

SLPS256A-MARCH 2010-REVISED OCTOBER 2010

30V N-Channel NexFET[™] Power MOSFET

Check for Samples: CSD17312Q5

FEATURES

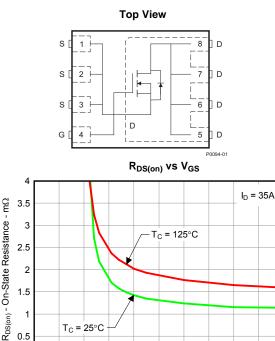
- **Optimized for 5V Gate Drive**
- Ultra Low Q_a and Q_{ad}
- Low Thermal Resistance
- **Avalanche Rated**
- **Pb Free Terminal Plating**
- **RoHS Compliant**
- **Halogen Free**
- SON 5-mm × 6-mm Plastic Package

APPLICATIONS

- **Notebook Point-of-Load**
- Point-of-Load Synchronous Buck in Networking, Telecom and Computing Systems

DESCRIPTION

2


1.5

1

0.5 0

> 0 1

The NexFET™ power MOSFET has been designed to minimize losses in power conversion applications and optimized for 5V gate drive applications.

5 6

V_{GS} - Gate-to-Source Voltage - V

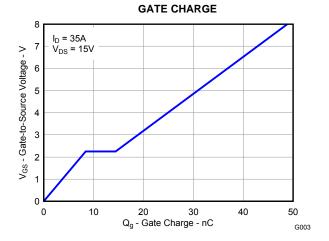
7 8

4

PRODUCT SUMMARY

V _{DS}	Drain to Source Voltage	Source Voltage 30		V
Qg	Gate Charge Total (4.5V)	28		nC
Q _{gd}	Gate Charge Gate to Drain	6		nC
		$V_{GS} = 3V$	1.8	mΩ
R _{DS(on)}	Drain to Source On Resistance	V _{GS} = 4.5V 1.4		mΩ
		V _{GS} = 8V 1.2		mΩ
V _{GS(th)}	Threshold Voltage	1.1		V

ORDERING INFORMATION


Device	Package	Media	Qty	Ship
CSD17312Q5	SON 5-mm × 6-mm Plastic Package	13-Inch Reel	2500	Tape and Reel

ABSOLUTE MAXIMUM RATINGS

$T_A = 2$	5°C unless otherwise stated	VALUE	UNIT
V_{DS}	Drain to Source Voltage	30	V
V_{GS}	Gate to Source Voltage	+10 /8	V
	Continuous Drain Current, $T_C = 25^{\circ}C$	100	А
ID	Continuous Drain Current ⁽¹⁾	38	А
I _{DM}	Pulsed Drain Current, $T_A = 25^{\circ}C^{(2)}$	200	А
PD	Power Dissipation ⁽¹⁾	3.2	W
T _J , T _{STG}	Operating Junction and Storage Temperature Range	-55 to 150	°C
E _{AS}	Avalanche Energy, Single Pulse $I_D = 130A$, L = 0.1mH, $R_G = 25\Omega$	845	mJ

(1) Typical $R_{\theta JA}$ = 39°C/W when mounted on a 1-inch² (6.45-cm²), 2-oz. (0.071-mm thick) Cu pad on a 0.06-inch (1.52-mm) thick FR4 PCB.

(2) Pulse duration ≤300µs, duty cycle ≤2%

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas ÆΛ Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. NexFET is a trademark of Texas Instruments.

9

10

G006

 $T_C = 25^{\circ}C$

2 3

CSD17312Q5

XAS STRUMENTS

www.ti.com

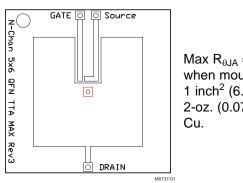
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ELECTRICAL CHARACTERISTICS

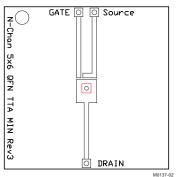
PARAMETER		TEST CONDITIONS	MIN TYP	MAX	UNIT
Static Cl	haracteristics				
BV _{DSS}	Drain to Source Voltage	$V_{GS} = 0V, I_D = 250\mu A$	30		V
I _{DSS}	Drain to Source Leakage Current	$V_{GS} = 0V, V_{DS} = 24V$		1	μA
I _{GSS}	Gate to Source Leakage Current	$V_{DS} = 0V, V_{GS} = +10/-8V$		100	nA
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	0.9 1.1	1.5	V
		V _{GS} = 3V, I _D = 35A	1.8	2.4	mΩ
R _{DS(on)}	Drain to Source On Resistance	V _{GS} = 4.5V, I _D = 35A	1.4	1.7	mΩ
		V _{GS} = 8V, I _D = 35A	1.2	1.5	mΩ
9 _{fs}	Transconductance	V _{DS} = 15V, I _D = 35A	200		S
Dynamic	Characteristics		·		
C _{iss}	Input Capacitance		4030	5240	pF
C _{oss}	Output Capacitance	$V_{GS} = 0V, V_{DS} = 15V,$ f = 1MHz	2220	2890	pF
C _{rss}	Reverse Transfer Capacitance		93	120	pF
R _G	Series Gate Resistance		1.1	2.2	Ω
Qg	Gate Charge Total (4.5V)		28	36	nC
Q _{gd}	Gate Charge Gate to Drain	V _{DS} = 15V,	6		nC
Q _{gs}	Gate Charge Gate to Source	I _{DS} = 35A	8.4		nC
Q _{g(th)}	Gate Charge at Vth		4.4		nC
Q _{oss}	Output Charge	$V_{DS} = 14.8V, V_{GS} = 0V$	57		nC
t _{d(on)}	Turn On Delay Time		9.5		ns
t _r	Rise Time	V _{DS} = 15V, V _{GS} = 4.5V,	27		ns
t _{d(off)}	Turn Off Delay Time	$I_{DS} = 35A, R_G = 2\Omega$	35		ns
t _f	Fall Time		23		ns
Diode Cl	haracteristics	· · ·			
V _{SD}	Diode Forward Voltage	$I_{SD} = 35A, V_{GS} = 0V$	0.8	1	V
Q _{rr}	Reverse Recovery Charge	V _{DD} = 14.8V, I _F = 35A,	88		nC
t _{rr}	Reverse Recovery Time	di/dt = 300A/µs	43		ns

THERMAL CHARACTERISTICS

$(T_A = 25^{\circ}C \text{ unless otherwise stated})$							
	PARAMETER	MIN	TYP	MAX	UNIT		
R_{\thetaJC}	Thermal Resistance Junction to Case ⁽¹⁾			1	°C/W		
$R_{\theta JA}$	Thermal Resistance Junction to Ambient ⁽¹⁾⁽²⁾			49	°C/W		


 $R_{\theta JC}$ is determined with the device mounted on a 1-inch² (6.45-cm²), 2-oz. (0.071-mm thick) Cu pad on a 1.5-inch × 1.5-inch (3.81-cm × 3.81-cm), 0.06-inch (1.52-mm) thick FR4 PCB. $R_{\theta JC}$ is specified by design, whereas $R_{\theta JA}$ is determined by the user's board design. Device mounted on FR4 material with 1-inch² (6.45-cm²), 2-oz. (0.071-mm thick) Cu. (1)

(2)



CSD17312Q5

SLPS256A-MARCH 2010-REVISED OCTOBER 2010

Max $R_{\theta JA} = 49^{\circ}C/W$ when mounted on 1 inch² (6.45 cm²) of 2-oz. (0.071-mm thick) Cu.

Max $R_{\theta,JA} = 119^{\circ}C/W$ when mounted on a minimum pad area of 2-oz. (0.071-mm thick) Cu.

TYPICAL MOSFET CHARACTERISTICS

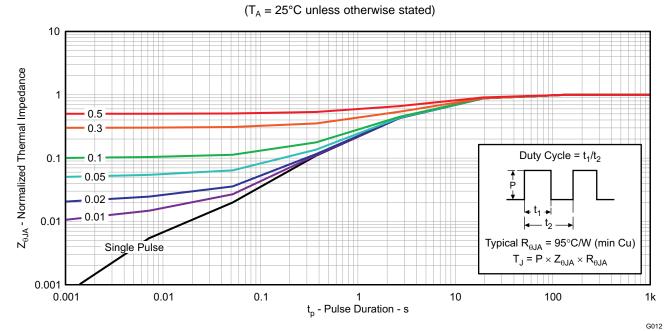
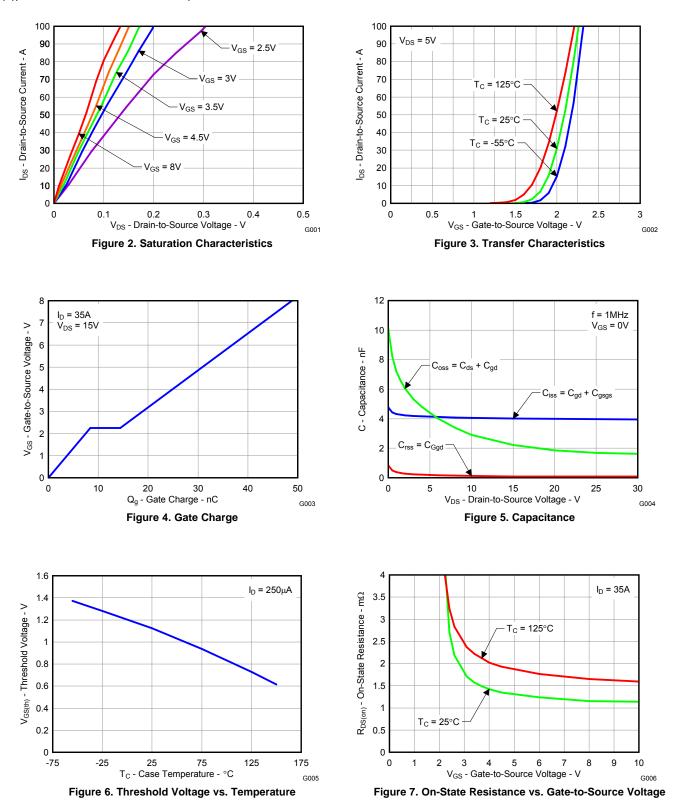


Figure 1. Transient Thermal Impedance

SLPS256A-MARCH 2010-REVISED OCTOBER 2010


www.ti.com

STRUMENTS

EXAS

TYPICAL MOSFET CHARACTERISTICS (continued)

 $(T_A = 25^{\circ}C \text{ unless otherwise stated})$

SLPS256A-MARCH 2010-REVISED OCTOBER 2010

TYPICAL MOSFET CHARACTERISTICS (continued)

 $(T_A = 25^{\circ}C \text{ unless otherwise stated})$

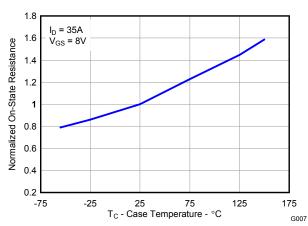
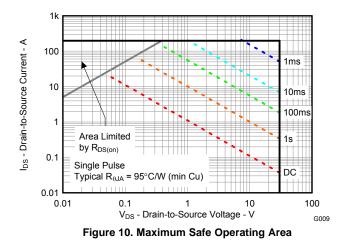



Figure 8. Normalized On-State Resistance vs. Temperature

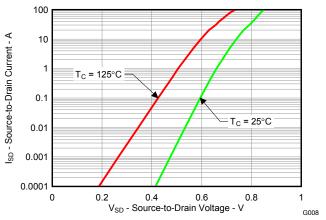


Figure 9. Typical Diode Forward Voltage

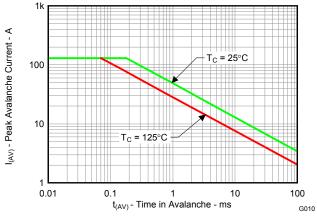
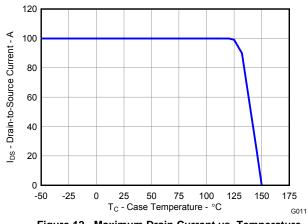
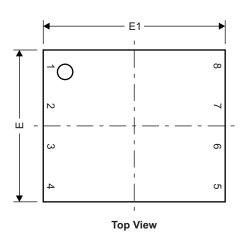
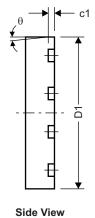
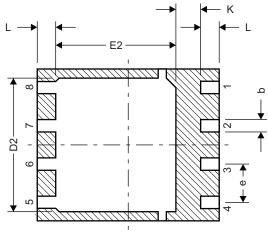


Figure 11. Single Pulse Unclamped Inductive Switching

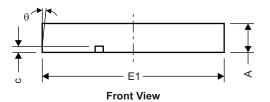



Figure 12. Maximum Drain Current vs. Temperature

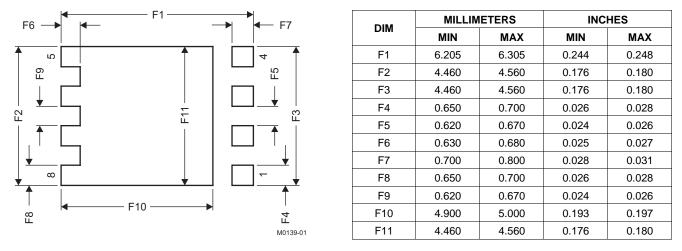

TEXAS INSTRUMENTS


www.ti.com

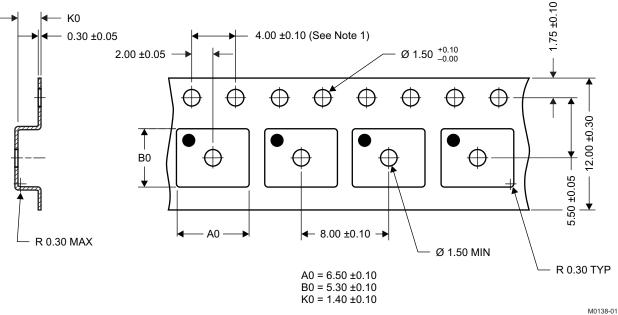
MECHANICAL DATA


Q5 Package Dimensions

Bottom View


M0140-01

DIM	MILLIN	IETERS	INCHES		
DIW	MIN	MAX	MIN	MAX	
A	0.950	1.050	0.037	0.039	
b	0.360	0.460	0.014	0.018	
с	0.150	0.250	0.006	0.010	
c1	0.150	0.250	0.006	0.010	
D1	4.900	5.100	0.193	0.201	
D2	4.320	4.520	0.170	0.178	
E	4.900	5.100	0.193	0.201	
E1	5.900	6.100	0.232	0.240	
E2	3.920	4.12	0.154	0.162	
е	1.27	TYP	0.0	50	
К	0.760		0.030		
L	0.510	0.710	0.020	0.028	
θ	0.00				


SLPS256A-MARCH 2010-REVISED OCTOBER 2010

Recommended PCB Pattern

For recommended circuit layout for PCB designs, see application note SLPA005 – Reducing Ringing Through PCB Layout Techniques.

Q5 Tape and Reel Information

Notes: 1. 10-sprocket hole-pitch cumulative tolerance ± 0.2

2. Camber not to exceed 1mm in 100mm, noncumulative over 250mm

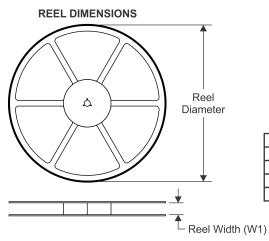
- 3. Material: black static-dissipative polystyrene
- 4. All dimensions are in mm, unless otherwise specified.
- 5. Thickness: 0.30 ±0.05mm
- 6. MSL1 260°C (IR and convection) PbF reflow compatible

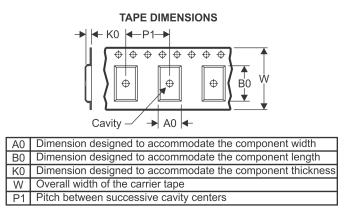
SLPS256A-MARCH 2010-REVISED OCTOBER 2010

Copyright © 2010, Texas Instruments Incorporated

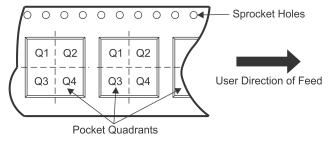
REVISION HISTORY

Cł	nanges from Original (March 2010) to Revision A	Page
•	Deleted the Package Marking Information section	7


www.ti.com


PACKAGE MATERIALS INFORMATION

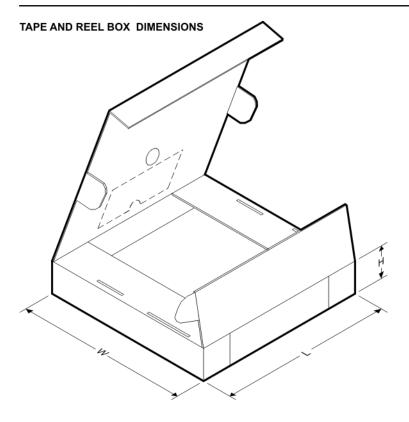
www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal				
Device	Package	Package	SPQ	Reel


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CSD17312Q5	SON	DQH	8	2500	330.0	12.8	6.5	5.3	1.4	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

31-Oct-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CSD17312Q5	SON	DQH	8	2500	335.0	335.0	32.0

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated