

SLPS411B-APRIL 2013-REVISED NOVEMBER 2013

30 V, N-Channel FemtoFET™ MOSFET

Check for Samples: CSD17381F4

FEATURES

- Ultra-Low On Resistance
- Ultra-Low Q_q and Q_{qd}
- Low Threshold Voltage
- Ultra-Small Footprint (0402 Case Size)
 1.0 mm × 0.6 mm
- Ultra-Low Profile
 - 0.35 mm Height
- Integrated ESD Protection Diode
 - Rated > 4 kV HBM
 - Rated > 2 kV CDM
- Pb and Halogen Free
- RoHS Compliant

APPLICATIONS

- Optimized for Load Switch Applications
- Optimized for General Purpose Switching Applications
- Single-Cell Battery Applications
- Handheld and Mobile Applications

DESCRIPTION

The FemtoFET[™] MOSFET technology has been designed and optimized to minimize the footprint in many handheld and mobile applications. This technology is capable of replacing standard small signal MOSFETs while providing at least a 60% reduction in footprint size.

PRODUCT SUMMARY V_{DS} Drain-to-Source Voltage 30 V Qg Gate Charge Total (4.5 V) 1040 рС Q_{gd} Gate Charge Gate to Drain 133 рС V_{GS} = 1.8 V 160 mΩ 110 Drain-to-Source On Resistance V_{GS} = 2.5 V R_{DS(on)} V_{GS} = 4.5 V 90 V_{GS(th)} Threshold Voltage 0.85 V

ORDERING INFORMATION

Device	Qty	Media	Package	Ship
CSD17381F4	3000	7-Inch Reel	Femto(0402) 1.0 mm x	Tape and
CSD17381F4T	250	7-Inch Reel	0.6 mm SMD Lead Less	Reel

ABSOLUTE MAXIMUM RATINGS

T _A = 25	°C unless otherwise stated	VALUE	UNIT
V_{DS}	Drain-to-Source Voltage	30	V
V _{GS}	Gate-to-Source Voltage	12	V
I _D	Continuous Drain Current, $T_A = 25^{\circ}C^{(1)}$	3.1	А
I _{DM}	Pulsed Drain Current, $T_A = 25^{\circ}C^{(2)}$	10	А
PD	Power Dissipation ⁽¹⁾	500	mW
ESD	Human Body Model (HBM)	4	kV
Rating	Charged Device Model (CDM)	2	kV
T _J , T _{STG}	Operating Junction and Storage Temperature Range	-55 to 150	°C
E _{AS}	Avalanche Energy, single pulse I_D = 7.4 A, L = 0.1 mH, R_G = 25 Ω	2.7	mJ

(1) Typical $R_{\theta JA} = 90^{\circ}$ C/W on 1-inch² (6.45-cm²), 2-oz. (0.071-mm thick) Cu pad on a 0.06-inch (1.52-mm) thick FR4 PCB.

(2) Pulse duration \leq 300 µs, duty cycle \leq 2%

Top View

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. FemtoFET is a trademark of Texas Instruments.

CSD17381F4

SLPS411B-APRIL 2013-REVISED NOVEMBER 2013

XAS TRUMENTS

www.ti.com

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ELECTRICAL CHARACTERISTICS

 $(T_A = 25^{\circ}C \text{ unless otherwise stated})$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
Static Ch	aracteristics						
BV _{DSS}	Drain-to-Source Voltage	$V_{GS} = 0 \text{ V}, \text{ I}_{DS} = 250 \mu\text{A}$	30			V	
I _{DSS}	Drain-to-Source Leakage Current	V _{GS} = 0 V, V _{DS} = 24 V			1	μA	
I _{GSS}	Gate-to-Source Leakage Current	$V_{DS} = 0 V, V_{GS} = 10 V$			100	nA	
V _{GS(th)}	Gate-to-Source Threshold Voltage	$V_{DS} = V_{GS}, I_{DS} = 250 \ \mu A$	0.65	0.85	1.10	V	
		V _{GS} = 1.8 V, I _{DS} =0.5 A		160	250	mΩ	
D	Ducia to Course On Desistance	V _{GS} = 2.5 V, I _{DS} =0.5 A		110	143	mΩ	
R _{DS(on)}	Drain-to-Source On Resistance	$V_{GS} = 4.5 \text{ V}, \text{ I}_{DS} = 0.5 \text{ A}$	110 110 πΩ 90 117 mΩ 84 109 mΩ 4.8 S 150 195 pF 44 57 pF 2.2 2.9 pF 23 Ω Ω				
		$V_{GS} = 8 \text{ V}, \text{ I}_{DS} = 0.5 \text{ A}$		84	109	mΩ	
9 _{fs}	Transconductance	$V_{DS} = 15 \text{ V}, \text{ I}_{DS} = 0.5 \text{ A}$	4.8			S	
Dynamic	Characteristics						
C _{iss}	Input Capacitance			150	195	pF	
C _{oss}	Output Capacitance	$V_{GS} = 0 V, V_{DS} = 15 V,$ f = 1 MHz		44	57	pF	
C _{rss}	Reverse Transfer Capacitance			2.2	2.9	pF	
R _G	Series Gate Resistance			23		Ω	
Qg	Gate Charge Total (4.5 V)			1040	1350	рС	
Q _{gd}	Gate Charge Gate to Drain			133		рС	
Q _{gs}	Gate Charge Gate to Source	$v_{\rm DS} = 15 v, I_{\rm DS} = 0.5 {\rm A}$		226		рС	
Q _{g(th)}	Gate Charge at V _{th}			150		рС	
Q _{oss}	Output Charge	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}$		1110		рС	
t _{d(on)}	Turn On Delay Time			3.4		ns	
t _r	Rise Time	$V_{DS} = 0 V, V_{GS} = 4.5 V,$		1.4		ns	
t _{d(off)}	Turn Off Delay Time	$I_{DS} = 0.5 \text{ A}, R_G = 2 \Omega$		10.8		ns	
t _f	Fall Time			3.6		ns	
Diode Ch	aracteristics						
V _{SD}	Diode Forward Voltage	$I_{SD} = 0.5 \overline{A, V_{GS}} = 0 V$		0.73	0.9	V	
Q _{rr}	Reverse Recovery Charge			1500		рС	
t _{rr}	Reverse Recovery Time	v_{DS} = 15 v, I _F = 0.5 A, di/dt = 300 A/µS		5.6		ns	

THERMAL CHARACTERISTICS

 $(T_A = 25^{\circ}C \text{ unless otherwise stated})$

	PARAMETER	Typical Values	UNIT
Б	Thermal Resistance Junction to Ambient ⁽¹⁾	90	°C/W
κ _{θJA}	Thermal Resistance Junction to Ambient ⁽²⁾	250	°C/W

Device mounted on FR4 material with 1-inch² (6.45-cm²), 2-oz. (0.071-mm thick) Cu.
Device mounted on FR4 material with minimum Cu mounting area.

SLPS411B-APRIL 2013-REVISED NOVEMBER 2013

TYPICAL MOSFET CHARACTERISTICS

 $(T_A = 25^{\circ}C \text{ unless otherwise stated})$

SLPS411B-APRIL 2013-REVISED NOVEMBER 2013

TEXAS INSTRUMENTS

www.ti.com

TYPICAL MOSFET CHARACTERISTICS (continued)

 $(T_A = 25^{\circ}C \text{ unless otherwise stated})$

SLPS411B-APRIL 2013-REVISED NOVEMBER 2013

TYPICAL MOSFET CHARACTERISTICS (continued)

 $(T_A = 25^{\circ}C \text{ unless otherwise stated})$

T_A - AmbientTemperature (°C) G007 Figure 12. Maximum Drain Current vs. Temperature

75

100

125

150

175

50

0.0

-50

-25

0

25

SLPS411B-APRIL 2013-REVISED NOVEMBER 2013

www.ti.com

MECHANICAL DATA

0402 Mechanical Dimensions

- (1) All linear dimensions are in millimeters (dimensions and tolerancing per AME T14.5M-1994).
- (2) This drawing is subject to change without notice.
- (3) This package is a PB-free solder land design.

Recommended Minimum PCB Layout

(1) All dimensions are in millimeters.

6

SLPS411B-APRIL 2013-REVISED NOVEMBER 2013

Recommended Stencil Pattern

(1) All dimensions are in millimeters.

TEXAS INSTRUMENTS

SLPS411B-APRIL 2013-REVISED NOVEMBER 2013

www.ti.com

CSD17381F4 Embossed Carrier Tape Dimensions

(1) Pin 1 is oriented in the top-right quadrant of the tape enclosure (quadrant 2), closest to the carrier tape sprocket holes.

SLPS411B-APRIL 2013-REVISED NOVEMBER 2013

REVISION HISTORY

•	Added ESD info to Features
•	Included jumbo reel ordering information
•	Added ESD rating info to Absolute Maximum Ratings table
•	Added circuit schematic to pinout view

Changes from Revision A (July 2013) to Revision B

•	Updated title	1
•	Deleted jumbo reel info	1
•	Added short reel info	1

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All	dimensions	are	nominal
/ \ll	unnensions	arc	nonnai

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CSD17381F4	PICOST AR	YJC	3	3000	180.0	8.4	0.7	1.1	0.46	4.0	8.0	Q2

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

23-Nov-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CSD17381F4	PICOSTAR	YJC	3	3000	182.0	182.0	17.0

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconr	nectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated