swing ±15V supplies.

LICENSE STATEMENT

The information in the SPICE model is protected under United States copyright laws. Intersil Corporation hereby grants users of this macro-model, hereto referred to as "Licensee", a nonexclusive, nontransferable licence to use this model, as long as the Licensee abides by the terms of this agreement. Before using this macro-model, the Licensee should read this license. If the Licensee does not accept these terms, permission to use the model is not granted.

The Licensee may not sell, loan, rent, or license the macro-model, in whole, in part, or in modified form, to anyone outside the Licensee's company. The Licensee may modify the macro-model to suit his/her specific applications, and the Licensee may make copies of this macro-model for use within their company only.

This macro-model is provided "AS IS, WHERE IS, AND WITH NO WARRANTY OF ANY KIND EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE."

In no event will Intersil be liable for special, collateral, incidental, or consequential damages in connection with or arising out of the use of this macro-model. Intersil reserves the right to make changes to the product and the macro-model without prior notice.

Vin-

0.1

V7

0.1

D13 D14

R2

5e11≷

CinDif

1.33E-12

FN7858.0 May 11, 2011 **⊕** I1

D1 DBREAK

PNP_input PNP_input

D2DBREAK

12

PNP_LATERAL

54E-6

80e-6

∳ I3

Q9

54E-6

PNP_LATERAL

D3

G1

V1

-0.91

12 5 1

GAIN = 1

13 GAIN = 0.65897

*ISL28118 218 Macromodel - covers	V V8 4 0 0.1	R R14 V 23 795.7981
following *products	R_R17 2 0 750	C_C3 23 V++ 10e-12
*ISL28118	*R_R18	C_C4 V 23 10e-12
*ISL28218	*	*
*Revision History:	*Input Stage	*Output Stage with Correction Current Sources
* Revision A, LaFontaine February 8th 2011	Q_Q6 11 10 9 PNP_input Q_Q7 8 7 9 PNP_input	G G11 26 V VOUT 23 12.5e-3
* Model for Noise, supply currents, CMRR	Q Q8 V VIN- 7 PNP LATERAL	G_G12 27 V 23 VOUT 12.5e-3
*120dB f = 40kHz, AVOL 136dB f = 0.5Hz	Q_Q9 V 12 10 PNP_LATERAL	G_G13 VOUT V++ V++ 23 12.5e-3
* SR = 1.2V/us, GBWP 4MHz. *Copyright 2011 by Intersil Corporation	I_I1 V++ 9 DC 80e-6	G_G14 V VOUT 23 V 12.5e-3
*Refer to data sheet "LICENSE STATEMENT"	I_I2 V++ 7 DC 54E-6	D_D7 23 24 DX D D8 25 23 DX
*Use of this model indicates your acceptance	I_I3 V++ 10 DC 54E-6 I IOS 6 VIN- DC 4e-9	D_D6 23 23 DX D_D9 V 26 DY
*with the terms and provisions in the License *Statement.	*D D1 7 10 DBREAK	D D10 V++ 26 DX
*	*D_D2	D_D11 V++ 27 DX
*Intended use:	R_R1 5 6 5e11	D_D12
*This Pspice Macromodel is intended to give	R_R2 VIN- 5 5e11	V_V5
*typical DC and AC performance characteristics *under a wide range of	R_R3	V_V6 VOUT 25 -0.4 R R15 VOUT V++ 80
external circuit *configurations using	R_R4 V 11 1000 C Cin1 V VIN- 4.02e-12	R_R16
compatible simulation *platforms – such as iSim PE.	C Cin2 V 6 4.02e-12	.model PNP_LATERAL pnp(is=1e-016
131111 FE. *	C_CinDif 6 VIN- 1.33E-12	bf=250 va=80
*Device performance features supported by	*	+ ik=0.138 rb=0.01 re=0.101 rc=180 kf=0 af=1)
this *model:	*1st Gain Stage G G1 V++ 14 8 11 0.65897	.model PNP_input pnp(is=1e-016 bf=100
*Typical, room temp., nominal power supply *voltages used to produce the following	G_G2 V 14 8 11 0.65897	va=80 + ik=0.138 rb=0.01 re=0.101 rc=180 kf=0
*characteristics:	V_V1 13 14 -0.91	af=1)
*Open and closed loop I/O impedances,	V_V2 14 15 -0.96	.model DBREAK D(bv=43 rs=1)
*Open loop gain and phase, *Closed loop bandwidth and frequency	D_D3	.model DN D(KF=6.69e-9 AF=1)
*response,	D_D4	.MODEL DX D(IS=1E-12 Rs=0.1)
*Loading effects on closed loop frequency	R R6 V 14 1	.MODEL DY D(IS=1E-15 BV=50 Rs=1) .ends ISL28118 218
*response, *Input noise terms including 1/f effects,	*	.6/146 /6/126 / / / / / / / / / / / / / / / / / / /
*Slew rate,	*2nd Gain Stage	
*Input and Output Headroom limits to I/O	G_G3 V++ VG 14 VMID 1.69138e-3 G G4 V VG 14 VMID 1.69138e-3	
*voltage swing, *Supply current at nominal specified supply	V_V3 16 VG -0.91	
*voltages,	V_V4 VG 17 -0.96	
*	D_D5 16 V++ DX	
*Device performance features NOT supported *by this model:	D_D6 V 17 DX R_R7 VG V++ 3.7304227e9	
*Harmonic distortion effects,	R_R8 V VG 3.7304227e9	
*Output current limiting (current will limit at	C_C1 VG V++ 6.6667E-11	
*40mA),	C_C2 V VG 6.6667E-11	
*Disable operation (if any), *Thermal effects and/or over temperature	*Mid supply Ref	
*parameter variation,	E_E2 V++ 0 V+ 0 1	
*Limited performance variation vs. supply *voltage is modeled.	E_E3 V 0 V- 0 1	
*Part to part performance variation due to	E_E4 VMID V V++ V 0.5	
*normal process parameter spread,	I_ISY V+ V- DC 0.85E-3	
*Any performance difference arising from *different packaging,	*Common Mode Gain Stage with Zero	
*Load current reflected into the power supply	G_G5 V++ 19 5 VMID 1	
*current.	G_G6 V 19 5 VMID 1	
* source ISL28118_218 SPICEmodel	G_G7 V++ VC 19 VMID 1	
*	G_G8	
* Connections: +input	L_L1 18 V++ 3.18319E-09	
* -input	L_L2 20 V 3.18319E-09	
* +Vsupply * -Vsupply	L_L3 21 V++ 3.18319E-09	
* -vsuppiy * output	L_L4 22 V 3.18319E-09 R R9 19 18 1e-3	
.subckt ISL28118_218 Vin+ Vin-V+ V- VOUT	R_R10 20 19 1e-3	
* source ISL28118_218_presubckt_0	R_R11 VC 21 1e-3	
*Voltage Noise	R_R12 22 VC 1e-3	
E_En VIN+ 6 2 0 0.3	*Pole Stage	
D_D13	G_G9 V++ 23 VG VMID 1.2566e-3	
D_D14	G_G10 V 23 VG VMID 1.2566e-3	
V_V7 1 0 0.1	R_R13 23 V++ 795.7981	

23 V++ 795.7981 FIGURE 51. SPICE NET LIST

Characterization vs Simulation Results

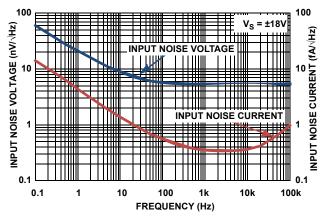


FIGURE 52. CHARACTERIZED INPUT NOISE VOLTAGE

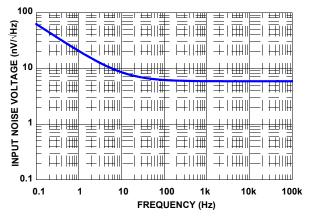


FIGURE 53. SIMULATED INPUT NOISE VOLTAGE

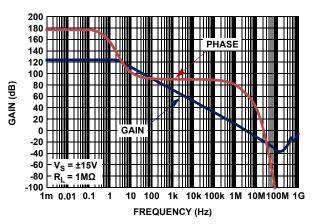


FIGURE 54. CHARACTERIZED OPEN-LOOP GAIN, PHASE vs FREQUENCY

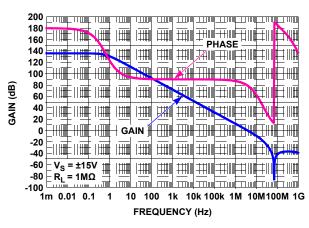


FIGURE 55. SIMULATED OPEN-LOOP GAIN, PHASE vs FREQUENCY

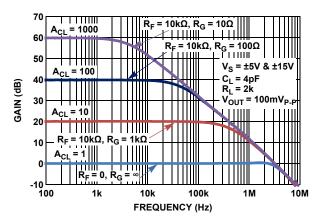


FIGURE 56. CHARACTERIZED CLOSED-LOOP GAIN vs FREQUENCY

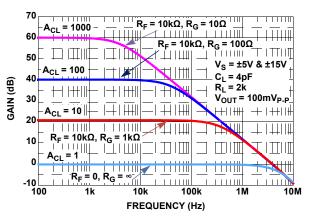


FIGURE 57. SIMULATED CLOSED-LOOP GAIN vs FREQUENCY

Characterization vs Simulation Results (Continued)

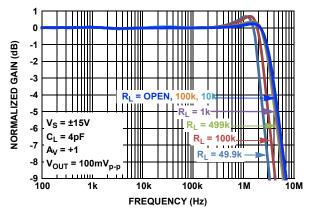


FIGURE 58. CHARACTERIZED GAIN vs FREQUENCY vs R_L

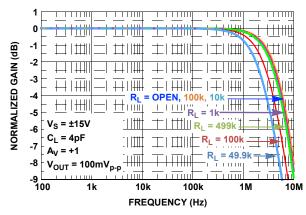


FIGURE 59. SIMULATED GAIN vs FREQUENCY vs R_L

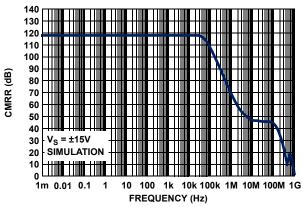


FIGURE 60. CHARACTERIZED CMRR vs FREQUENCY

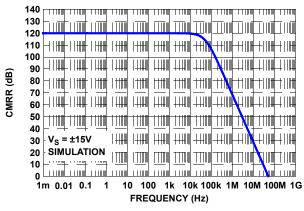


FIGURE 61. SIMULATED CMRR vs FREQUENCY

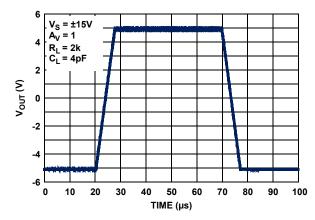


FIGURE 62. CHARACTERIZED LARGE-SIGNAL 10V STEP RESPONSE

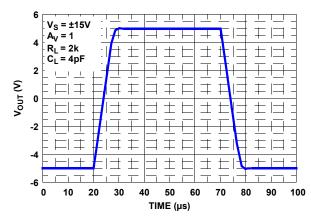


FIGURE 63. SIMULATED LARGE-SIGNAL 10V STEP RESPONSE

Characterization vs Simulation Results (Continued)

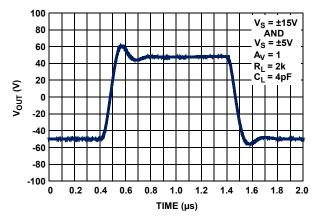


FIGURE 64. CHARACTERIZED SMALL-SIGNAL TRANSIENT RESPONSE

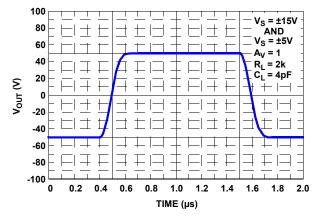


FIGURE 65. SIMULATED SMALL-SIGNAL TRANSIENT RESPONSE

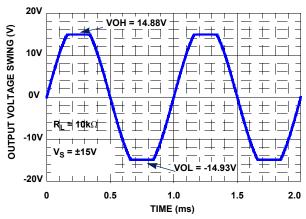


FIGURE 66. SIMULATED OUTPUT VOLTAGE SWING

Revision History

The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you have the latest Rev.

DATE	REVISION	CHANGE
5/11/11	FN7858.0	Initial Release

Products

Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks. Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a complete list of Intersil product families.

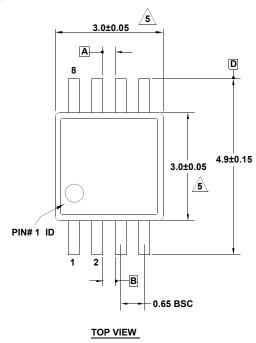
*For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on intersil.com: |SL28118M|.

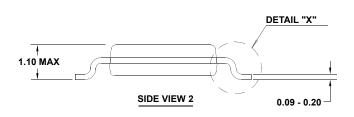
To report errors or suggestions for this datasheet, please go to: www.intersil.com/askourstaff

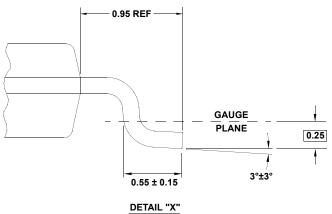
FITs are available from our website at: http://rel.intersil.com/reports/search.php

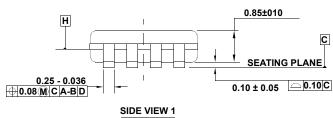
For additional products, see www.intersil.com/product-tree

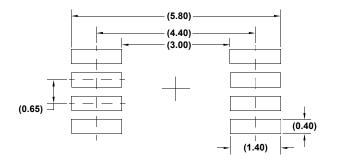
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted in the quality certifications found at www.intersil.com/design/quality


Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.


For information regarding Intersil Corporation and its products, see www.intersil.com


intersil


Package Outline Drawing


M8.118
8 LEAD MINI SMALL OUTLINE PLASTIC PACKAGE
Rev 3, 3/10

TYPICAL RECOMMENDED LAND PATTERN

NOTES:

- 1. Dimensions are in millimeters.
- Dimensioning and tolerancing conform to JEDEC MO-187-AA and AMSEY14.5m-1994.
- Plastic or metal protrusions of 0.15mm max per side are not included.
- 4. Plastic interlead protrusions of 0.15mm max per side are not included.
- 5. Dimensions are measured at Datum Plane "H".
- 6. Dimensions in () are for reference only.