

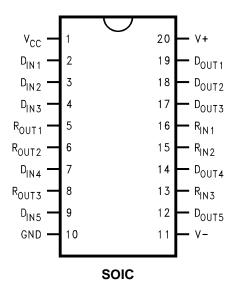
www.ti.com

SNOS401D-APRIL 1999-REVISED APRIL 2013

DSV14196 +3.3V Supply EIA/TIA-232 5 Driver x 3 Receiver

Check for Samples: DSV14196

FEATURES

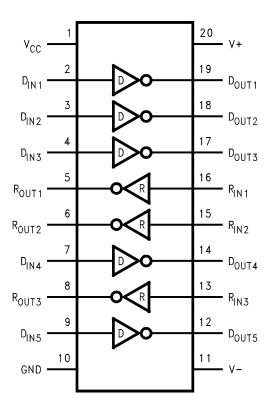

- Conforms to EIA/TIA-232-E and ITU-T V.28
- 5 Drivers and 3 Receivers
- Flow-Through Pinout
- Failsafe Receiver Outputs High when Inputs Open
- 20-Pin Wide SOIC Package
- LapLink® Compatible—230.4 kbps Data Tate
- +3.3V Logic Interface
- Commercial Temperature Range Option DSV14196 (0°C to 70°C)
- Industrial Temperature Range Option DSV14196T
 - (-40°C to +85°C)

DESCRIPTION

The DSV14196/DSV14196T is a five driver, three receiver device which conforms to the EIA/TIA-232-E and the ITU-T V.28 standards.

The flow-through pinout facilitates simple non-crossover board layout. The DSV14196/DSV14196T provides a peripheral side one-chip solution for the common 9-pin serial RS-232 interface between data terminals and data communications equipment.

Connection Diagram


M

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

LapLink is a registered trademark of Travelling Software. All other trademarks are the property of their respective owners.

Functional Diagram

www.ti.com

SNOS401D-APRIL 1999-REVISED APRIL 2013

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings (1)(2)

Absolute maximum ratings		
Supply Voltage (V _{CC})	+7V	
Supply Voltage (V ⁺)	+15V	
Supply Voltage (V ⁻)	-15V	
Driver Input Voltage	0V to V _{CC}	
Driver Output Voltage (Power Off)	±15V	
Receiver Input Voltage	±25V	
Receiver Output Voltage (R _{OUT})	0V to V _{CC}	
	DW Package	1524 mW
Maximum Power Package Dissipation @ +25°C	Derate DW Package	12.2 mW/°C above 25°C
Storage Temperature Range	-65°C to +150°C	
Lead Temperature Range (Soldering, 4 sec.)	+260°C	
ESD Ratings (HBM. 1.5 k Ω , 100 pF)		≥1.5 kV

Absolute Maximum Ratings are those values beyond which the safety of the device cannot be ensured. They are not meant to imply that the devices should be operated at these limits. The table of Electrical Characteristics specifies conditions of device operation.

If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and

Recommended Operating Conditions

	Min	Nom	Max	Units
Supply Voltage (V _{CC})	+3.0	+3.3	+3.6	V
Supply Voltage (V ⁺)	+9.0	+12.0	+13.2	V
Supply Voltage (V ⁻)	-13.2	-12.0	-9.0	V
Operating Free Air				
Temperature (T _A)				
DSV14196	0	+25	+70	°C
DSV14196T	-40	+25	+85	°C

Product Folder Links: DSV14196

specifications.

SNOS401D-APRIL 1999-REVISED APRIL 2013

Electrical Characteristics (1)(2) DSV14196

Over recommended operating supply and temperature ranges unless otherwise specified

Symbol	Parameter	Conditions		Min	Тур	Max	Units
DEVICE (CHARACTERISTICS			1			
I _{CC}	V _{CC} Supply Current	No Load, All Inputs	at +3.3V		8	16	mA
l ⁺	V ⁺ Supply Current	No Load, All Driver	$V^{+} = +9V, V^{-} = -9V$		16	26	mA
	,	Inputs at 0.8V or +2V. All Receiver	V ⁺ = +13.2V, V [−] = −13.2V		23	36	mA
l-	V ⁻ Supply Current	Inputs at 0.7V or	$V^{+} = +9V, V^{-} = -9V$		-18	-26	mA
		2.4V.	V ⁺ = +13.2V, V [−] = −13.2V		-25	-36	mA
DRIVER (CHARACTERISTICS	1		II.	1		J
V _{IH}	High Level Input Voltage			2.0			V
V _{IL}	Low Level Input Voltage					0.8	V
I _{IH}	High Level Input Current	V _{IN} = 3.3V				10	μΑ
I _{IL}	Low Level Input Current	$V_{IN} = 0V$			-1.1	-1.5	mA
V _{OH} High Level Output Voltage		$R_L = 3 k\Omega, V_{IN} = 0.8$	8V, V ⁺ = +9V, V [−] = −9V	6	7		V
		$R_L = 3 k\Omega$, $V_{IN} = 0.8$	3V, V ⁺ = +12V, V [−] = −12V	8	9		V
		$R_L = 7 k\Omega$, $V_{IN} = 0.8$	8V, V ⁺ = +13.2V, V [−] = −13.2V	10	11.5		V
V _{OL} Low Level Output Voltage		$R_L = 3 k\Omega$, $V_{IN} = 2V$, $V^+ = +9V$, $V^- = -9V$			-7	-6	V
		$R_L = 3 \text{ k}\Omega, V_{IN} = 2V, V^+ = +12V, V^- = -12V$			-10	-8	V
		$R_L = 7 k\Omega$, $V_{IN} = 2V$		-11.5	-10	V	
I _{OS} +	Output High Short	V _{OUT} = 0V, V _{IN} = 0.8V		-6	-12	-18	mA
	Circuit Current ⁽³⁾						
I _{OS} -	Output Low Short	$V_{OUT} = 0V, V_{IN} = 2.0$	0V	6	12	18	mA
Circuit Current ⁽³⁾							
Ro	Output Resistance	$-2V \le V_{OUT} \le +2V$	$V^{+} = V^{-} = V_{CC} = 0V$	300			Ω
		$-2V \le V_{OUT} \le +2V$, $V^+ = V^- = V_{CC} = Open Circuit$		300			Ω
RECEIVE	R CHARACTERISTICS	1		1	1		.1
V _{TH} Input High Threshold		$V_{OUT} \le 0.4V, I_{O} = 3.2 \text{ mA}$		1.5	1.85	2.4	V
	(Recognized as a High Signal)						
V_{TL}	Input Low Threshold (Recognized as a Low Signal)	$V_{OUT} \ge 1.7V$, $I_{O} = -0.5 \text{ mA}$		0.7	0.9	1.3	V
R _{IN}	Input Resistance	$V_{IN} = \pm 3V$ to $\pm 15V$		3.0	3.8	7.0	kΩ
I _{IN}	Input Current	V _{IN} = +15V	V _{IN} = +15V		4.0	5.0	mA
		V _{IN} = +3V		0.43	0.7	1.0	mA
	V _{IN} = −15V			-2.1	-4.0	- 5.0	mA
		V _{IN} = −3V		-0.43	-0.7	-1.0	mA
V _{OH}	High Level Output Voltage (4)	$I_{OH} = -0.5 \text{ mA}, V_{IN} = -3V$		1.7	2.4		V
		$I_{OH} = -10 \mu A, V_{IN} = -3V$		2.7	3.2		V
		$I_{OH} = -0.5 \text{ mA}, V_{IN} = \text{Open Circuit}$		1.7	2.4		V
		I _{OH} = -10 μA, V _{IN} =	2.7	3.2		V	
V _{OL}	Low Level Output Voltage	I_{OL} = 3.2 mA, V_{IN} =			0.2	0.4	V
I _{OSR}	Short Circuit Current	$V_{OUT} = 0V, V_{IN} = 0V$		-0.6	-1.8	-3.0	mA

⁽¹⁾ Current into device pins is defined as positive. Current out of the device pins is defined as negative. All voltages are referenced to ground unless otherwise specified. For current, minimum and maximum values are specified as an absolute value and the sign is used to indicate direction. For voltage logic levels, the more positive value is designated as maximum. For example, if −6V is a maximum, the typical value −6.8V is more negative.

Product Folder Links: DSV14196

Submit Documentation Feedback

Copyright © 1999–2013, Texas Instruments Incorporated

⁽²⁾ All typicals are given for: $V_{CC} = +3.3V$, $V^+ = +12V$, $V^- = -12V$, $T_A = +25$ °C.

⁽³⁾ Only one driver output shorted at a time.

⁴⁾ If receiver inputs are unconnected, receiver output is a logic high.

Electrical Characteristics (1)(2) **DSV14196T**

STRUMENTS

Symbol	Parameter	Conditions			Тур	Max	Units
DEVICE (CHARACTERISTICS						1
I _{CC}	V _{CC} Supply Current	No Load, All Inputs a	at +3.3V		8	16	mA
	V ⁺ Supply Current	No Load, All Driver $V^+ = +9V$, $V^- = -9V$			16	26	mA
		Inputs at 0.8V or	V ⁺ = +13.2V, V [−] = −13.2V		23	36	mA
Ι¯	V ⁻ Supply Current	+2V. All Receiver Inputs at 0.7V or	$V^{+} = +9V, V^{-} = -9V$		-18	-26	mA
		2.4V.	V ⁺ = +13.2V, V [−] = −13.2V		-25	-36	mA
DRIVER (CHARACTERISTICS						
V _{IH}	High Level Input Voltage			2.0			V
V _{IL}	Low Level Input Voltage					0.8	V
I _{IH}	High Level Input Current	V _{IN} = 3.3V				10	μA
I _{IL}	Low Level Input Current	V _{IN} = 0V			-1.1	-1.9	mA
V _{OH} High Level Output Voltage			V, V ⁺ = +9V, V [−] = −9V	5.5	7		V
OH	3		V, V ⁺ = +12V, V ⁻ = −12V	7.5	9		V
			V, V ⁺ = +13.2V, V ⁻ = −13.2V	9	11.5		V
V _{OL} Low Level Output Voltage		$R_L = 3 \text{ k}\Omega, V_{IN} = 2V,$			-7	- 5.5	V
VOL.		$R_L = 3 k\Omega, V_{IN} = 2V, V^+ = +12V, V^- = -12V$			-10	- 7.5	V
		$R_L = 7 \text{ k}\Omega, V_{IN} = 2V,$		-11.5	-9	V	
I _{OS} +	Output High Short	$V_{OUT} = 0V, V_{IN} = 0.8V$		-4	-12	-22	mA
.08.	Circuit Current ⁽³⁾	- VOUT - 3 V, VIIN - 3.3					
I _{OS} -	Output Low Short	$V_{OLIT} = 0V, V_{IN} = 2.0V$		4	12	22	mA
105	Circuit Current ⁽³⁾				12		1117
R _O	Output Resistance	$-2V \le V_{OUT} \le +2V, V^{+} = V^{-} = V_{CC} = 0V$ $-2V \le V_{OUT} \le +2V, V^{+} = V^{-} = V_{CC} = Open Circuit$		300			Ω
	Culput Hoolotanoo			300			Ω
RECEIVE	R CHARACTERISTICS	2 = 1001 = 121, 1		000			
V _{TH}	Input High Threshold	$V_{OUT} \le 0.5 \text{V}, I_{O} = 3.2$	P mA	1.4	1.85	2.8	V
V IH	(Recognized as a High Signal)	V _{0UT} ≤ 0.5V, I ₀ = 5.2 IIIA			1.00	2.0	"
V _{TL}	Input Low Threshold (Recognized as a Low Signal)	V _{OUT} ≥ 1.7V, I _O = -0	0.5	0.9	1.4	V	
R _{IN}	Input Resistance	$V_{IN} = \pm 3V \text{ to } \pm 15V, T$	A = 0°C to 70°C	3.0	3.8	7.0	kΩ
I _{IN}	Input Current	V _{IN} = +15V, TA = 0°C to +70°C		2.1	4.0	5.0	mA
-114		$V_{IN} = +3V$, $TA = 0^{\circ}C$ to $+70^{\circ}C$		0.43	0.7	1.0	mA
		$V_{IN} = -15V$, TA = 0°C to +70°C		-2.1	-4.0	-5.0	mA
		$V_{IN} = -3V$, TA = 0°C to +70°C			-0.7	-1.0	mA
V _{OH}	High Level Output Voltage (4)	$I_{OH} = -0.5 \text{ mA}, V_{IN} = -3V, V_{CC} = 3.3V$		1.8	2.4		V
011	,	$I_{OH} = -10 \mu A$, $V_{IN} = -3V$, $V_{CC} = 3.3V$ $I_{OH} = -0.5 \text{ mA}$, $V_{IN} = \text{Open Circuit}$, $V_{CC} = 3.3V$		3.0	3.2		V
				1.8	2.4		V
			Open Circuit, V _{CC} = 3.3V	3.0	3.2		V
V _{OL}	Low Level Output Voltage	$I_{OL} = 3.2 \text{ mA}, V_{IN} = 4.1 \text{ mass}$		0.0	0.2	0.5	V
I _{OSR}	Short Circuit Current	$V_{OUT} = 0V, V_{IN} = 0V$ (3)		-0.4	-1.8	-3.2	mA

Current into device pins is defined as positive. Current out of the device pins is defined as negative. All voltages are referenced to ground unless otherwise specified. For current, minimum and maximum values are specified as an absolute value and the sign is used to indicate direction. For voltage logic levels, the more positive value is designated as maximum. For example, if -6V is a maximum, the typical value -6.8V is more negative. All typicals are given for: $V_{CC} = +3.3V$, $V^+ = +12V$, $V^- = -12V$, $T_A = +25^{\circ}C$. Only one driver output shorted at a time. If receiver inputs are unconnected, receiver output is a logic high.

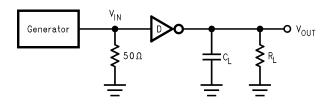
Product Folder Links: DSV14196

SNOS401D-APRIL 1999-REVISED APRIL 2013

www.ti.com

Switching Characteristics (1)(2)(3) DSV14196 & DSV14196T

 $T_A = +25$ °C


Symbol	Parameter	Conditions	Min	Тур	Max	Units
DRIVER CI	HARACTERISTICS	·			•	
t _{PHL}	Propagation Delay High to Low	$R_L = 3 \text{ k}\Omega$, $C_L = 50 \text{ pF}$ (See Figure 1		60	350	ns
t _{PLH}	Propagation Delay Low to High	and Figure 3)		240	350	ns
t _r , t _f	Rise/Fall Time ⁽⁴⁾			40		ns
RECEIVER	CHARACTERISTICS		•			
t _{PHL}	Propagation Delay High to Low	$R_L = 1.5 \text{ k}\Omega$, $C_L = 15 \text{ pF}$ (includes		150	350	ns
t _{PLH}	Propagation Delay Low to High	fixture plus probe), (See Figure 2 and Figure 4)		240	350	ns
t _r	Rise Time	and riguic +/		40	175	ns
t _f	Fall Time			40	100	ns

- All typicals are given for: $V_{CC} = +3.3V$, $V^+ = +12V$, $V^- = -12V$, $T_A = +25^{\circ}C$. Generator characteristics for driver input: f = 64 kHz (128 kbps), $t_r = t_f < 10$ ns, $V_{IH} = 3V$, $V_{IL} = 0V$, duty cycle = 50%. Generator characteristics for receiver input: f = 64 kHz (128 kbps), $t_r = t_f = 200$ ns, $V_{IH} = 3V$, $V_{IL} = -3V$, duty cycle = 50%. Refer to Typical Performance Characteristics. Driver output as the measured from the +3V to the -3V level on the output output as the results of the results o waveform. Inputs not under test are connected to V_{CC} or GND. Slew rate is determined by load capacitance. To comply with a 30 V/µs maximum slew rate, a minimum load capacitance of 390 pF for DSV14196 or 620 pF for DSV14196T is recommended.

Submit Documentation Feedback

Instruments

PARAMETER MEASUREMENT INFORMATION

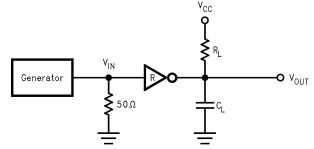
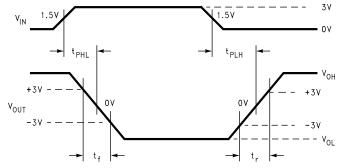



Figure 1. Driver Propagation Delay and Transition Time Test Circuit ⁽⁵⁾

Figure 2. Receiver Propagation Delay and Transition Time Test Circuit (6)

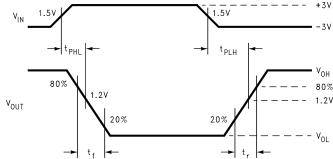


Figure 3. Driver Propagation Delay and Transition Time Waveforms Slew Rate (SR) = $6V/(t_r \text{ or } t_f)$

Figure 4. Receiver Propagation Delay and Transition Time Waveform

- Generator characteristics for driver input: f = 64 kHz (128 kbps), $t_r = t_f < 10$ ns, $V_{IH} = 3V$, $V_{IL} = 0V$, duty cycle = 50%. Generator characteristics for receiver input: f = 64 kHz (128 kbps), $t_r = t_f = 200$ ns, $V_{IH} = 3V$, $V_{IL} = -3V$, duty cycle = 50%.

PIN DESCRIPTIONS

Pin #	Pin	Description
	Name	
2, 3, 4, 7, 9	D _{IN}	Driver Input Pins
12, 14, 17, 18, 19	D _{OUT}	Driver Output Pins, RS-232 Levels
13, 15, 16	R _{IN}	Receiver Input Pins, RS-232 Levels
5, 6, 8	R _{OUT}	Receiver Output Pins
10	GND	Ground
20	V ⁺	Positive Power Supply Pin (+9.0 ≤ V ⁺ ≤ +13.2)
11	V ⁻	Negative Power Supply Pin (-9.0 ≤ V ⁻ ≤ -13.2)
1	V _{CC}	Positive Power Supply Pin (+3.3V ±10%)

Product Folder Links: DSV14196

APPLICATION INFORMATION

In a typical Data Terminal Equipment (DTE) to Data Circuit-Terminating Equipment (DCE) 9-pin de-facto interface implementation, 2 data lines and 6 control lines are required. The data lines are TXD and RXD. The control lines are RTS, DTR, DSR, DCD, CTS and RI.

The DSV14196/DSV14196T is a 5 x 3 Driver/Receiver and offers a single chip solution for this DTE interface. As shown in *Figure 5*, this interface allows for direct flow-thru interconnect. For a more conservative design, the user may wish to insert ground traces between the signal lines to minimize cross talk.

FAILSAFE RECEIVER OUTPUTS

The DSV14196/DSV14196T features failsafe receiver outputs. In failsafe mode, if the receiver input becomes zero or an open-circuit, the receiver output is pulled to a high level.

LapLink® COMPATIBILITY

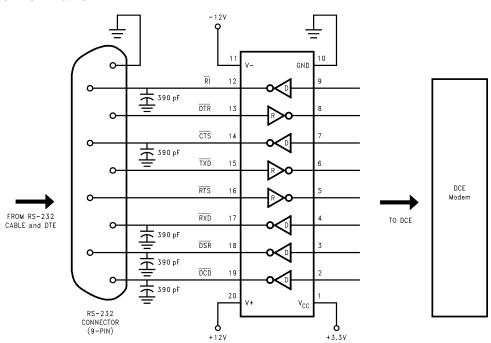
The DSV14196/DSV14196T can easily provide 128 kbps data rate under maximum driver load conditions of $C_L = 2500$ pF and $R_L = 3$ k Ω , while power supplies are:

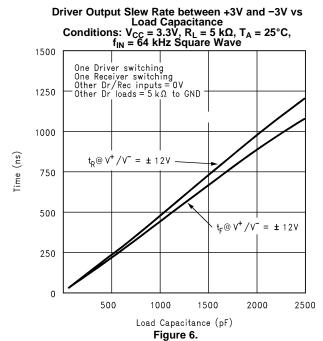
$$V_{CC} = +3.0V, V^{+} = 10.8V, V^{-} = -10.8V$$
 (1)

MOUSE DRIVING

A typical mouse can be powered from the drivers. Two driver outputs connected in parallel and set to V_{OH} can be used to supply power to the V^+ pin of the mouse. The third driver output is set to V_{OL} to sink the current from the V^- terminal. Refer to typical curves of V_{OUT}/I_{OUT} . Typical mouse specifications are:

10 mA at +6V 5 mA at -6V (2)




Figure 5. Typical DCE Application

Submit Documentation Feedback

Copyright © 1999–2013, Texas Instruments Incorporated

Typical Performance Characteristics

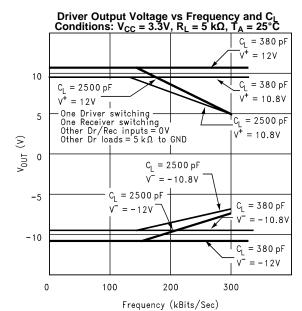
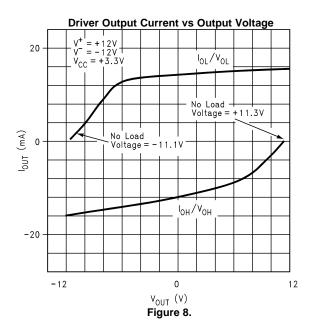



Figure 7.

Product Folder Links: DSV14196

Submit Documentation Feedback

TEXAS INSTRUMENTS

SNOS401D -	A DDII	1000	DEMICED	A DDII	2012

www.ti.com

REVISION HISTORY

CI	nanges from Revision C (April 2013) to Revision D	Pag	jε
•	Changed layout of National Data Sheet to TI format		ç

Submit Documentation Feedback

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>