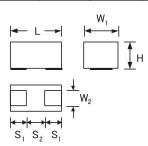
F38 Series

Conductive Polymer, Miniature, Undertab

TECHNICAL SPECIFICATIONS

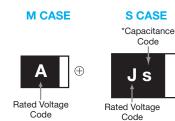
Item	Performance Characteristics						
Category Temperature Range	-55 to +105°C (Rated temperature: +85°C)						
Capacitance Tolerance	±20% (at 120Hz)						
Dissipation Factor	Refer to next page						
ESR (100kHz)	Refer to next page						
	Refer to the table below						
Leakage Current	Povided that						
Leakage Guilent	 After 5 minute's application of rated voltage, leakage current at 105°C, 						
	10 times or less than 20°C specified value						
Capacitance Change	+15% Max. (at +125°C)						
by Temperature	+10% Max. (at +85°C)						
2, ioniporatare	-10% Max. (at -55°C)						
	At 40°C, 90 to 95% R.H., 500 hours (No voltage applied)						
Damp Heat	Capacitance Change Refer to next page (*1)						
(Steady State)	Dissipation Factor 200% or less of initial specified value						
	Leakage Current						
	At -55°C / +105°C, For 30 minutes each, 5 cycles						
Temperature Cycles	Capacitance Change						
	Dissipation Factor 200% or less of initial specified value						
	Leakage Current						
Resistance to	10 seconds reflow at 240°C						
Soldering Heat	Capacitance Change						
Soldering near	Dissipation Factor						
	Leakage Current						
	30 seconds ON, 30 seconds OFF, for 1000 successive test cycles at 85°C,						
	capacitors meet the characteristic requirements table below.						
Surge	Capacitors meet the characteristic requirements table below. Capacitance Change						
	Dissipation Factor						
	Leakage Current						
	After 1000 hours' application of rated voltage in series with a 3Ω resistor at						
85°C, capacitors meet the characteristic requirements table belo							
Endurance	Capacitance Change						
	Dissipation Factor						
	Leakage Current						
	After applying the pressure load of 5N for 10±1						
	seconds horizontally to the center of capacitor						
Shear Test	side body which has no electrode and has been 5N (0.51kg · f)						
Snear lest	coldered beforehand on a substrate, there shall						
	be found neither exfoliation nor its sign at the						
	terminal electrode.						
	Keeping a capacitor surface-mounted on a substrate upside down and						
	supporting the substrate at both of the opposite bottom points 45mm apart						
	from the center of capacitor, the pressure						
Terminal Strength	strength is applied with a specified jig at the R230 \rightarrow 20						
reminal Strength	center of substrate so that the substrate						
	may bend by 1mm as illustrated. Then,						
	there shall be found no remarkable						
	abnormality on the capacitor terminals.						

FEATURES


- Compliant to the RoHS directive (2002/95/EC)
- SMD facedown
- Small and low profile

APPLICATIONS

- Smartphone
- Tablet PC
- Wireless module
- Portable game


CASE DIMENSIONS: millimeters (inches)

Cod	L	W ₁	W ₂	H	S ₁	S ₂
м	1.60 ^{+0.20} -0.10 (0.063 ^{+0.008} -0.004)	0.85 +0.20 +0.10 (0.033 +0.008 -0.004)	0.65±0.10 (0.026±0.004)	0.80±0.10 (0.031±0.004)	0.50±0.10 (0.020±0.004)	0.60±0.10 (0.024±0.004)
s	2.00 +0.20 -0.10 (0.079 +0.008 -0.004)	1.25 +0.20 +0.10 (0.049 +0.008 -0.004)	0.90±0.10 (0.035±0.004)	0.80±0.10 (0.031±0.004)	0.50±0.10 (0.020±0.004)	1.00±0.10 (0.039±0.004)

$ \begin{array}{c} & \downarrow \\ & \downarrow $	

MARKING

HOW TO ORDER

F38	<u>1A</u>	225	M	M	
Туре	Rated Voltage	Capacitance Code pF code: 1st two digits represent significant figures, 3rd digit represents multiplier (number of zeros to follow)	Tolerance M = ±20%	Case Size See table above	 i ng e Width (mm) B

 \oplus

/AV/X

F38 Series

Conductive Polymer, Miniature, Undertab

CAPACITANCE AND RATED VOLTAGE, V_R (VOLTAGE CODE) RANGE (LETTER DENOTES CASE SIZE)

Capad	citance		Rated Voltage				
μF	Code	4V (0G)	6.3V (0J)	10V (1A)	*Cap Code		
2.2	225			М	-		
4.7	475			М	-		
10	106		М	M*	а		
22	226		M*	S*	j		
47	476		M*/S		S		
100	107	S*			A		

Available Ratings

*Codes under development – subject to change

Please contact to your local AVX sales office when these series are being designed in your application.

RATINGS & PART NUMBER REFERENCE

AVX Part Number	Case Size	Cap (µF)	Rated Voltage (V)	*2 Leakage Current (µA)	Disspation Factor (%@120Hz)	ESR (mΩ@100kHz)	*1 ∆C/C (%)
6.3 Volt							
F380J106MMA	М	10	6.3	10.0	8	500	*
F380J476MSA	S	47	6.3	29.6	10	200	*
10 Volt							
F381J225MMA	М	2.2	10	10.0	6	500	*
F381J475MMA	М	4.7	10	10.0	6	500	*

1: $\Delta C/C$ Marked ""

Item	All Case (%)
Damp Heat, steady state	-20 to +30
Radid change of temperature	±20
Resistance soldering heat	±20
Surge	±20
Endurance	±20

*2: Leakage Current

After 5 minute's application of rated voltage, leakage current at 20°C.

THE CORELATIONS AMONG RATED VOLTAGE, SURGE VOLTAGE AND DERATED VOLTAGE

Rated Voltage (V)	6.3	10
85°C Surge Voltage (V)	8	13
105°C Derated Voltage (V)	5	8

NOTICE: DESIGN, SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

