

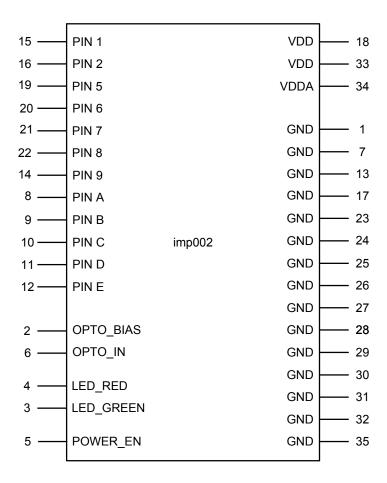
specification: imp002

version 20130611

1. Product description

1.1 General description

The imp is a complete wireless network node in a module. It is available both in a memory card form-factor (imp001) and in a solder-down module form-factor (imp002). It works in conjunction with the imp service to allow easy connection of any device to the internet. This document covers the imp002 specifications.


1.2 Features

- 802.11 b/g/n WiFi
 - 20MHz 11n channels, 1 x 1
 - -97dBm typical sensitivity (1Mbps)
 - Integrated antenna with 2.5dBi max gain
 - TX power
 - 802.11b 16.5dBm +/-1.5dBm
 - 802.11g 14.0dBm +/-1.5dBm
 - 802.11n 12.75dBm +/-1.5dBm
- 32-bit Cortex M3 processor
 - Robust embedded operating system with fail-safe firmware updates
 - Virtual machine for vendor firmware
- LED drive for red/green status LEDs
- Phototransistor input for our patent-pending BlinkUp technology to provide optical configuration
- 12 user selectable I/Os
 - GPIO, PWM, Analog input & output
 - SPI (2 channels), UART (4.5 channels), I2C (2 channels)
- Low power 6uA sleep mode
- FCC, CE, IC C-Tick modular certification

2. imp terminology

Term	Description
API	The Application Programming Interface through which imp scripts may access hardware and
API	cloud functions
BlinkUp	Our patent-pending optical programming process for commissioning an imp using a smart
Бііі ікОр	device (phone or tablet)
Commissioning	Initializing an imp by associating it with a user account and WiFi credentials, usually via BlinkUp
electric imp	http://electricimp.com/aboutus/ (lower case by brand convention)
Dlaması	The imp cloud service which provides for the connection and configuration of imps and gateway
Planner	communication with other devices
Registration	The process by which an imp card or module becomes associated with host hardware
Server	The electric imp cloud service with which imps communicate
Firmware	Vendor provided code that runs within the imp's virtual machine
Agent	Vendor provided code that runs within the imp service

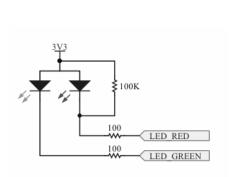
3. Pin assignments

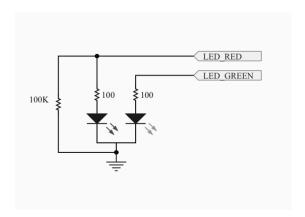
4. Pin description

Pin number	Pin name	Description
1, 7, 13, 17, 23 to 32 & 35	GND1 to 15	Ground
18, 33	V _{DD}	Power input
2	OPTO_BIAS	Phototransistor power; connects to collector of phototransistor
6	OPTO_IN	Phototransistor signal; connects to emitter of phototransistor, which is connected to ground via a bias resistor (typically 100k)
3	LED_GREEN	Green LED output
4	LED_RED	Red LED output
5	POWER_EN	Active-high output for boost DCDC enable. Is driven high when the module requires a 2.5-3.3v power supply, which is generally when WiFi is active. This pin has an internal pulldown.
34	Vdda	ADC reference voltage input. If unused, connect to VDD
8 to 12, 14 to 16 & 19 to 22	PIN1, 2, 5 to E	I/O, please refer to Pin mux table

5. LED drive

The indicator LED should be bicolor, because red, green and amber (red+green) are used to indicate status.

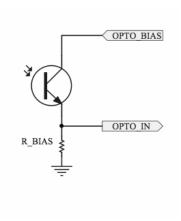

The LED drive pins will auto-detect common anode or common cathode parts. The detection is done by looking to see which way up the LED_RED pin is idling at boot; to ensure this works correctly, please place a 100k resistor in parallel with the red LED.


The current drive on these pins is 20mA maximum.

Please refer to paragraph 10 for the recommended LEDs.

Common anode diagram

Common cathode diagram



6. Phototransistor

The phototransistor is used to receive BlinkUp configuration data. The bias resistor connected between OPTO_IN and GND may need to be adjusted to ensure adequate sensitivity and response time - in general you need at least 500mV swing on the OPTO_IN pin between black and white states, with the worst (dimmest) BlinkUp sender you can find.

End-user BlinkUp send data at between 30 and 60 bits per second, depending on the user's device. For factory configuration, data is typically sent at 120 bits per second using red LED(s) in a test fixture. If your application does not require optical configuration, config can be sent electrically at 120 bits per second from another micro using the OPTO_IN pin. Please contact us for more details.

Please refer to paragraph 10 for the recommended phototransistors.

7. Pin mux

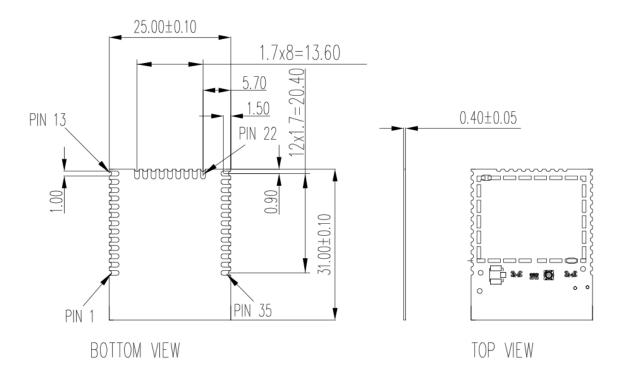
In addition to acting as a GPIO, each pin on the imp002 can be configured to one of several specialized functions. While pins may only have one function at a time, they may be reconfigured during run-time to change function as needed. For example, a pin may first be configured as a DAC and then reconfigured as an ADC. Additionally, not all the pins in a hardware function need to be assigned to that function. For example, pins 8 and 9 could be used as UART and pins 1 and 2 could be used as I2C.

All I/O pins are initially tri-stated.

The imp002 can be woken from low power sleep mode with a rising edge on PIN1. If this signal is pulsed, the minimum pulse width is 20ms.

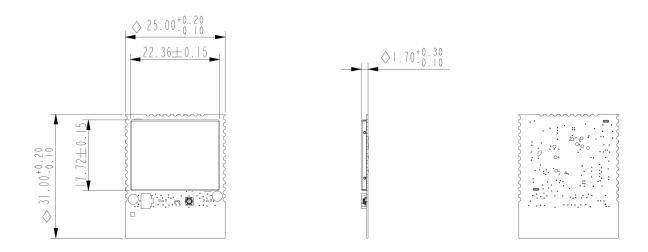
Pin	GPIO	UART	I2C	SPI	DAC	ADC	PWM	Pulse Count	Wake
PIN 1	Yes	U1-CTS, U3-TX	I1-SCL	SPI1-SCLK	Yes	Yes	Yes	Yes	Yes
PIN 2	Yes	U1-RTS, U3-RX	I1-SDA	SPI2-MISO		Yes	Yes		
PIN 5	Yes	U2-TX		SPI2-SCLK	Yes	Yes	Yes		
PIN 6	Yes	U6-TX							
PIN 7	Yes	U2-RX		SPI2-MOSI		Yes	Yes		
PIN 8	Yes	U1-TX	I2-SCL	SPI1-MOSI		Yes	Yes		
PIN 9	Yes	U1-RX	I2-SDA	SPI1-MISO		Yes	Yes		
PIN A	Yes					Yes			
PIN B	Yes	U4-RX				Yes			
PIN C	Yes						Yes		
PIN D	Yes								
PIN E	Yes	U6-RX							

8. Electrical characteristics

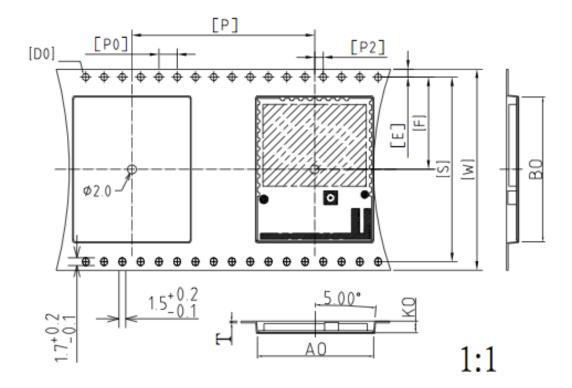

Parameter	Description	Min	Тур	Max	Unit.
Operating temperature		-20		55	°C
VDD	Operating voltage	1.8 ^[1]	3.3	3.6	V
Vdda	Analog power input	1.8	VDD	V _{DD}	V
	Normal operation, WiFi on		80	250 ^[2]	mA
loo	Normal operation, WiFi power-save mode enabled		5	250 ^[2]	mA
	WiFi is off, processor sleep, RTC on, nvram preserved		6		μΑ
Idda	Current input on VDDA			500	μΑ
VIH	I/O input high level voltage	0.7Vdd		3.6	V
VIL	I/O input low level voltage	Vss-0.3		0.3Vdd	V
	Output current on any single I/O pin	-8		8	mA
	Output current on LED_RED pin	-20		20	mA
Іоит	Output current on LED_GREEN pin	-20		20	mA
	Total output current on all I/O pins including LED_RED & LED_GREEN	-80		80	mA
I/O input leakage current	Vss ≦ Vin ≦ Vdd			4	μΑ
Lond capacitanes	Pins 1 to 9		20		pF
Load capacitance	Pins A to E		5		рF

^[1] WiFi requires 2.5v minimum for operation, but user code can run at 1.8v. The POWER_EN pin is driven to enable an external boost converter that will provide 2.5v+ during WiFi usage.

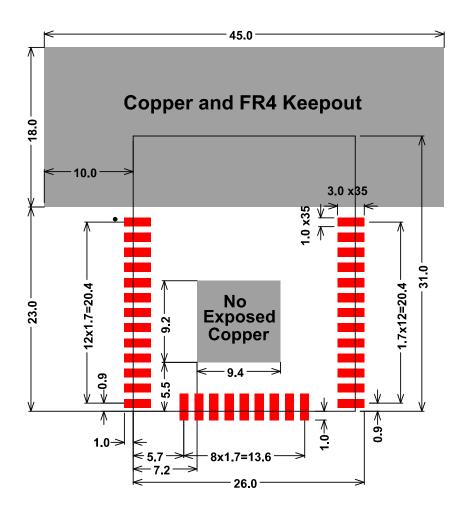
^{[2] 250}mA current is during worst-case TX events. These are a maximum of ~4.8ms long (802.11b 1Mbps)


9. Package outline

PCB dimensions


(all dimensions are in mm unless otherwise specified)

Overall module dimensions


(all dimensions are in mm unless otherwise specified)

Tape & reel dimensions

	Dimension in mm
W	44.00 +/- 0.30
S	40.40 +/- 0.10
Е	1.75 +/- 0.10
Т	0.35 +/- 0.05
F	20.20 +/- 0.10
Р	40.00 +/- 0.10
Po	4.00 +/- 0.10
P2	2.00 +/- 0.10
D0	Ø1.50 +0.10 -0.00
Ao	25.50 +/- 0.10
Во	31.65 +/- 0.10
Ko	2.50 +/- 0.10

9. Recommended footprint

(all dimensions are in mm unless otherwise specified)

imp002 is rated at MSL 3

10. Recommended opto components

Bi-color LED	Manufacturer	Manufacturer's part number		
Surface mount				
top viow	SunLED	XZMDKVG59W-1		
top-view	Liteon	LTST-C195KGJRKT		
aida viav	SunLED	XZMDKVG88W		
side-view	Bivar	SM1204BC		
Through-hole				
3mm	SunLED	XLMDKVG34M		
	Liteon	LTL1BEKVJNN		

Phototransistor	Manufacturer	Manufacturer's part number		
Surface mount				
topyjou	Everlight	PT17-21C/L41/TR8		
top-view	Kingbright	APT2012P3BT		
oide view	SunLED	XZRNI56W-1		
side-view	Everlight	PT12-21C/TR8		
Through-hole				
3mm	SunLED	XRNI30W-1		
	Honeywell	SDP8405-003		

FCC Caution: To assure continued compliance, (example - use only shielded interface cables when connecting to computer or peripheral devices). Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate this equipment.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Version	Change description
20121217	updated mechanical drawings to reflect the smaller coax connector
20130103	updated recommended footprint to have a cleaner look
20130122	changed PIN 10 to 14 to PIN A to E
20130218	added FCC caution statement
20130219	added TX power in paragraph 1.2
20130221	updated TX power values
20130312	PWM was incorrectly listed as a pinmux option for PINA/PINB
20130313	Removed bogus U1-RX from PIND. added suggested opto components in paragraph 10
20130321	added application diagrams & t&r info
20130429	added MSL info & change VREF to VDDA
20130605	added common cathode diagram, updated overall module tolerances
20130611	updated electrical characteristics table