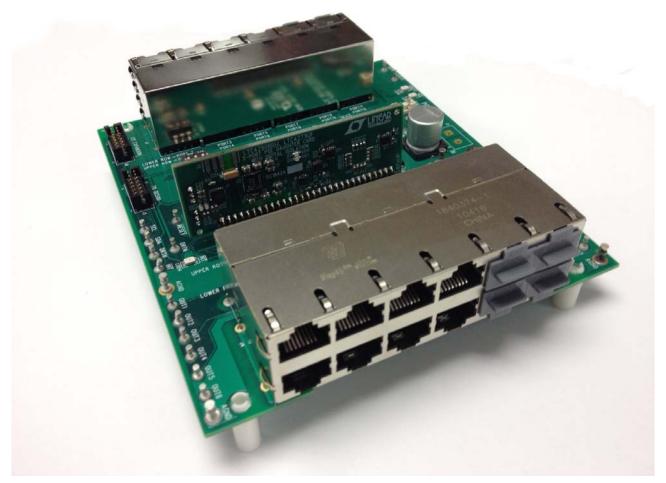


DEMO MANUAL DC1843A

DC1842A and DC1680A LTC4290B/LTC4271 8-Port PSE with Digital Isolation

DESCRIPTION


Demonstration kit DC1843A is an 8-port Type 2 power sourcing equipment (PSE) composed of a DC1842A daughter card and DC1680A motherboard. The kit is used for evaluation of the LTC4290B and LTC4271 PSE chipset. Up to 8 powered devices (PDs) can be connected and powered from this system using a single power supply. A DC590 is connected to the DC1680A for I²C interfacing with QuikEval™. This demonstration manual provides a Quick Start Procedure, a DC1842A overview, a DC1680A

overview, schematics, BOMs, and layout printouts. Refer to the Layout Guide for Demonstration Circuit 1842A when laying out the LTC4290B/LTC4271 circuit. Contact Linear Technology for this document.

Design files for this circuit board are available at http://www.linear.com/demo

 \mathcal{L} , LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and QuikEval is a trademark of Linear Technology Corporation. All other trademarks are the property of their respective owners.

BOARD PHOTO

dc1843a1

QUICK START PROCEDURE

Demonstration kit DC1843A includes the DC1842A daughter card and DC1680A motherboard. The kit is set up for evaluating the LTC4290B/LTC4271. Follow the procedure below and refer to Figures 1 through 4 for proper equipment setup.

NOTE (DC1843A Kit): Connector J1 on the DC1680A has four pegs blocking the unused last four pins to match the 30-pin connector of the DC1842A. Dust caps block the four unused ports at each RJ45 connector on the DC1680A for the 8-Port.

- 1. On the DC1842A set AUTO jumper JP1 to HI (Figure 1) to enable AUTO pin mode.
- 2. On the DC1842A set MID jumper JP2 to LO (Figure 1) to disable midspan mode.

- 3. Align pin 1 of the 30-pin male connector on the DC1842A with pin 1 of the 30-pin female connector on the DC1680A (Figure 2). Pin 12 is polarized to assist with the alignment. Carefully push the DC1842A straight down until the two 30-pin connectors are flush with each other.
- 4. On the DC1680A, connect a supply with the positive rail to POS and negative rail to NEG (Figure 3). Use a power supply capable of sourcing the maximum load expected (8 ports \times 850mA \geq 6.8A). Ramp the supply up to 55V.
- 5. Connect up to 8 PDs to ports 1-8 at the DC1680A, J4 (Figure 3).
- 6. The DC590 is optionally connected to the DC1680A connector J5 with a 14-pin ribbon cable (Figure 3). A GUI for the LTC4290B/LTC4271 is brought up by QuikEval for I²C interfacing from a PC (Figure 4).

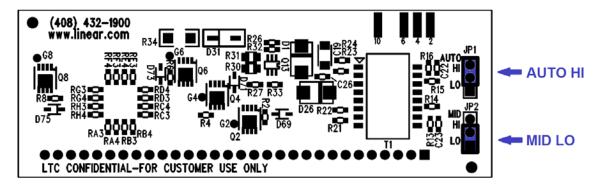
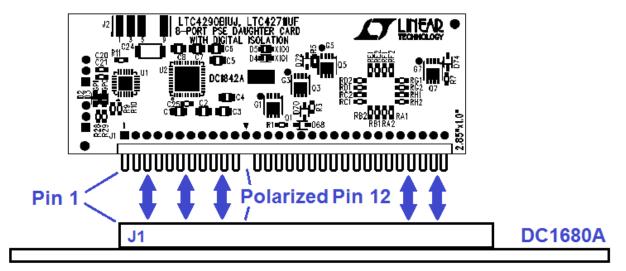



Figure 1. DC1842A Backside. Setting AUTO and MID Jumpers

dc1843at

QUICK START PROCEDURE

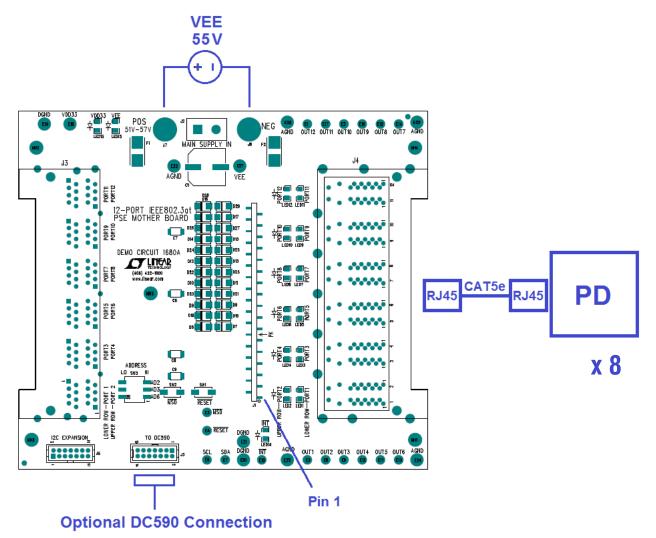


Figure 3. DC1680A Basic Setup

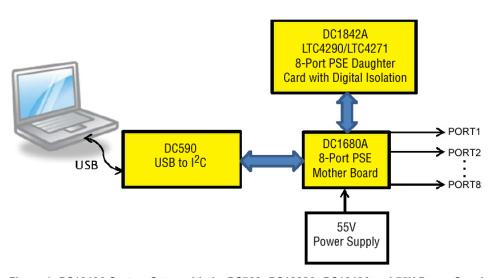


Figure 4. DC1843A System Setup with the DC590, DC1680A, DC1842A and 55V Power Supply

8-Port PSE Daughter Card with Digital Isolation

Demonstration circuit 1842A (Figure 5) features the LTC4290B/LTC4271 chipset on a compact daughter card with digital isolation. The LTC4290B/LTC4271 chipset is an 8-port power sourcing equipment (PSE) controller designed for use in IEEE 802.3at Type 1 and Type 2 (high power) compliant Power over Ethernet (PoE) systems. A transformer isolated communication protocol replaces expensive opto-couplers and complex isolated 3.3V supply resulting in significant BOM cost savings. The LTC4290B/LTC4271 chipset delivers lowest-in-industry heat dissipation by utilizing low R_{ON} external MOSFETs and 0.25Ω sense resistors, eliminating the need for expensive heat sinks.

Advanced power management features in the LTC4290B/LTC4271 chipset include: per port 12-bit current monitoring ADCs, DAC programmable current limit, and versatile quick shutdown of preselected ports. PD discovery uses a

proprietary dual mode 4-point detection mechanism ensuring excellent immunity from false PD detection. Midspan PSEs are supported with 2-event classification and a two second backoff timer. The LTC4290B/LTC4271 includes an I^2 C serial interface operable up to 1MHz.

The DC1842A demonstrates proper LTC4290B/LTC4271 board layout that is approximately the height and width of a 2×4 RJ45 connector. The compact layout is made possible by the small package size of key components. The LTC4290B is in a 6mm \times 6mm QFN, while the LTC4271 is in a 4mm \times 4mm QFN. Each port has a FDMC3612 MOSFET in a 3mm \times 3mm power33 package.

The daughter card inserts in the DC1680A motherboard through J1, a polarized 30-pin connector. Isolated 3.3V and logic control signals are brought in on this connector. Also connected at J1 is the PoE V_{EE} supply from the motherboard and 8 PSE controlled outputs.

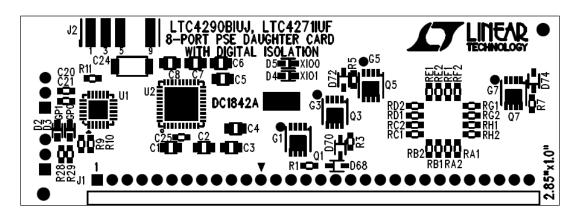


Figure 5. DC1842A 8-Port PSE Daughter Card with Digital Isolation Features the LTC4290B and LTC4271

Board Layout

Proper board layout is crucial for proper LTC4290B/LTC4271 chipset operation, robustness, and accuracy. When laying out, pay attention to parts placement, Kelvin sensing, power paths, and copper fill. It is imperative to follow the LTC4290B/LTC4271 Layout Guide for demonstration circuit 1842A document when laying out the board. Contact Linear Technology Corporation for this document.

Isolation and Power Supplies

The LTC4290B/LTC4271 chipset provides communication across an isolation barrier through a data transformer (Figure 6). This eliminates the need for expensive optocouplers. All digital pins reside on the digital ground reference and are isolated from the analog PoE supply. A 3.3V supply for V_{DD} and an isolated V_{EE} supply are connected to the DC1842A through the 30-pin connector.

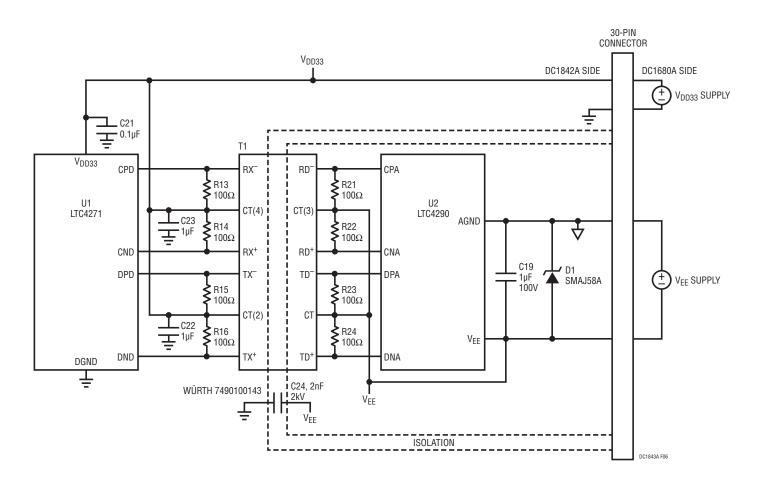


Figure 6. DC1842A Digital and Analog Isolation

I²C Communication and Addressing

The LTC4271 internal registers are accessed via I²C to read and/or write configuration, status, and interrupt registers. The I²C lines SDAOUT, SDAIN and SCL connect to the 34-pin connector (Figure 7). Subsequently, the I²C bus is accessed on the DC1680A.

The LTC4290B/LTC4271 chipset has an address of $(A_610A_3A_2A_1A_0b)$, where A_6 , A_3 , A_2 , A_1 , and A_0 are the logic state of the AD6, AD3, AD2, AD1, and AD0 pins respectively. On the DC1842A, AD0 and AD1 are tied low with pull-down resistors. AD2, AD3 and AD6 are brought out to the 30-pin connector (Figure 7) and set with three switches on the DC1680A.

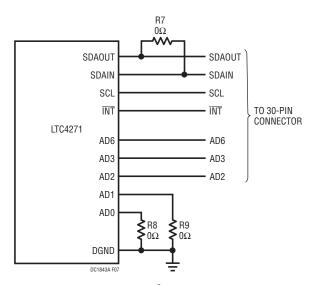


Figure 7. DC1842A, LTC4271 I²C and Address Connections

I/O LED Indicators

The DC1842A features four LEDs to indicate the states of the LTC4290B/LTC4271 chipset general purpose input output pins. These pins are configured as inputs or outputs via I^2C . GP1 and GP0 are referenced to DGND and driven by the LTC4271 when set as outputs (Figure 8). XIO0 and XIO1 are referenced to V_{EE} and are driven by the LTC4290B when set as outputs (Figure 9). J2 provides test points for access to these I/Os.

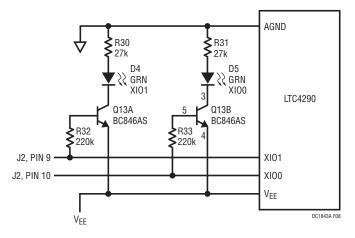


Figure 8. DC1842A, LTC4290B General Purpose I/O LED Indicators

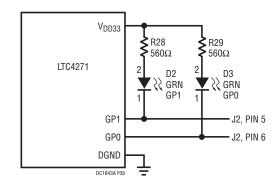


Figure 9. DC1842A, LTC4271 General Purpose I/O LED Indicators

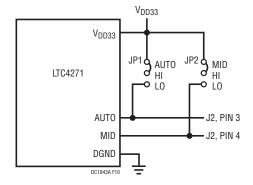


Figure 10. DC1842A AUTO and MID Jumpers

AUTO and MID Jumpers

The AUTO and MID pins of the LTC4271 are set by jumpers JP1 and JP2 respectively on the DC1842A (Figure 10). Setting JP1 to HI enables the AUTO pin mode in the LTC4290B/LTC4271 chipset. J2 provides test points for access to AUTO and MID.

In AUTO pin mode (JP1 high), the LTC4290B/LTC4271 chipset internal I²C registers default to the AUTO pin high state after a software or hardware reset, or system power on. The LTC4290B/LTC4271 chipset autonomously detects, powers on and disconnects power to PDs without the need for I²C host control.

Setting JP1 to LO disables AUTO pin mode and sets the LTC4290B/LTC4271 chipset to a low current shutdown mode. An I^2 C host controller can then be used to configure the LTC4290B/LTC4271 chipset to semi-auto mode for controlled PSE operation or to manual mode for test purposes.

Setting JP2 to HI enables the midspan mode detection backoff timer in the LTC4290B/LTC4271 chipset. For endpoint PSEs, set JP2 to L0 to disable midspan mode.

For quick PSE evaluation in AUTO pin mode with MIDSPAN disabled, set JP1 HI and JP2 LO on the DC1842A.

S1B Diodes Port Protection

Ethernet ports can be subject to significant ESD events when long data cables, each potentially charged to thousands of volts, are plugged into the low impedance of the RJ45 jack. To protect against damage, each port requires a pair of clamp diodes; one to AGND and one to V_{EE} (Figure 11). An additional surge suppressor is required for each LTC4290B chip from V_{EE} to AGND. The diodes at the ports steer harmful surges into the supply rails, where they are absorbed by the surge suppressor and the V_{EE} bypass capacitance. The surge suppressor has the additional benefit of protecting the LTC4290B from transients on the V_{FE} supply.

S1B diodes work well as port clamp diodes. The two S1B diodes per port are a part of the LTC4290B/LTC4271 application. These components are not on the DC1842A due to space constraints but are shown in Figure 11 for completeness.

In addition to the S1B diodes, a SMAJ58A or equivalent is recommended for the V_{EE} surge suppressor placed directly across the AGND and V_{EE} pins on the LTC4290B.

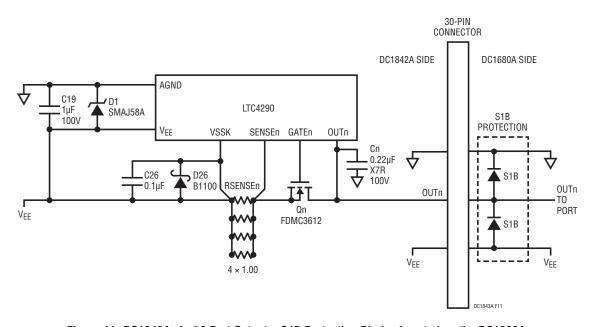


Figure 11. DC1842A, 1 of 8 Port Outputs. S1B Protection Diodes Located on the DC1680A

Demonstration circuit 1680A is configured as an 8-Port, IEEE802.3at Type 1 and Type 2 PoE PSE motherboard in the DC1843A kit. This board accepts various PSE daughter cards featuring Linear Technology PSE controllers. The DC1680A is capable of powering up to 8 PDs.

Daughter Card Insertion Precautions

When inserting or removing the daughter card into the DC1843A, verify all supplies and LEDs are off. Push the card straight down for insertion or pull straight up for removal to avoid bending the connector pins. Follow the instructions in the Quick Start Procedure for alignment.

VEE Supply

Connect a power supply for V_{EE} with the positive rail to POS and negative rail to NEG as shown in Figure 3 of the Quick Start Procedure. Set the voltage within the range in Table 1 depending on whether the application is a Type 1 or Type 2. Choose a power supply rating and set the current limit high enough to provide power for the maximum number of PDs connected and to meet each PD power requirements.

Table 1. DC1680A V_{FF} Power Range for Type 1 and Type 2 PSEs

PSE TYPE	V _{EE} SUPPLY Range	MAX DELIVERED PORT POWER	POWER SUPPLY*
Type 1	45V to 57V	13W	200W
Type 2	51V to 57V	25.5W	400W

^{*}Recommended DC1843A power supply minimum to avoid drooping in a worst-case scenario with $\rm I_{LIM}$ current at all 8 ports.

PD Connection

PDs are connected using an Ethernet cable to any of the 8 ports at the 2×6, RJ45 connector J4 on the DC1680A (Figure 3). J4 has an integrated Ethernet transformer and common mode termination for each port. Test points for port outputs OUT1 through OUT8 are provided.

8-Port Configuration

The DC1680A is configured for an 8-port PSE motherboard for the DC1843A kit. Four RJ45 dust caps at J3 and four

dust caps at J4 are inserted to block off the four unused Ethernet ports. Additional pegs are placed in the last 4 pins of connector J1 to block off the unused pins when the DC1842A daughter card is inserted.

DC1680A USER FEATURES

Refer to Figure 12 and Figure 13 for the following user features.

Onboard 3.3V Supply

The DC1680A has an onboard V_{DD33} digital supply generated from the V_{EE} supply. DGND is a negative voltage referenced to AGND. If an external 3.3V supply is to be used, contact Linear Technology Applications for proper connection.

VEE and VDD33 LED Indicators

LEDs for V_{EE} and V_{DD33} indicate if voltage is present at these supplies. Verify these LEDs are off before inserting or removing the daughter card.

Digital Connections

The DC1680A has connections for I²C control from a host controller. The DC590 is optionally connected to the DC1680A at J5 through a 14-pin ribbon cable. The QuikEval software will automatically detect the DC1680A and open the LTC4271 GUI. A second 14-pin ribbon cable can be connected to J6 for I²C expansion to another DC1680A board with slight board modifications. Contact Linear Technology Applications for instructions.

Digital test points include SCL, SDA, DGND, \overline{INT} , \overline{MSD} , and \overline{RESET} . I²C address pin AD6, AD3, and AD2 are set with a 3-bit switch SW3.

Midspan PSE

The DC1843A can be configured as a midspan PSE. Upstream switch data comes in to J3. Data and PoE go out to a PD at J4. Set both MID and AUTO pins logic high.

LINEAR TECHNOLOGY

MSD and RESET Pushbuttons

Pushbutton switch SW1, when pressed, pulls the RESET pin of the daughter card logic low. The PSE controller is then held inactive with all ports off and all internal registers reset to their power-up states. When SW1 is released, RESET is pulled high, and the PSE begins normal operation.

Pushbutton switch SW2 when pressed pulls the maskable shutdown input ($\overline{\text{MSD}}$) pin of the daughter card logic low. When pressed, all ports that have their corresponding mask bit set in the mconfig register of the PSE controller will be shutdown. These ports must then be manually re-enabled via I²C or by resetting the PSE.

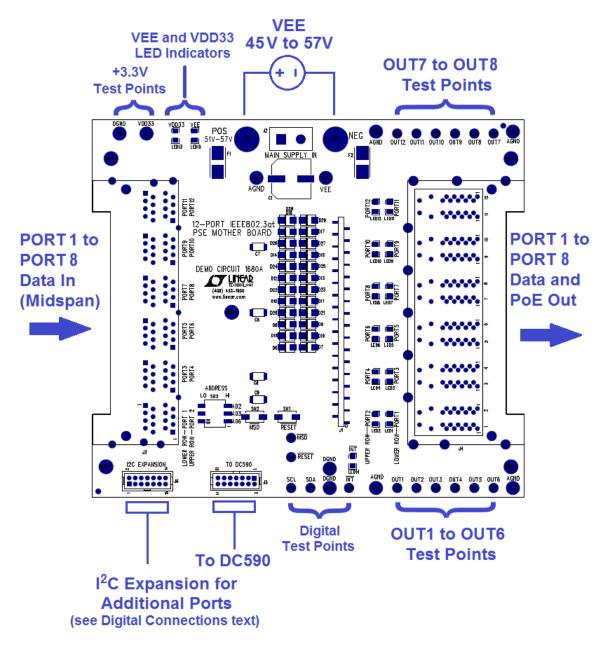


Figure 12. DC1680A Connections and Supply LEDs

Interrupt LED

A red LED indicates when the $\overline{\text{INT}}$ line is pulled logic low by the daughter card. When the interrupt is cleared (high) via I^2C servicing, the LED is turned off.

Port 1 Through 8 Power LED Indicators

Each PSE port has a green LED indicator to show when PoE power is present at the port. The LEDs are driven by the respective port OUT voltage.

DC1680A System Setup

Figure 14 shows a basic DC1680A system setup. The DC1842A daughter card is inserted in the 30-pin connector J1. A power supply is connected to V_{EE} with banana cables. The DC590 connects with 14-pin ribbon cable to the DC1680A and to a PC via USB. On the PC a GUI communicates with the board. At the PSE output, PDs are connected. A sample PD demo board is shown in Figure 14.

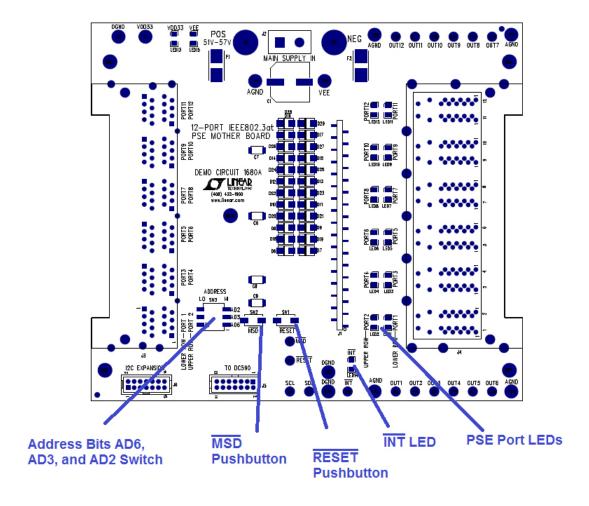


Figure 13. DC1680A Address Switch, Pushbutton Switches, INT LED, and Port Power LEDs

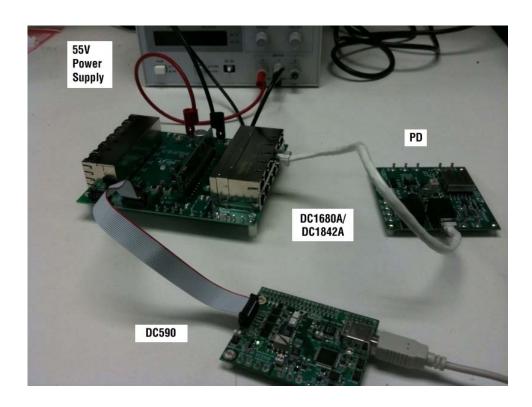
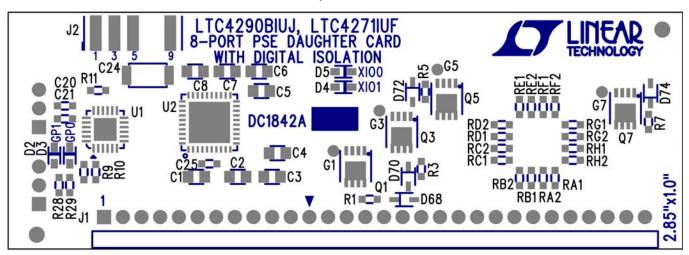
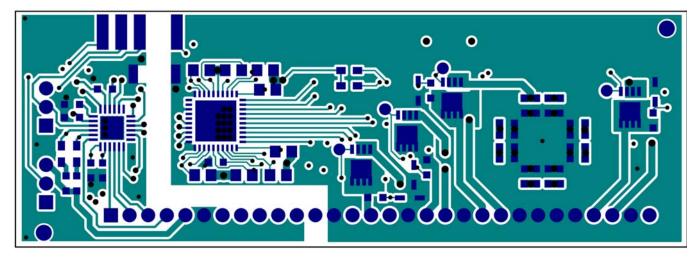
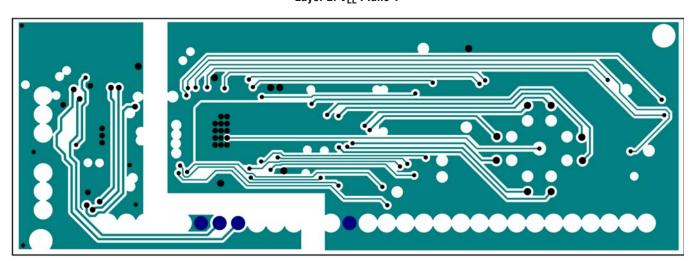
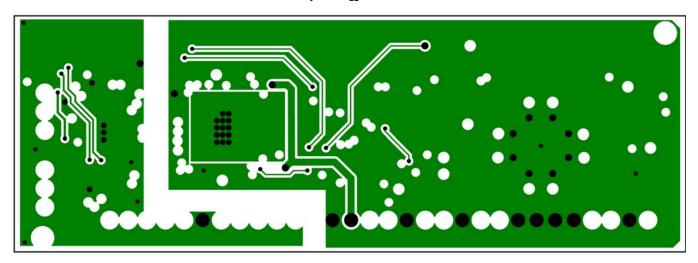
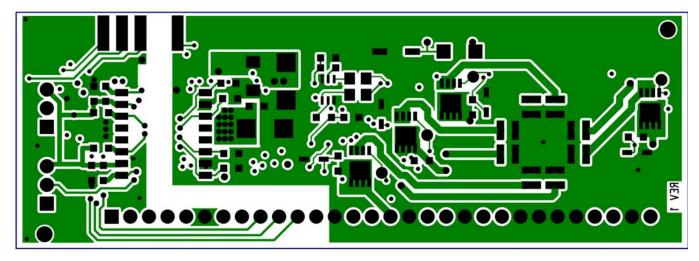




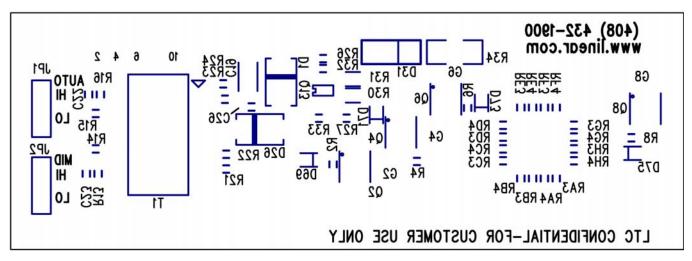
Figure 14. DC1680A and DC1842A System Setup with Power Supply, DC590 and PD Demo Board


Top Silkscreen

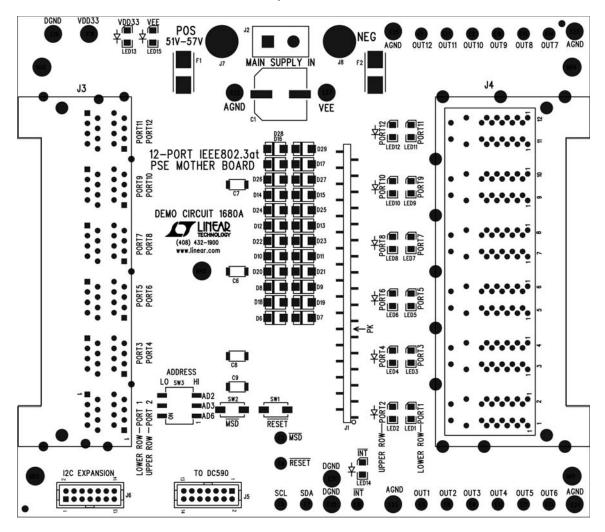
Layer 1: Top Layer

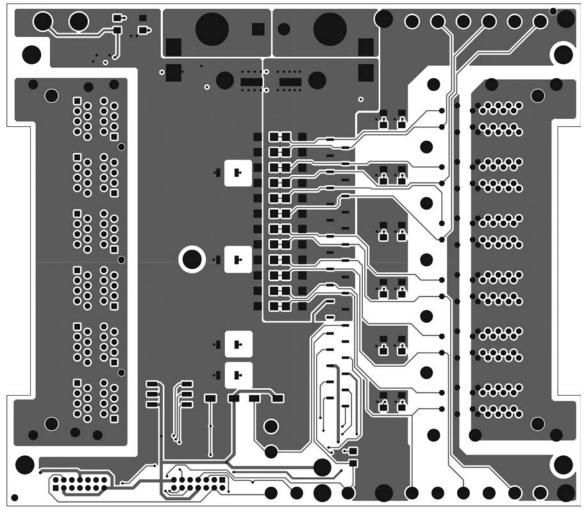

Layer 2: V_{EE} Plane 1

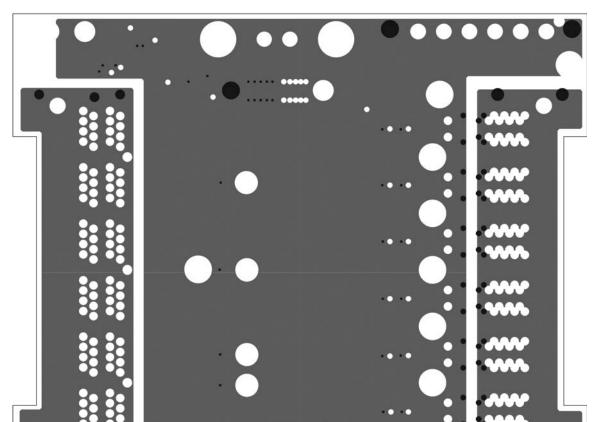

dc1843af


Layer 3: V_{EE} Plane 2

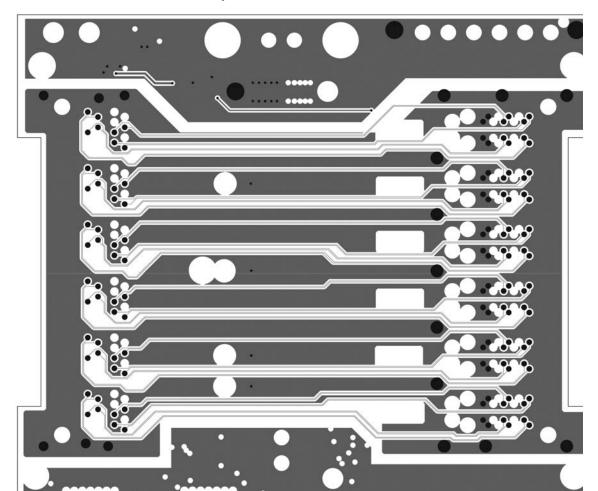
Layer 4: Bottom Layer

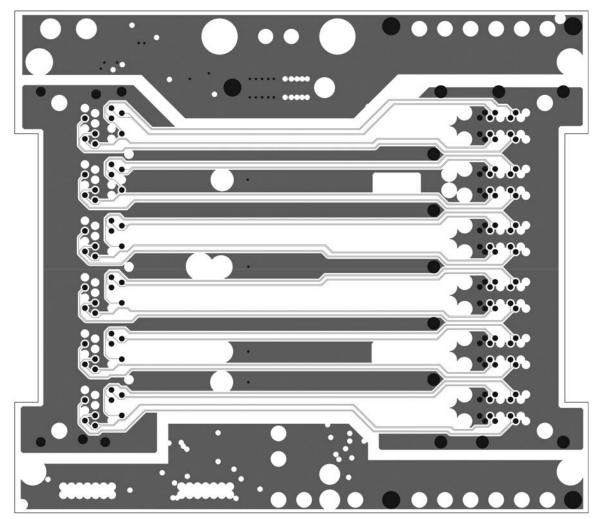

Bottom Silkscreen


dc1843af

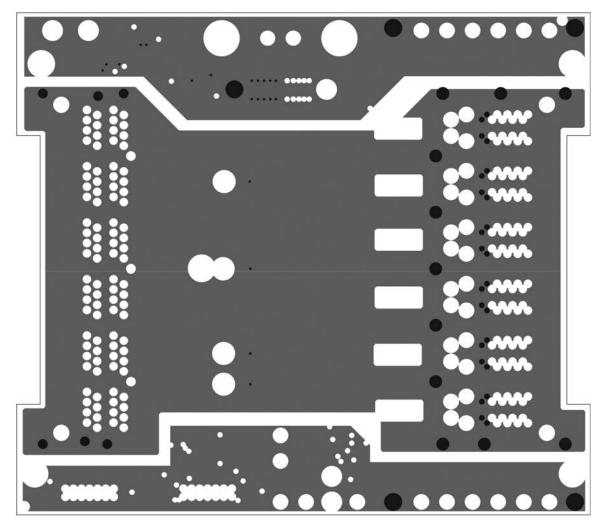


Top Silkscreen

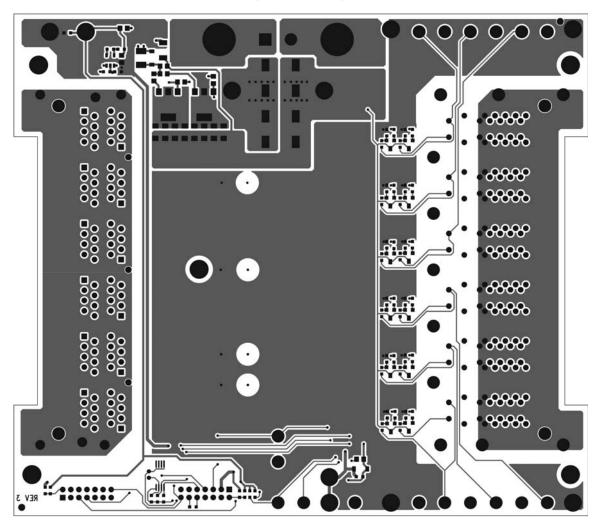




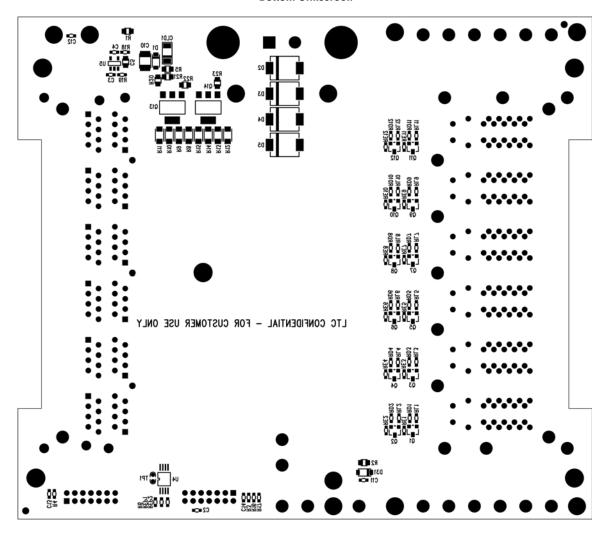
Layer 2: AGND, CGND Plane 1



Layer 3: SIG, AGND, CGND Plane 2



Layer 4: SIG, AGND, CGND Plane 3



Layer 5: SIG, CGND, CGND Plane 4

Layer 6: Bottom Layer

Bottom Silkscreen

DEMO MANUAL DC1843A

PARTS LIST

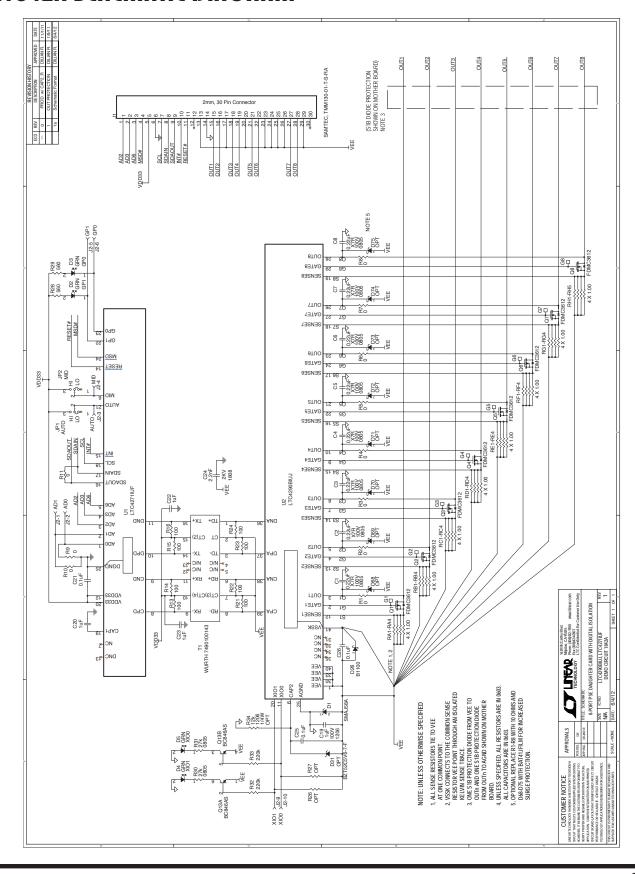
DC1842A

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
Require	d Circuit	Components		·
1	8	C1-C8	CAP., X7R, 0.22µF, 100V, 10% 0805	AVX, 08051C224KAT2A
2	1	C19	CAP., X7R, 1µF, 100V, 10% 1206	AVX, 12061C105KAT2A
3	3	C20, C22, C23	CAP., X7R, 1µF, 16V, 10% 0603	AVX, 0603YC105KAT2A
4	3	C21, C25, C26	CAP., X7R, 0.1μF, 25V, 10% 0603	AVX, 06033C104KAT2A
5	1	C24	CAP., X7R, 2.2nF, 2kV, 10% 1808	AVX, 1808GC222KAT2A
6	1	D1	TVS, 58V, SMA	DIODES, SMAJ58A
7	1	D26	DIODE, 100V, B1100, SMA	DIODES, B1100-13-F
8	4	D2-D5	LED, GREEN, 0603	LITE ON, LTST-C190KGKT
9	0	D31 (OPT)	ZENER DIODE, 5.6V, SOD-123	DIODES, BZT52C5V6-7-F
10	0	D68-D75 (OPT)	SCHOTTKY DIODE, 100V, SOD-323	STMicro, BAT41JFILM
11	2	JP1, JP2	3 PIN, 0.079 SINGLE ROW HEADER	SULLIN, NRPN031PAEN-RC
12	2	XJP1, XJP2	SHUNT, .079" CENTER	SAMTEC, 2SN-BK-G
13	1	J1	CON., 2mm, 30-PIN, RIGHT ANGLE	SULLINS, NRPN301PARN-RC
14	0	J2(OPT)	2×5, 0.079 DOUBLE ROW HEADER	
15	12	Q1-Q8	N-CH., 100V, 7.5A, Power 33	Fairchild, FDMC3612
16	1	Q13	NPN TRANSISTOR, BC846AS, SOT-363	DIODES, BC846AS-7
17	32	RA1-RA4, RB1-RB4, RC1-RC4, RD1-RD4, RE1- RE4, RF1-RF4, RG1-RG4, RL1-RL4	RES., CHIP, 1.00Ω, 1/16W, 1% 0603	NIC, NRC06F1R00TRF
18	11	R1-R11	RES., CHIP, 0Ω, 1/16W, 1% 0603	VISHAY, CRCW06030000Z0EA
19	0	R26, R27(0PT)	RES., CHIP, 0Ω, 1/16W, 1% 0603	
20	8	R13-R16,R21-R24	RES., CHIP, 100, 1/16W, 1% 0603	NIC, NRC06F1000TRF
21	2	R28, R29	RES., CHIP, 560, 1/16W, 5% 0603	VISHAY, CRCW0603560RJNEA
22	2	R30, R31	RES., CHIP, 27k, 1/8W, 5% 0805	VISHAY, CRCW080527K0JNEA
23	2	R32, R33	RES., CHIP, 220k, 1/16W, 5% 0603	VISHAY, CRCW0603220KJNEA
24	0	R34 (OPT)	RES., CHIP, 12k, 1/4W, 5% 1206	
25	1	T1	TRANSFORMER, ETHERNET, 10/100	Midcom Würth, 7490100143
26	1	U1	IC., Digital PSE Controller, 24-LEAD 4×4 QFN	LINEAR TECH., LTC4271IUF
27	1	U2	IC., 8-Port PSE Controller, 40-LEAD 6×6 QFN	LINEAR TECH., LTC4290BIUJ
28	1		FAB, PRINTED CIRCUIT BOARD	DEMO CIRCUIT 1842A
29	1		STENCIL	STENCIL DC1842A

PARTS LIST

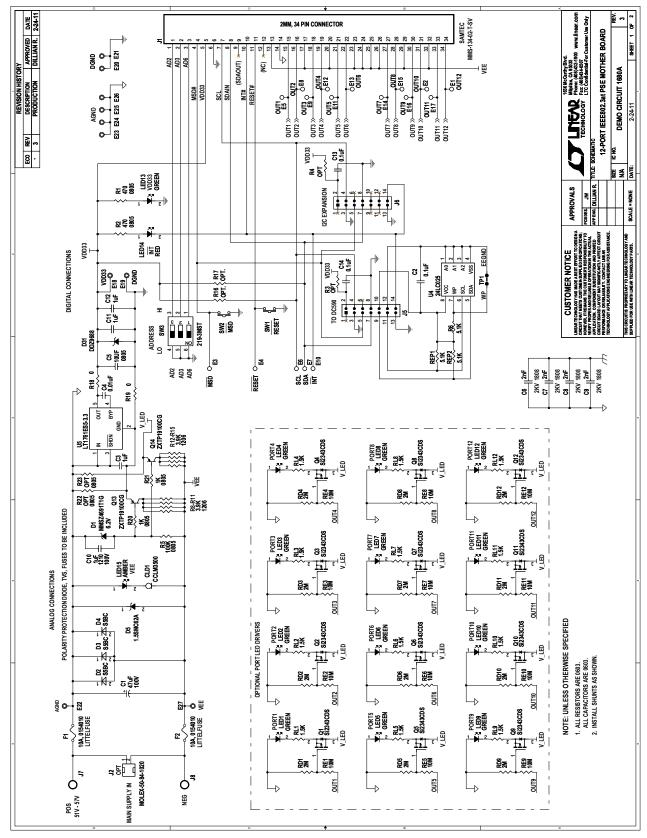
DC1680A

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
Require	d Circuit	t Components		
1	2	J7, J8	JACK BANANA	KEYSTONE, 575-4
2	1	C1	CAP, ALUM, 47µF, 100V H13 size	PANASONIC, EEEFK2A470AQ
3	3	C2, C13, C14	CAP, X7R, 0.1µF 25V, 10% 0603	AVX, 06033C104KAT2A
4	3	C3, C11, C12	CAP, X7R, 1µF 16V, 10% 0603	TDK, C1608X7R1C105K
5	1	C4	CAP, X7R, 0.01µF 50V, 10% 0603	AVX, 06035C103KAT2A
6	1	C5	CAP, X5R, 10µF, 16V, 10% 0805	AVX, 0805YD106KAT2A
7	1	C6 TO C9	CAP, X7R, 1nF, 2kV, 10% 1808	TDK, C4520X7R3D102K
8	1	C10	CAP, X7R, 1µF, 100V, 10% 1210	AVX, 12101C105KAT2A
9	1	CLD1	CURRENT LIMITING DIODE, 3.2V SOD-80	CENTRAL SEMI CORP CCLM3500 TR
10	1	D1	ZENER DIODE, 6.2V, SOD-123	ON SEMICONDUCTOR, MMSZ4691T1G
11	3	D2, D3, D4	DIODES, S5BC SMC	DIOSES, S5BC-13-F
12	1	D5	VOLTAGE SUPPRESSORS, 1.5SMC62A SMC	VISHAY, 1.5SMC62A
13	24	D6 T0 D29	RECTIFIERS, S1B, 100V, SMA	FAIRCHILD, S1B
14	1	D31	ZENER DIODE, DDZ9688, 4.7V, SOD-123	DIODES, DDZ9688-7
15	2	F1, F2	FUSE, 10A, 154 SERIES	LITTLEFUSE, 0154010
16	17	E1 T0 E17	TESTPOINT, TURRET, 0.061" PBF	MILL-MAX, 2308-2-00-80-00-00-07-0
17	1	J1	CONNECTOR, 2mm BOX SOCKET, 34-PIN	SAMTEC, MMS-134-02-T-SV
18	0	J2 (OPT)	HEADER, POWER,	
19	1	J3	CONNECTOR, SS-73100-046 RJ45	BEL STEWART CONNECTOR, SS-73100-046
20	1	J4	INTEGRATED CONNECTOR MODULES	TYCO, 1840374-1
				BEL STEWART CONNECTOR, 0854-2X6R-AH (ALTERNATE)
				DELTA, 12M0350-R (ALTERNATE)
21	2	J5, J6	CONNECTOR, HD2X7-079	MOLEX, 87831-1420
22	13	LED1 TO LED13	LED, GREEN	PANASONIC, LN1351C-(TR)
23	1	LED14	LED, RED	PANASONIC, LN1251C-(TR)
24	1	LED15	LED, AMBER	PANASONIC, LN1451C-(TR)
25	12	Q1 TO Q12	MOSFET, P-CH, 30V Si2343CDS	VISHAY, Si2343CDS
26	2	Q13, Q14	PNP TRANSISTOR, ZXTP19100CG, SOT-223	ZETEX, ZXTP19100CGTA
27	3	REP1, REP2, R6	RES, CHIP, 5.1k, 1/16W, 5%, 0603	AAC, CR16-5101FM
28	12	RD1 TO RD12	RES, CHIP, 2M, 1/16W, 5%, 0603	VISHAY, CRCW06032M00JNEA
29	12	RE1 TO RE12	RES, CHIP, 10M, 1/16W, 5%, 0603	YAGEO, RC0603FR-0710ML
30	13	RL1 TO RL12, R7	RES, CHIP, 1.5k, 1/16W, 5%, 0603	AAC, CR16-152JM
31	2	R1, R2	RES, CHIP, 470, 1/16W, 5%, 0603	VISHAY, CRCW0603470RJNEA
32	0	R3, R4, R16, R17 (OPT)	RES, 0603	
33	1	R5	RES, CHIP, 100k, 1/8W, 5%, 0805	VISHAY, CRCW0603100KJNEA
34	8	R8 T0 R15	RES, CHIP, 3.9k, 1/4W, 5%, 1206	VISHAY, CRCW12063K90JNEA

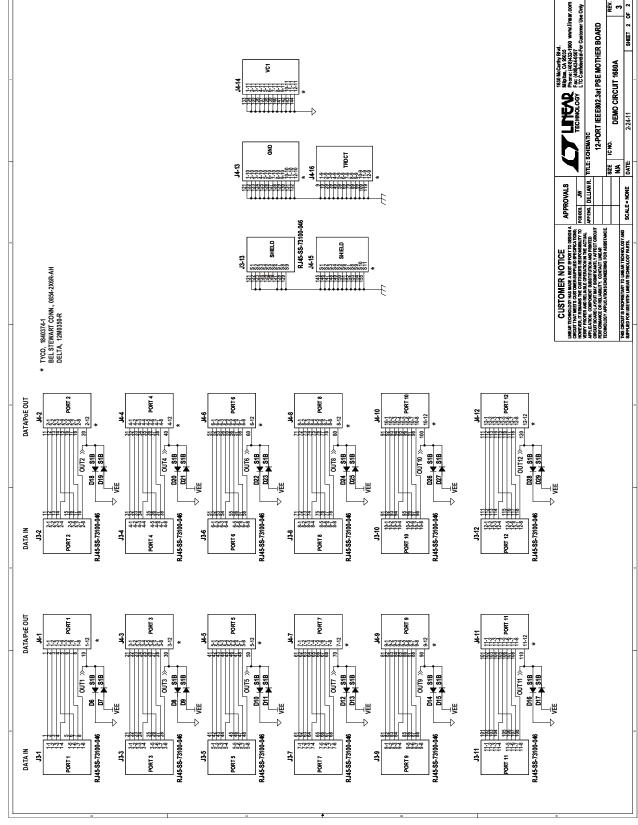

PARTS LIST

DC1680A (continued)				
ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
35	2	R18, R19	RES, CHIP, 0, 1/16W, 0603	VISHAY, CRCW06030000Z0EA
36	2	R20, R21	RES, CHIP, 1k, 1/8W, 5%, 0805	AAC, CR10-102JM
37	0	R22, R23 (0PT)	RES, 0805	
38	2	SW1, SW2	SWITCH, PUSH BOTTOM	PANASONIC, EVQPE104K (IN STOCK 500 PCS)
39	1	SW3	SWITCH, 219-3MST	CTS ELECTRIC COMPONENTS, 219-3MST
40	10	E18-E27	TESTPOINT, TURRET, 0.094" PBF	MILL-MAX, 2501-2-00-80-00-07-0
41	1	U4	IC, 24LC025, TSS0P-8	MICROCHIP, 24LC025 I /ST
42	1	U5	IC, LT1761ES5-3.3, SOT23-5	LINEAR, LT1761ES5-3.3#TR
43	2	STENCIL		
44	5	MH1-MH5	STAND-OFF, NYLON 0.75"	KEYSTONE, 8834 (SNAP ON)

DC1843A Kit


ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
1	1	DC1842A	DC1842A, LTC4290B/LTC4271, Daughter Card	LINEAR TECH., DC1842A
2	1	DC1680A	DC1680A, 12-Port PSE Motherboard	LINEAR TECH., DC1680A
3	8	J1-J8	RJ45 Dust Cap, Plastic, Grey	Amphenol, FRJ2411
4	4	PK	Connector Porization Pin-J1 Pin 31-34	SAMTEC, PK-01-07

DC1842A SCHEMATIC DIAGRAM



DC1680A SCHEMATIC DIAGRAM

DC1680A SCHEMATIC DIAGRAM

DEMO MANUAL DC1843A

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following **AS IS** conditions:

This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for **ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY** and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.

If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).

No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.

LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.

Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. **Common sense is encouraged**.

This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology 1630 McCarthy Blvd. Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

