CLC406 Wideband, Low Power Monolithic Op Amp

Literature Number: SNOS852C

February 2001

National Semiconductor

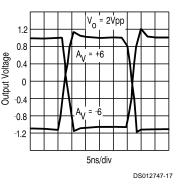
CLC406 Wideband, Low Power Monolithic Op Amp General Description Features

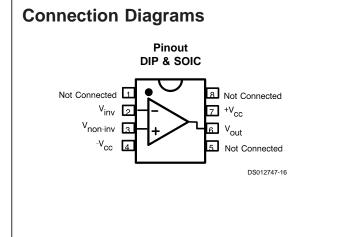
The CLC406 is a wideband monolithic operational amplifier designed for low gain applications where power and cost are of primary concern. Operating from $\pm 5V$ supplies, the CLC406 consumes only 50mW of power yet maintains a 160MHz small signal bandwidth and a 1500V/µs slew rate. Benefiting from National's current feedback architecture, the CLC406 offers a gain range of ± 1 to ± 10 while providing stable, oscillation free operation without external compensation, even at unity gain.

With its exceptional differential gain and phase typically 0.02% and 0.02° at 3.58MHz, the CLC406 is designed to meet the performance and cost requirements of high volume composite video applications. The CLC406's large signal bandwidth, high slew rate and high drive capability are features well suited for RGB video applications.

Providing a 12ns settling time to 0.05% (1/2 LSB in 10-bit systems) and -68/-75dBc 2nd/3rd harmonic distortion (2V_{PP} at 10MHz, R_L = 1k Ω), the CLC406 is an excellent choice as a buffer or driver for high speed A/D and D/A converter systems.

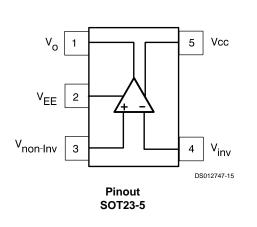
Commercial remote sensing applications and battery powered radio transceivers requiring a high performance, low power amplifier will find the CLC406 to be an attractive, cost effective solution.


Constructed using an advanced, complementary bipolar process and National's proven current feedback architectures, the CLC406 is available in several versions to meet a variety of requirements.


- 160MHz small signal bandwidth
- 50mW power (±5V supplies)
- 0.02%/0.02° differential gain/phase
- 12ns settling to 0.05%
- 1500V/µs slew rate
- 2.2ns rise and fall time (2V_{PP})
- 70mA output current

Applications

- Video distribution amp
- HDTV amplifier
- Flash A/D driver
- D/A transimpedance buffer
- Pulse amplifier
- Photodiode amp
- LAN amplifier


Small Signal Pulse Response

© 2001 National Semiconductor Corporation

DS012747

Ordering Information

Package	Temperature Range Industrial	Part Number	Package Marking	NSC Drawing
8-pin plastic DIP	–40°C to +85°C	CLC406AJP	CLC406AJP	N08E
8-pin plastic SOIC	-40°C to +85°C	CLC406AJE	CLC406AJE	M08A
5-pin SOT	-40°C to +85°C	CLC406AJM5	A17	MA05A

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

±7V
70 4
70mA
±V _{CC}
10V
+150°C

Operating Temperature Range Storage Temperature Range Lead Solder Duration (+300°C) EDS rating (human body model) -40°C to +85°C -65°C to +150°C 10 sec 2000V

Operating Ratings

Thermal Resistance	9	
Package	$(\theta_{\rm JC})$	(θ_{JA})
MDIP	70°C/W	125°C/W
SOIC	65°C/W	145°C/W
SOT23-5	130°C/W	150°C/W

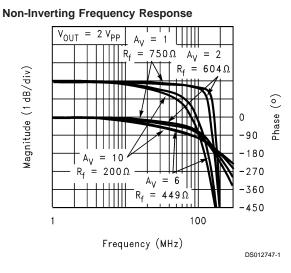
Electrical Characteristics

 $A_{\rm V}$ = +6, $V_{\rm CC}$ = ±5V, $R_{\rm L}$ =100Ω, $R_{\rm f}$ = 500Ω; unless specified

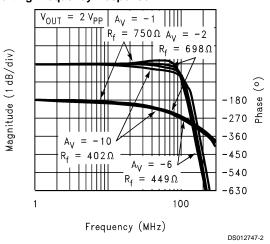
Symbol	Parameter	Conditions	Тур	Typ Max/Min Ratings (Note 2)		ngs	Units
Ambient	Temperature	CLC406AJ	+25°C	-40°C	+25°C	+85°C	
Ambient	Temperature						
Frequen	cy Domain Response						
SSBW	-3dB Bandwidth	V _{OUT} <2V _{PP}	160	>110	>110	>90	MHz
LSBW	7	V _{OUT} < 5V _{PP}	130	>95	>95	>80	MHz
	Gain Flatness	V _{OUT} <2V _{PP}					
GFPL	Peaking	DC to 25MHz	0	<0.2	<0.2	<0.2	dB
GFPH	Peaking	>25MHz	0	< 0.5	<0.5	<0.5	dB
GFR	Rolloff	DC to 50MHz	0	< 0.6	<0.6	<1.0	dB
LPD	Linear Phase Deviation	DC to 75MHz	0.2	<0.8	<0.8	<1.2	deg
DG1	Differential Gain,	$R_{L} = 150\Omega,$	0.02	< 0.04	<0.04	<0.04	%
	$A_{V} = +2$	3.58MHz					
DG2		R _L = 150Ω, 4.43MHz	0.02	<0.04	<0.04	<0.04	%
DP1	Differential Phase, $A_V = +2$	R _L = 150Ω, 3.58MHz	0.02	<0.04	<0.04	<0.08	deg
DP2	_	R _L = 150Ω, 4.43MHz	0.025	<0.05	<0.05	<0.10	deg
Time Do	main Response		I		1	1	1
TRS	Rise and Fall Time	2V Step	2.2	<3.0	<3.0	<3.9	ns
TRL	7	4V Step	3.0	<3.6	<3.6	<5.0	ns
TS	Settling Time to 0.05 %	2V Step	12	<18	<18	<20	ns
OS	Overshoot	2V Step	8	<15	<15	<15	%
SR	Slew Rate		1500	>1200	>1200	>1000	V/µs
Distortio	n And Noise Response			1			
HD2	2nd Harmonic Distortion	$2V_{PP}$, 20MHz R _L =100 Ω	-46	<-42	<-42	<-38	dBc
HD2L	_	$2V_{PP}$, 10MHz R _L = 1k Ω	-68	<-62	<-62	<-60	dBc
HD3	3rd Harmonic Distortion	$2V_{PP} 20MHz$ R _L = 100 Ω	-50	<-46	<-46	<-42	dBc
HD3L	-	$2V_{PP}$, 10MHz R _L = 1k Ω	-75	<-70	<-70	<-65	dBc
	Equivalent Input Noise						
	Non Inverting Voltage	>1MHz	2.7	3.4	3.4	3.8	nV/√F

Electrical Characteristics (Continued)

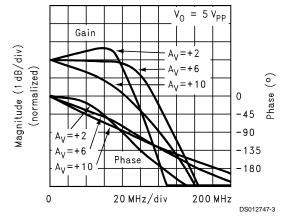
 A_V = +6, V_{CC} = ±5V, R_L =100Ω, R_f = 500Ω; unless specified

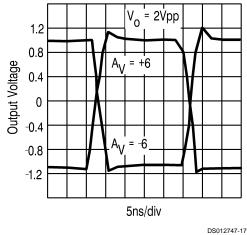

Symbol	Parameter	Conditions	Тур	Max/Min Ratings (Note 2)		ngs	Units
Distortio	And Noise Response	•					
ICN	Inverting Current	>1MHz	11.0	13.9	13.9	15.5	pA/√Hz
NCN	Non Inverting Current Total Noise Floor	>1MHz >1MHz	2.1	2.6 <-156	2.6 <-156	3.0 -155	pA/ _{√Hz} dBm _{1Hz}
SNF			-157				
INV Total Integrated Noise		1MHz to 100MHz	31	<38	<38	<42	μV
Static, DO	C Performance	·	•				•
VIO	Input Offset Voltage (Note 3)		2	<10	<6	<12	mV
DVIO Average Temperature Coefficient			30	<60	-	<60	µV/°C
IBN	Input Bias Current (Note 3)	Non Inverting	5	<24	<12	<12	μA
DIBN	Average Temperature Coefficient		30	<125	-	<50	nA/°C
IBI	Input Bias Current (Note 3)	Inverting	3	<23	<15	<20	μΑ
DIBI	Average Temperature Coefficient		20	<100	-	<50	nA/°C
PSRR	Power Supply Rejection Ratio		50	>46	>46	>44	dB
CMRR	Common Mode Rejection Ratio		50	>45	>45	>43	dB
ICC	Supply Current (Note 3)	No Load	5.0	<7.0	<6.7	<6.7	mA
Miscellan	eous Performance						•
RIN	Non Inverting Input Resistance		1000	>300	>500	>500	kΩ
CIN	Non Inverting Input Capacitance		1.0	<2.0	<2.0	<2.0	pF
RO	Output Impedance	DC	0.2	<0.6	<0.3	<0.2	Ω
VO	Output Voltage Range	R _L = 100Ω	+3.1, -2.7	+1.6, -2.5	±2.7	±2.7	V
CMIR	Common Mode Input Range		±2.2	±1.4	±2.0	±2.0	V
10	Output Current		70	30	50	50	mA

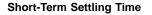
Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" specifies conditions of device operation.

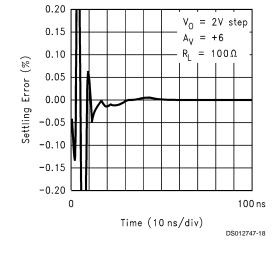

Note 2: Max/min ratings are based on product characterization and simulation. Individual parameters are tested as noted. Outgoing quality levels are determined from tested parameters.

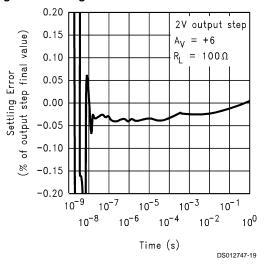
Note 3: AJ-level: spec. is 100% tested at + 25°C.

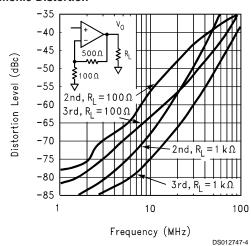

Typical Performance Characteristics $T_A = 25^{\circ}C$, $A_V = +6V$, $V_{CC} = \pm 5V$, $R_L = 100\Omega$, $R_f = 500\Omega$; unless specified

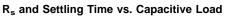

Inverting Frequency Response

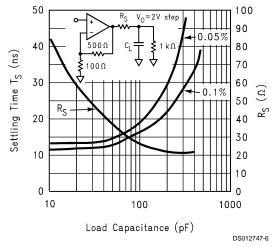



Large Signal Inverting Frequency Response

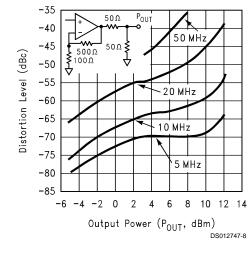


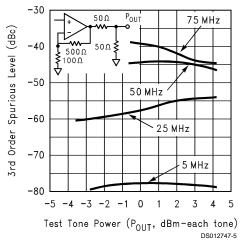


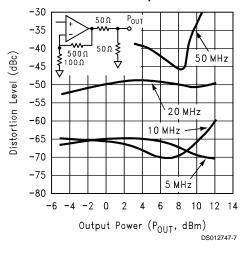

Long-Term Settling Time



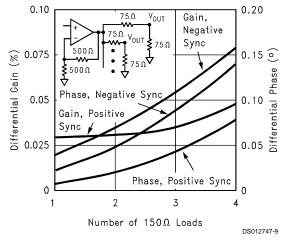
Typical Performance Characteristics $T_A = 25^{\circ}C$, $A_V = +6V$, $V_{CC} = \pm 5V$, $R_L = 100\Omega$, $R_f = 500\Omega$; unless specified (Continued)


Harmonic Distortion

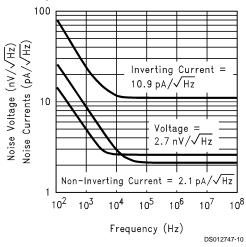


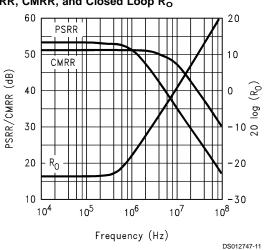




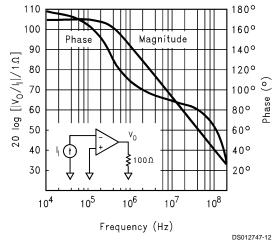

2-Tone, 3rd Order, Spurious Levels

2nd Harmonic Distortion vs. Output Power




Typical Performance Characteristics $T_A = 25^{\circ}C$, $A_V = +6V$, $V_{CC} = \pm 5V$, $R_L = 100\Omega$, $R_f = 500\Omega$; unless specified (Continued)

7


Equivalent Input Noise

PSRR, CMRR, and Closed Loop Ro

Open-Loop Transimpedance Gain, Z(s)

CLC406

Application Division

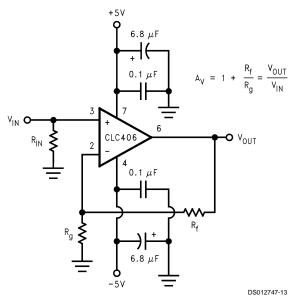


FIGURE 1. Recommended Non-Inverting Gain Circuit

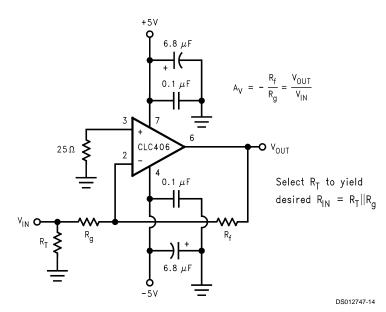


FIGURE 2. Recommended Inverting Gain Circuit

Feedback Resistor

The CLC406 achieves its exceptional AC performance while requiring very low quiescent power by using the current feedback topology and an internal slew rate enhancement circuit. The loop gain and frequency response for a current feedback op amp is predominantly set by the feedback resistor value. The CLC406 is optimized for a gain of +6 to use a 500 Ω feedback resistor (for maximally flat response at a gain of +2, use $R_f = 1k\Omega$).Using lower values can lead to excessive ringing in the pulse response while a higher value will limit the bandwidth. Application Note OA-13 provides a more detailed discussion of choosing a feedback resistor. A plot found within the CLC415 data sheet entitled "Recommended R_fvs . Gain" is also applicable to the CLC406. The values of R_f found on this plot will optimize the performance of the CLC406 over its±1 to±10 gain range.

The CLC406, like all current feedback op amps, can be operated at higher than recommended gains with an expected reduction in bandwidth.

Slew Rate and Harmonic Distortion

The current feedback topology yields an inherently high slew rate amplifier. For this reason the CLC406 shows little difference in bandwidth between $2V_{PP}$ and $5V_{PP}$ outputs. The dominant slew rate limiting mechanism is the unity gain buffer used internally from the non-inverting to the inverting inputs. Using a slew enhancement circuit to sense the onset of slew limiting, the buffer stage momentarily increases the quiescent current to handle high slew requirements. Slew rates will decrease when operating the CLC406 at lower non-inverting gains due to the increasing signal swing through the buffer stage which is necessary to maintain a fixed desired output swing. Conversely, slew rates are

CLC406

Application Division (Continued)

generally higher and relatively insensitive to gain setting for inverting gain operation. An additional discussion of slew rates can be found in the CLC404 data sheet.

As the output signal swing is increased, the slew enhancement circuit found in the buffer stage acts to suppress harmonic distortions. This is one reason the CLC406 does not exhibit a simple relationship between output power and distortion. For example, the 2-tone, 3rd order spurious plot shows the spurious level to remain nearly constant over test tone power. For this reason the CLC406 does not exhibit an intercept type performance where the relative spurious levels change at twice the rate of the test tone power.

Differential Gain and Phase

Differential gain and phase performance specifications are common to composite video distribution applications. These specifications refer to the change in small signal gain and phase of the color subcarrier frequency (4.43MHz for PAL composite video) as the amplifier output is swept over a range of DC voltages. For this test only, the CLC406 is specified at a gain of +2 while connected to one or more doubly terminated 75 Ω loads. Application Note OA-08 provides an additional discussion of differential gain and phase measurements.

Non-inverting Source Impedance

For best operation, the DC source impedance looking out of the non-inverting input should be less than $3k\Omega$ but greater than 20Ω . Parasitic self oscillations may occur in the input transistors if the DC source impedance is out of this range. This impedance also acts as the gain for the non-inverting input bias and noise currents and therefore can become troublesome for high values of DC source impedance. The inverting configuration of *Figure 2* shows a 25Ω resistor to ground on the non-inverting input which insures stability but does not provide bias current cancellation. The input bias currents are unrelated for a current feedback amplifier which eliminates the need for source impedance matching to achieve bias current cancellation.

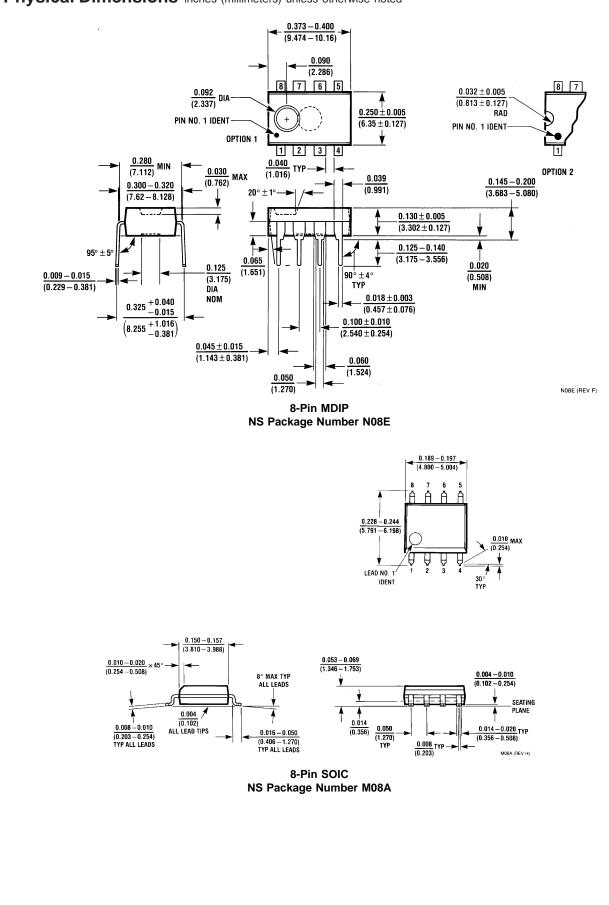
DC Accuracy and Noise

Equation 1 shows and example of the output offset voltage computation. The calculation is developed using typical bias current and offset voltage specifications at 25°C, a gain (Av) of +6 and a non-inverting source impedance (R_s) of 25 Ω .

Equation 1: Output Offset Voltage Calculation Output Offset Voltage $V_O = (\pm I_{bn}R_{in} \pm V_{io})(1+R_f/R_g) \pm I_{bi}R_f$ $V_O = (\pm 5\mu A(25\Omega) \pm 2mV)(6) \pm 3\mu A(500\Omega) = \pm 14.25mV$

Improved output offset voltage is possible using the composite circuits shown in Application Note OA-07.

The total output spot noise is computed in a similar fashion to the output offset voltage. Using the input spot noise voltage and the two input spot noise currents, the total output spot noise is developed through the same gain equations for each term but combined as the square root of the sum of squared contributing elements. Application Note OA-12 provides a more detailed discussion of noise calculations for current feedback amplifiers.


Printed Circuit Layout

As with any high speed component, a careful attention to the board layout is necessary for optimum performance. Of particular importance is the careful control of parasitic capacitances on the output pin. As the output impedance plot shows, the closed loop output of the CLC406 eventually becomes inductive as the loop gain rolls off with increasing frequency. Direct capacitive loading on the output pin can quickly lead to peaking in the frequency response, overshoot in the pulse response, ringing or even sustained oscillations. The "Suggested Series R_s vs. C" plot should be used as a starting point when a capacitive load must be driven.

Evaluation boards (CLC730013-DIP,CLC730027-SOIC, and CLC730068-SOT) for the CLC406 are available. Further layout suggestions can be found in Application Note OA-15.

Physical Dimensions inches (millimeters) unless otherwise noted

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		
		u Hama Dawa	a O a Al a a m

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated