

DAC0800/DAC0802 8-Bit Digital-to-Analog Converters

Check for Samples: DAC0800, DAC0802

FEATURES

Fast Settling Output Current: 100 ns

Full Scale Error: ±1 LSB

Nonlinearity Over Temperature: ±0.1%

Full Scale Current Drift: ±10 ppm/°C

High Output Compliance: -10V to +18V

Complementary Current Outputs

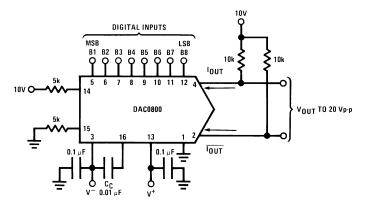
Interface Directly with TTL, CMOS, PMOS and **Others**

2 Quadrant Wide Range Multiplying Capability

Wide Power Supply Range: ±4.5V to ±18V

Low Power Consumption: 33 mW at ±5V

Low Cost


DESCRIPTION

The DAC0800 series are monolithic 8-bit high-speed current-output digital-to-analog converters (DAC) featuring typical settling times of 100 ns. When used as a multiplying DAC, monotonic performance over a 40 to 1 reference current range is possible. The DAC0800 series also features high compliance complementary current outputs to allow differential output voltages of 20 Vp-p with simple resistor loads. The reference-to-full-scale current matching of better than ±1 LSB eliminates the need for full-scale trims in most applications, while the nonlinearities of better than ±0.1% over temperature minimizes system error accumulations.

The noise immune inputs will accept a variety of logic levels. The performance and characteristics of the device are essentially unchanged over the ±4.5V to ±18V power supply range and power consumption at only 33 mW with ±5V supplies is independent of logic input levels.

DAC0800, The DAC0802, DAC0800C DAC0802C are a direct replacement for the DAC-08, DAC-08A, DAC-08C, and DAC-08H, respectively. For single supply operation, refer to AN-1525.

Typical Application

Pin numbers represent the PDIP package. The SOIC package pin numbers differ from that of the PDIP package.

Figure 1. ±20 V_{P-P} Output Digital-to-Analog Converter

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

Absolute Maximum Ratings (1)

Supply Voltage (V ⁺ - V ⁻)	±18V or 36V
Power Dissipation (2)	500 mW
Reference Input Differential Voltage	
(V14 to V15)	V⁻ to V⁺
Reference Input Common-Mode	
Range (V14, V15)	V⁻ to V⁺
Reference Input Current	5 mA
Logic Inputs	V ⁻ to V ⁻ plus 36V
Analog Current Outputs	
$(V_S^- = -15V)$	4.25 mA
ESD Susceptibility (3)	TBD V
Storage Temperature	−65°C to +150°C
Lead Temp. (Soldering, 10 seconds)	
PDIP Package (plastic)	260°C
CDIP Package (ceramic)	300°C
Surface Mount Package	
Vapor Phase (60 seconds)	215°C
Infrared (15 seconds)	220°C

- Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
- The maximum junction temperature of the DAC0800 and DAC0802 is 125°C. For operating at elevated temperatures, devices in the CDIP package must be derated based on a thermal resistance of 100°C/W, junction-to-ambient, 175°C/W for the molded PDIP package and 100°C/W for the SOIC package. Human body model, 100 pF discharged through a 1.5 k Ω resistor.

Operating Conditions⁽¹⁾

	Min	Max	Units
Temperature (T _A)			
DAC0800L	- 55	+125	°C
DAC0800LC	0	+70	°C
DAC0802LC	0	+70	°C
V*	(V ⁻) + 10	$(V^{-}) + 30$	V
V-	-15	-5	V
$I_{REF} (V^- = -5V)$	1	2	mA
$I_{REF} (V^- = -15V)$	1	4	mA

Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.

Submit Documentation Feedback

Electrical Characteristics

The following specifications apply for $V_S = \pm 15V$, $I_{REF} = 2$ mA and $T_{MIN} \le T_A \le T_{MAX}$ unless otherwise specified. Output characteristics refer to both I_{OUT} and $\overline{I}_{\overline{OUT}}$.

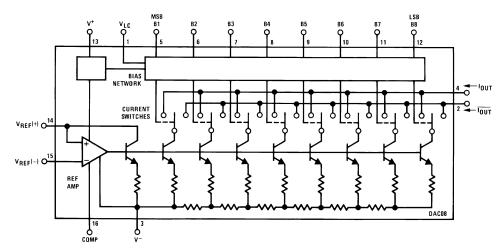
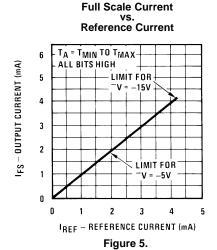
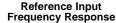
	Parameter	Test Conditions	D	AC0802L	.C		AC0800L		Units
			Min	Тур	Max	Min	Тур	Max	
	Resolution		8	8	8	8	8	8	Bits
	Monotonicity		8	8	8	8	8	8	Bits
	Nonlinearity				±0.1			±0.19	%FS
		To ±½ LSB, All Bits Switched "ON" or "OFF", T _A =25°C		100	135				ns
t _s	Settling Time	DAC0800L					100	135	ns
		DAC0800LC					100	150	ns
t _{PLH} ,	Propagation Delay	T _A =25°C							
t_{PHL}	Each Bit			35	60		35	60	ns
	All Bits Switched			35	60		35	60	ns
TCI _{FS}	Full Scale Tempco			±10	±50		±10	±50	ppm/°C
V _{oc}	Output Voltage Compliance	Full Scale Current Change <½ LSB, R _{OUT} >20 MΩ, Typical	-10		18	-10		18	٧
I _{FS4}	Full Scale Current	$V_{REF} = 10.000V,$ $R14 = R15 = 5.000 \text{ k}\Omega,$ $T_A = 25^{\circ}\text{C}$	1.984	1.992	2.00	1.94	1.99	2.04	mA
I _{FSS}	Full Scale Symmetry	I _{FS4} -I _{FS2}		±0.5	±4.0		±1	±8.0	μΑ
I _{ZS}	Zero Scale Current			0.1	1.0		0.2	2.0	μΑ
I _{FSR}	Output Current Range	$V^{-} = -5V$ $V^{-} = -8V$ to -18V	0	2.0 2.0	2.1 4.2	0	2.0 2.0	2.1 4.2	mA
	Logic Input Levels	V _{LC} = 0V							
V_{IL}	Logic "0"				8.0			0.8	V
V_{IH}	Logic "1"		2.0			2.0			V
	Logic Input Current	$V_{LC} = 0V$							
I _{IL}	Logic "0"	$-10V \le V_{IN} \le +0.8V$		-2.0	-10		-2.0	-10	μΑ
I _{IH}	Logic "1"	2V ≤ V _{IN} ≤ +18V		0.002	10		0.002	10	μΑ
V _{IS}	Logic Input Swing	V ⁻ = −15V	-10		18	-10		18	V
V_{THR}	Logic Threshold Range	$V_S = \pm 15V$	-10		13.5	-10		13.5	V
I ₁₅	Reference Bias Current			-1.0	-3.0		-1.0	-3.0	μA
dl/dt	Reference Input Slew Rate	(Figure 26)	4.0	8.0		4.0	8.0		mA/µs
PSSI _{FS+}	Positive Power Supply Sensitivity	4.5V ≤ V ⁺ ≤ 18V		0.0001	0.01		0.0001	0.01	%/%
PSSI _{FS} -	Negative Power Supply Sensitivity	-4.5V ≤ V ⁻ ≤ 18V, I _{REF} = 1mA		0.0001	0.01		0.0001	0.01	%/%
l+	Davier Cumply Current	\/ \.F\/ \ \ 4 m A		2.3	3.8		2.3	3.8	mA
-	Power Supply Current	$V_S = \pm 5V$, $I_{REF} = 1$ mA		-4.3	-5.8		-4.3	-5.8	mA
l+	Davisa Cirank Circuit	V .5V 45V 1 0		2.4	3.8		2.4	3.8	mA
I -	Power Supply Current	$V_S = +5V$, $-15V$, $I_{REF} = 2 \text{ mA}$		-6.4	-7.8		-6.4	-7.8	mA
l+	Daniel Control	V 45V L 0 4		2.5	3.8		2.5	3.8	mA
-	Power Supply Current	$V_S = \pm 15V$, $I_{REF} = 2 \text{ mA}$		-6.5	-7.8		-6.5	-7.8	mA
		±5V, I _{REF} = 1 mA		33	48		33	48	mW
P_D	Power Consumption	+5V, -15V, I _{REF} = 2 mA		108	136		108	136	mW
_	,	±15V, I _{REF} = 2 mA		135	174		135	174	mW

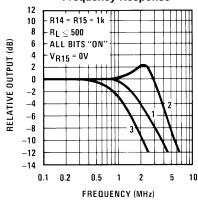
Connection Diagrams

Figure 2. PDIP, CDIP Packages - Top View (See Package Number NFG0016E or NFE0016A)

Figure 3. SOIC Package - Top View (See Package Number D0016A)

Block Diagram


Figure 4.

Typical Performance Characteristics

Curve 1: C_C =15 pF, V_{IN} =2 Vp-p centered at 1V. Curve 2: C_C =15 pF, V_{IN} =50 mVp-p centered at 200 mV. Curve 3: C_C =0 pF, V_{IN} =100 mVp-p centered at 0V and applied through 50Ω connected to pin 14.2V applied to R14. Figure 7.

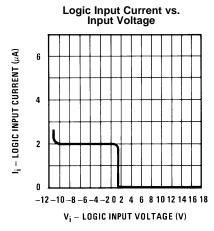


Figure 9.

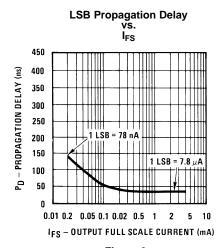
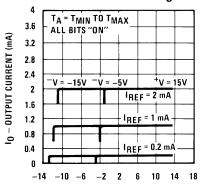



Figure 6.

Note. Positive common-mode range is always (V+) - 1.5V.

Figure 8.

V15 - REFERENCE COMMON-MODE VOLTAGE (V)

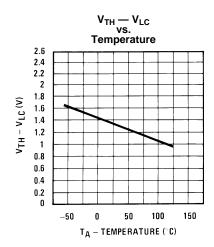


Figure 10.

Typical Performance Characteristics (continued) Output Current

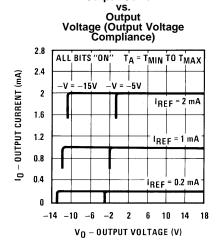
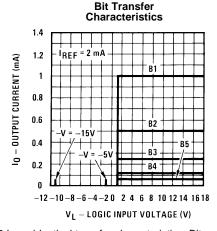
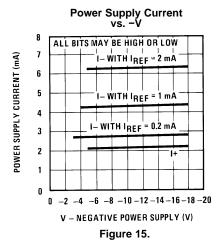




Figure 11.

Note. B1–B8 have identical transfer characteristics. Bits are fully switched with less than ½ LSB error, at less than ± 100 mV from actual threshold. These switching points are guaranteed to lie between 0.8 and 2V over the operating temperature range ($V_{LC} = 0V$). Figure 13.

Output Voltage Compliance vs. Temperature

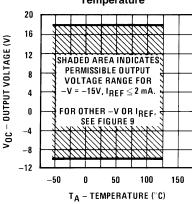
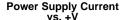



Figure 12.

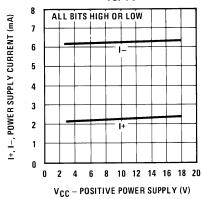
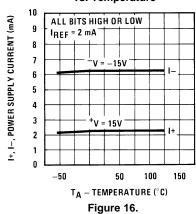



Figure 14.

Power Supply Current vs. Temperature

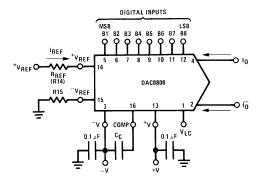

EQUIVALENT CIRCUIT

Figure 17. Equivalent Circuit

TYPICAL APPLICATIONS

Pin numbers represent the PDIP package. The SOIC package pin numbers differ from that of the PDIP package.

$$I_{FS} pprox rac{+\,V_{REF}}{R_{REF}} imes rac{255}{256}$$

 $I_O + \overline{I}_O = I_{FS}$ for all logic states

For fixed reference, TTL operation, typical values are:

 $V_{REF} = 10.000V$

 $R_{REF} = 5.000k$

R15 ≈ R_{REF}

 $C_C = 0.01 \, \mu F$

 $V_{LC} = 0V$ (Ground)

Figure 18. Basic Positive Reference Operation

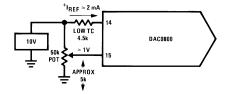
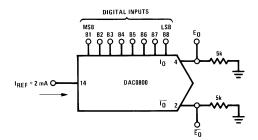
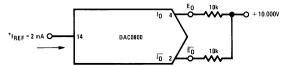



Figure 19. Recommended Full Scale Adjustment Circuit

Figure 20. Basic Negative Reference Operation



Pin numbers represent the PDIP package. The SOIC package pin numbers differ from that of the PDIP package.

Figure 21. Basic Unipolar Negative Operation

Table 1. Basic Unipolar Negative Operation

	B1	B2	В3	B4	B5	В6	B7	В8	I _O mA	Ī _O mA	Eo	Ε̄ο
Full Scale	1	1	1	1	1	1	1	1	1.992	0.000	-9.960	0.000
Full Scale-LSB	1	1	1	1	1	1	1	0	1.984	0.008	-9.920	-0.040
Half Scale+LSB	1	0	0	0	0	0	0	1	1.008	0.984	-5.040	-4.920
Half Scale	1	0	0	0	0	0	0	0	1.000	0.992	-5.000	-4.960
Half Scale-LSB	0	1	1	1	1	1	1	1	0.992	1.000	-4.960	-5.000
Zero Scale+LSB	0	0	0	0	0	0	0	1	0.008	1.984	-0.040	-9.920
Zero Scale	0	0	0	0	0	0	0	0	0.000	1.992	0.000	-9.960

Pin numbers represent the PDIP package. The SOIC package pin numbers differ from that of the PDIP package.

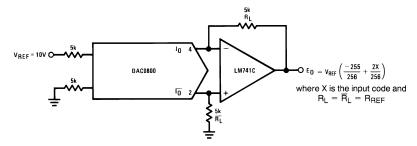
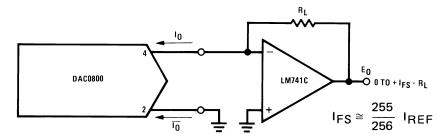

Figure 22. Basic Bipolar Output Operation

Table 2. Basic Bipolar Output Operation

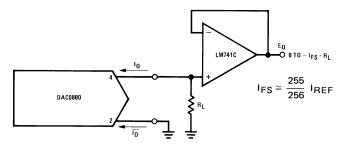
	B1	B2	В3	B4	B5	В6	B7	B8	Eo	Ē ₀
Pos. Full Scale	1	1	1	1	1	1	1	1	-9.920	+10.000
Pos. Full Scale-LSB	1	1	1	1	1	1	1	0	-9.840	+9.920
Zero Scale+LSB	1	0	0	0	0	0	0	1	-0.080	+0.160
Zero Scale	1	0	0	0	0	0	0	0	0.000	+0.080
Zero Scale-LSB	0	1	1	1	1	1	1	1	+0.080	0.000
Neg. Full Scale+LSB	0	0	0	0	0	0	0	1	+9.920	-9.840
Neg. Full Scale	0	0	0	0	0	0	0	0	+10.000	-9.920

Product Folder Links: DAC0800 DAC0802



- (1) Pin numbers represent the PDIP package. The SOIC package pin numbers differ from that of the PDIP package.
- (2) If $R_L = \overline{R}_L$ within ±0.05%, output is symmetrical about ground.

Figure 23. Symmetrical Offset Binary Operation


Table 3. Symmetrical Offset Binary Operation

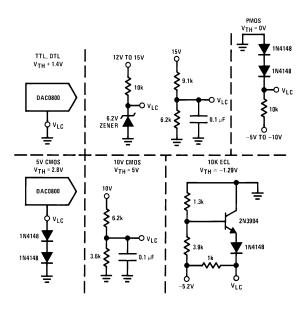
	B1	B2	В3	B4	B5	В6	В7	B8	Eo
Pos. Full Scale	1	1	1	1	1	1	1	1	+9.960
Pos. Full Scale-LSB	1	1	1	1	1	1	1	0	+9.880
(+)Zero Scale	1	0	0	0	0	0	0	0	+0.040
(-)Zero Scale	0	1	1	1	1	1	1	1	-0.040
Neg. Full Scale+LSB	0	0	0	0	0	0	0	1	-9.880
Neg. Full Scale	0	0	0	0	0	0	0	0	-9.960

- (1) Pin numbers represent the PDIP package. The SOIC package pin numbers differ from that of the PDIP package.
- (2) For complementary output (operation as negative logic DAC), connect inverting input of op amp to \bar{I}_O (pin 2), connect I_O (pin 4) to ground.


Figure 24. Positive Low Impedance Output Operation

- (1) Pin numbers represent the PDIP package. The SOIC package pin numbers differ from that of the PDIP package.
- (2) For complementary output (operation as a negative logic DAC) connect non-inverting input of op am to \(\bar{l}_0\) (pin 2); connect I_O (pin 4) to ground.

Figure 25. Negative Low Impedance Output Operation



Typical values: R_{IN}=5k,+V_{IN}=10V

Pin numbers represent the PDIP package. The SOIC package pin numbers differ from that of the PDIP package.

Figure 26. Pulsed Reference Operation

 $V_{TH} = V_{LC} + 1.4V$ 15V CMOS, HTL, HNIL $V_{TH} = 7.6V$

Note. Do not exceed negative logic input range of DAC.

Figure 27. Interfacing with Various Logic Families

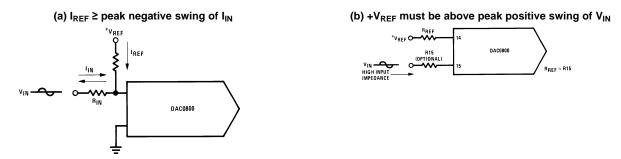


Figure 28. Accommodating Bipolar References

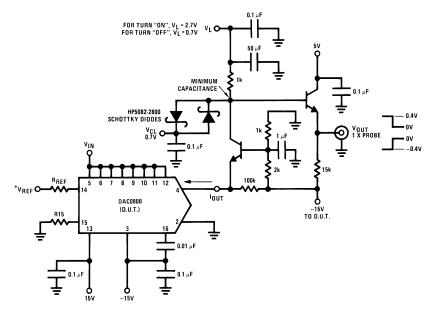
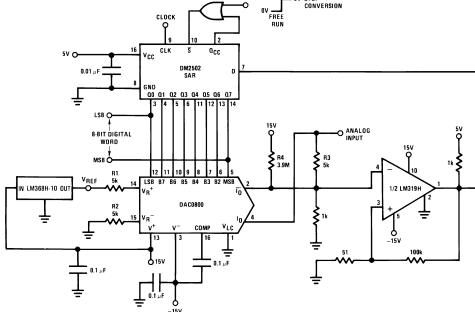
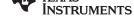




Figure 29. Settling Time Measurement

- (1) For 1 µs conversion time with 8-bit resolution and 7-bit accuracy, an LM361 comparator replaces the LM319 and the reference current is doubled by reducing R1, R2 and R3 to 2.5 k Ω and R4 to 2 M Ω .
- (2) Pin numbers represent the PDIP package. The SOIC package pin numbers differ from that of the PDIP package.

Figure 30. A Complete 2 µs Conversion Time, 8-Bit A/D Converter

www.ti.com

REVISION HISTORY

Changes from Revision B (February 2013) to Revision C							
•	Changed layout of National Data Sheet to TI format	12					

Product Folder Links: DAC0800 DAC0802

1-Nov-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	_	Pins	_	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
DAC-08EP	NRND	PDIP	NFG	16	25	TBD	Call TI	Call TI	0 to 70	DAC0800LCN DAC-08EP	
DAC0800LCM	NRND	SOIC	D	16	48	TBD	Call TI	Call TI	0 to 70	DAC0800LCM	
DAC0800LCM/NOPB	ACTIVE	SOIC	D	16	48	Green (RoHS & no Sb/Br)	CU SN	CU SN Level-1-260C-UNLIM		DAC0800LCM	Samples
DAC0800LCMX	NRND	SOIC	D	16	2500	TBD	Call TI	Call TI	0 to 70	DAC0800LCM	
DAC0800LCMX/NOPB	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	0 to 70	DAC0800LCM	Samples
DAC0800LCN	NRND	PDIP	NFG	16	25	TBD	Call TI	Call TI	0 to 70	DAC0800LCN DAC-08EP	
DAC0800LCN/NOPB	ACTIVE	PDIP	NFG	16	25	Pb-Free (RoHS)	SN	Level-1-NA-UNLIM	0 to 70	DAC0800LCN DAC-08EP	Samples
DAC0802LCMX	NRND	SOIC	D	16	2500	TBD	Call TI	Call TI	0 to 70	DAC0802LCM	
DAC0802LCMX/NOPB	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	0 to 70	DAC0802LCM	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

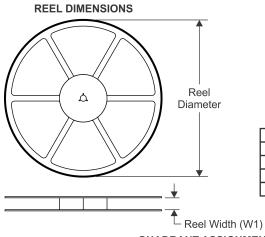
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

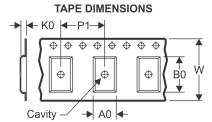
PACKAGE OPTION ADDENDUM

1-Nov-2013

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

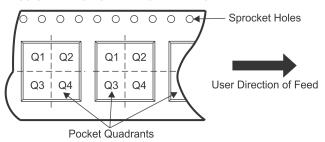
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

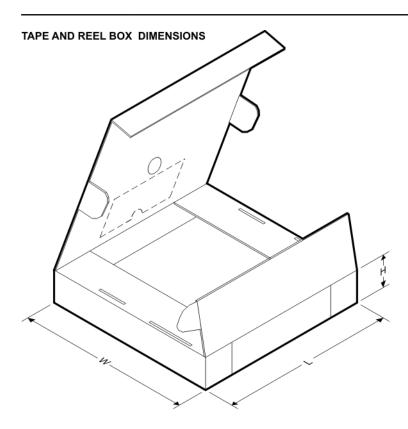

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

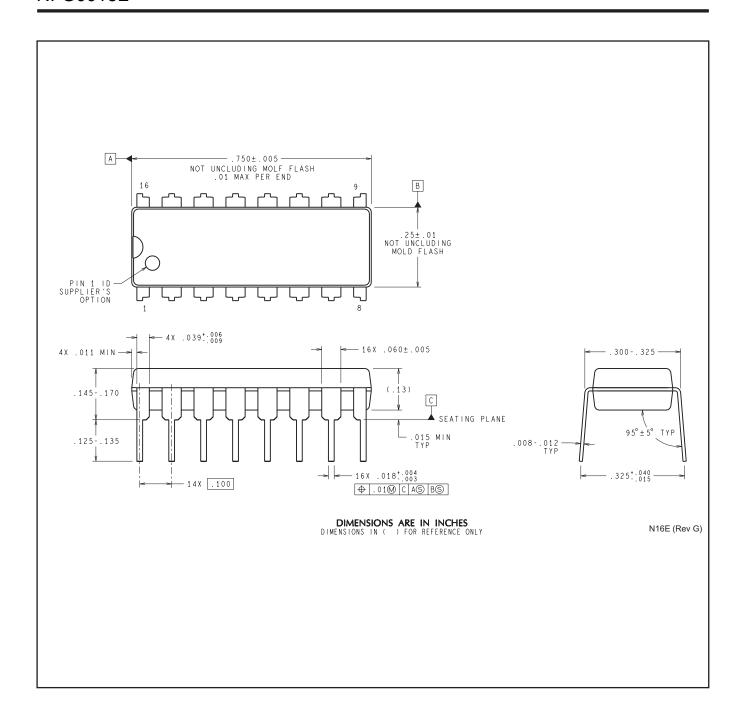
www.ti.com 26-Mar-2013


TAPE AND REEL INFORMATION

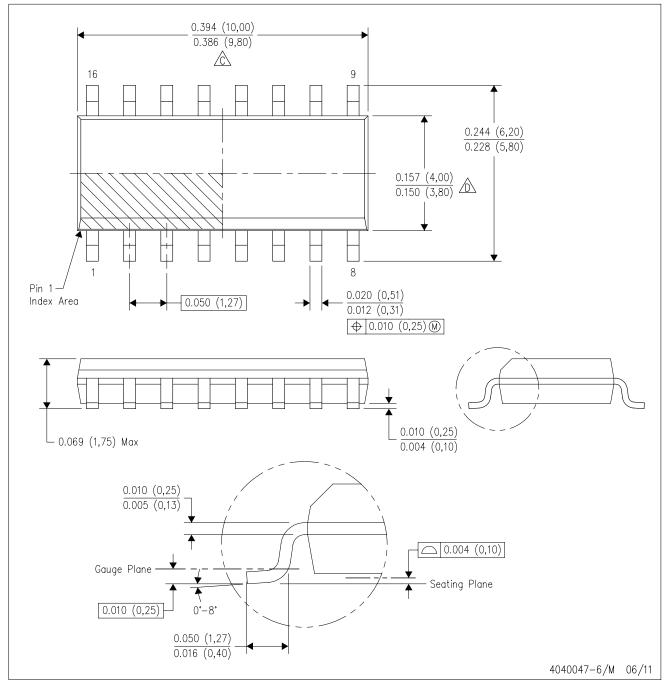
	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal


All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
DAC0800LCMX	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.3	8.0	16.0	Q1
DAC0800LCMX/NOPB	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.3	8.0	16.0	Q1
DAC0802LCMX	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.3	8.0	16.0	Q1
DAC0802LCMX/NOPB	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.3	8.0	16.0	Q1

www.ti.com 26-Mar-2013


*All dimensions are nominal

7 III GITTIOTOTOTO GEO TIOTTIITIGI							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
DAC0800LCMX	SOIC	D	16	2500	367.0	367.0	35.0
DAC0800LCMX/NOPB	SOIC	D	16	2500	367.0	367.0	35.0
DAC0802LCMX	SOIC	D	16	2500	367.0	367.0	35.0
DAC0802LCMX/NOPB	SOIC	D	16	2500	367.0	367.0	35.0

D (R-PDS0-G16)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>