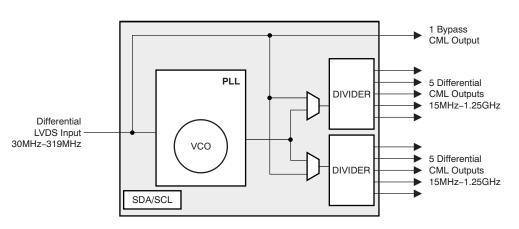


SLLS780B-FEBRUARY 2007-REVISED MARCH 2011

1.8V, 11 Output Clock Multiplier, Distributor, Jitter Cleaner, and Buffer

Check for Samples: CDCL6010


FEATURES

- Single 1.8V Supply
- High-Performance Clock Multiplier, Distributor, Jitter Cleaner, and Buffer With 11 Outputs
- Low Output Jitter: 400fs RMS
- Output Group Phase Adjustment
- Low-Voltage Differential Signaling (LVDS) Input, 100Ω Differential On-Chip Termination, 30MHz to 319MHz Frequency Range
- Differential Current Mode Logic (CML) Outputs, 50Ω Single-Ended On-Chip Termination, 15MHz to 1.25GHz Frequency Range
- One Dedicated Differential CML Output, Straight PLL and Frequency Divider Bypass
- Two Groups of Five Outputs Each with Independent Frequency Division Ratios; Optional PLL Bypass
- Fully Integrated Voltage Controlled Oscillator (VCO); Supports Wide Output Frequency Range
- Output Frequency Derived From VCO Frequency with Divide Ratios of 1, 2, 4, 5, 8, 10, 16, 20, 32, 40, and 80
- Meets OBSAI RP1 v1.0 Standard and CPRI v2.0 Requirements
- Meets ANSI TIA/EIA-644-A-2001 LVDS Standard Requirements

- Integrated LC Oscillator Allows External Bandwidth Adjustment
- PLL Lock Indication
- Power Consumption: 640mW Typical
- Output Enable Control for Each Output
- SDA/SCL Device Management Interface
- 48-pin QFN (RGZ) Package
- Industrial Temperature Range: –40°C to +85°C

APPLICATIONS

- Low Jitter Clocking for High-Speed SERDES
- Jitter Cleaning of SERDES Reference Clocks for 1G/10G Ethernet, 1X/2X/4X/10X Fibre Channel, PCI Express, Serial ATA, SONET, CPRI, OBSAI, etc.
- Up to 1-to-11 Clock Buffering and Fan-out

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

CDCL6010

SLLS780B-FEBRUARY 2007-REVISED MARCH 2011

FXAS

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

DESCRIPTION

The CDCL6010 is a high-performance, low phase noise clock multiplier, distributor, jitter cleaner, and low skew buffer. It effectively cleans a noisy system clock with a fully-integrated low noise Voltage Controlled Oscillator (VCO) that operates in the 1.2GHz–1.275GHz range. (Note that the LC oscillator oscillates in the 2.4GHz–2.55GHz range. The frequency is predivided by 2 before the post-dividers P0 and P1.)

The output frequency (F_{OUT}) is synchronized to the frequency of the input clock (F_{IN}). The programmable pre-dividers, M and N, and the post-dividers, P0 and P1, give a high flexibility to the ratio of the output frequency to the input frequency:

 $F_{OUT} = F_{IN} \times N/(M \times P)$

Where:

P (P0, P1) = 1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 80 M = 1, 2, 4, 8 N = 32, 40

provided that:

30MHz < (F_{IN} /M) < 40MHz 1200MHz < (F_{OUT} × P) < 1275MHz

The PLL loop bandwidth is user-selectable by external filter components or by using the internal loop filter. The PLL loop bandwidth and damping factor can be adjusted to meet different system requirements.

The CDCL6010 supports one differential LVDS clock input and a total of 11 differential CML outputs. One output is a straight bypass with no support for jitter cleaning or clock multiplication. The remaining 10 outputs are available in two groups of five outputs each with independent frequency division ratios. Those 10 outputs can be optionally setup to bypass the PLL when no jitter cleaning is needed. The CML outputs are compatible with LVDS receivers if ac-coupled.

With careful observation of the input voltage swing and common-mode voltage limits, the CDCL6010 can support a single-ended clock input as outlined in the Pin Description Table

The CDCL6010 can operate as a multi-output clock buffer in a PLL bypass mode.

All device settings are programmable through the SDA/SCL, serial two-wire interface.

The serial interface is 1.8V tolerant only.

The phase of one output group relative to the other can be adjusted through the SDA/SCL interface. For post-divide ratios (P0, P1) that are multiples of 5, the total number of phase adjustment steps (*n*) equals the divide-ratio divided by 5. For post-divide ratios (P0, P1) that are not multiples of 5, the total number of steps (*n*) is the same as the post-divide ratio. The phase adjustment step ($\Delta \Phi$) in time units is given as:

 $\Delta \Phi = 1/(n \times F_{OUT})$

where $\mathsf{F}_{\mathsf{OUT}}$ is the respective output frequency.

The device operates in a 1.8V supply environment and is characterized for operation from -40°C to +85°C.

The CDCL6010 is available in a 48-pin QFN (RGZ) package.

T _A	PACKAGED DEVICES	FEATURES
–40°C to +85°C	CDCL6010RGZT	48-pin QFN (RGZ) Package, small tape and reel
–40°C to +85°C	CDCL6010RGZR	48-pin QFN (RGZ) Package, tape and reel

Table 1. AVAILABLE OPTIONS⁽¹⁾

(1) For the most current specifications and package information, see the Package Option Addendum located at the end of this data sheet or refer to our web site at www.ti.com.

www.ti.com

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted).⁽¹⁾

		VALUE	UNIT
V_{DD}, AV_{DD}	Supply voltage ⁽²⁾	-0.3 to 2.5	V
V _{LVDS}	Voltage range at LVDS input pins ⁽²⁾	–0.3 to V _{DD} + 0.6	V
VI	Voltage range at all non-LVDS input pins ⁽²⁾	–0.3 to V _{DD} + 0.6	V
ESD	Electrostatic discharge (HBM)	2	kV
TJ	Junction temperature	+125	°C
T _{STG}	Storage temperature range	-65 to +150	°C

(1) Stresses beyond those listed under *absolute maximum ratings* may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *recommended operating condition* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to network ground terminal.

RECOMMENDED OPERATING CONDITIONS

Over operating free-air temperature range (unless otherwise noted).

		MIN	NOM	MAX	UNIT
V_{DD}	Digital supply voltage	1.7	1.8	1.9	V
AV_{DD}	Analog supply voltage	1.7	1.8	1.9	V
T _A	Ambient temperature (no airflow, no heatsink)	-40		+85	°C
TJ	Junction temperature			+105	°C

THERMAL INFORMATION

	THERMAL METRIC ⁽¹⁾	RGZ (48 Pins)	UNITS	
0	Junction-to-ambient thermal resistance ⁽²⁾ :	airflow = 0 lfm	28.3	°C/W
θ_{JA}	Junction-to-ambient thermal resistance ^{ver} :	22.4	°C/W	
$\theta_{JC(TOP)}$	Junction-to-case (top) thermal resistance	20.5	°C/W	
$\theta_{JC(BOTTOM)}$	Junction-to-case (Bottom) thermal resistance		5.3	°C/W

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

(2) No heatsink; power uniformly distributed; 36 ground vias (6 x 6 array) tied to the thermal exposed pad; 4-layer high-K board.

DC ELECTRICAL CHARACTERISTICS

Over recommended operating conditions (unless otherwise noted).

	PARAMETER	MIN	TYP	MAX	UNIT	
I _{VDD}	Total current from digital 1.8V supply	All outputs enabled; V _{DD} = V _{DD,typ} 30.72MHz input; 61.44MHz output		270		mA
I _{AVDD}	Total current from analog 1.8V supply	All outputs enabled; $AV_{DD} = V_{DD,typ}$ 30.72MHz input; 61.44MHz output		85		mA
V _{IL,CMOS}	Low level CMOS input voltage	V _{DD} = 1.8V	-0.2		0.6	V
V _{IH,CMOS}	High level CMOS input voltage	V _{DD} = 1.8V	V _{DD} – 0.6		V_{DD}	V
I _{IL,CMOS}	Low level CMOS input current	$V_{DD} = V_{DD,max}, V_{IL} = 0.0V$			-120	μA
I _{IH,CMOS}	High level CMOS input current	$V_{DD} = V_{DD,max}, V_{IH} = 1.9V$			65	μA
V _{OL,SDA}	Low level CMOS output voltage for the SDA pin	Sink current = 3mA	0		$0.2V_{DD}$	V
I _{OL,CMOS}	Low level CMOS output current				8	mA

www.ti.com

AC ELECTRICAL CHARACTERISTICS

Over recommended operating conditions (unless otherwise noted).

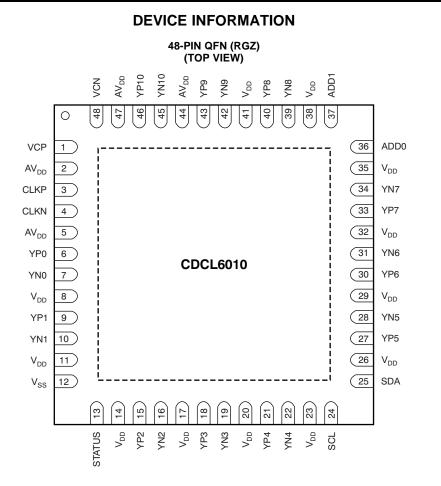
PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
Z _{D,IN}	Differential input impedance for the LVDS input terminals		90		132	Ω
V _{CM,IN}	Common-mode voltage, LVDS input		1125	1200	1375	mV
V _{S,IN}	Single-ended LVDS input voltage swing		100		600	mV_{PP}
V _{D,IN}	Differential LVDS input voltage swing		200		1200	mV_{PP}
t _{R,OUT} , t _{F,OUT}	Output signal rise/fall time	20%-80%		100		ps
V _{CM,OUT}	Common-mode voltage, CML outputs		V _{DD} -0.31	V _{DD} -0.23	V _{DD} -0.19	V
V _{S,OUT}	Single-ended CML output voltage swing	ac-coupled	180	230	280	mV_{PP}
V _{D,OUT}	Differential CML output voltage swing	Measured in a 50 Ω scope; The CML output incorporates 50 Ω resistors to V _{DD}	360	460	560	mV _{PP}
F _{IN}	Clock input frequency		30		319	MHz
F _{OUT}	Clock output frequency		15		1250	MHz
L _{OUT}	Residual clock output phase noise	F_{IN} = 30.72MHz , F_{OUT} = 61.44MHz 400kHz PLL bandwidth				
		at 10Hz offset		-103		dBc/Hz
		at 100Hz offset		-114		dBc/Hz
		at 1kHz offset		-123		dBc/Hz
		at 10kHz offset		-121		dBc/Hz
		at 100kHz offset		-119		dBc/Hz
		at 1MHz offset		-138		dBc/Hz
		at 10MHz offset		-152		dBc/Hz
		at 20MHz offset		-152		dBc/Hz
J _{OUT}	Residual clock output jitter	F_{IN} = 30.72MHz, F_{OUT} = 61.44MHz 400kHz PLL bandwidth				
		10Hz–1MHz offset		2.01		ps RMS
		1MHz–20MHz offset		0.45		ps RMS
		12kHz–20MHz offset		2.11		ps RMS
T _P	Input-to-output delay	F _{IN} = 30.72MHz, F _{OUT} = 30.72MHz YP[9:0] outputs, PLL bypass mode		3		ns
		F _{IN} = 30.72MHz, F _{OUT} = 61.44MHz YP[9:0] outputs, PLL mode		150		ps
TS _{OUT}	Clock output skew	F _{IN} = 30.72MHz, F _{OUT} = 61.44MHz YP[9:0] outputs relative to YP[0]	-64		64	ps
			1.46		2.52	ns
DCycle _{OUT}	Clock output duty cycle ⁽¹⁾		45%		55%	

(1) Output duty cycle of the bypass output and for post-divide ratio = 1 is just as good as the input duty cycle.

Copyright © 2007–2011, Texas Instruments Incorporated

SLLS780B-FEBRUARY 2007-REVISED MARCH 2011

AC ELECTRICAL CHARACTERISTICS FOR THE SDA/SCL INTERFACE⁽¹⁾


	PARAMETER	MIN	TYP MAX	UNIT
f _{SCL}	SCL frequency		400	kHz
t _{h(START)}	START hold time	0.6		μs
t _{w(SCLL)}	SCL low-pulse duration	1.3		μs
t _{w(SCLH)}	SCL high-pulse duration	0.6		μs
t _{su(START)}	START setup time	0.6		μs
t _{h(SDATA)}	SDA hold time	0		μs
t _{su(DATA)}	SDA setup time	0.6		μs
t _{r(SDATA)}	SCL / SDA input rise time		0.3	μs
t _{f(SDATA)}	SCL / SDA input fall time		0.3	μs
t _{su(STOP)}	STOP setup time	0.6		μs
t _{BUS}	Bus free time	1.3		μs

(1) See Figure 4 for the timing behavior.

TEXAS INSTRUMENTS

www.ti.com

SLLS780B-FEBRUARY 2007-REVISED MARCH 2011

NOTE: Exposed thermal pad must be soldered to $\mathrm{V}_{\mathrm{SS}}.$

The CDCL6010 is available in a 48-pin QFN (RGZ) package with a pin pitch of 0,5mm. The exposed thermal pad serves both thermal and electrical grounding purposes.

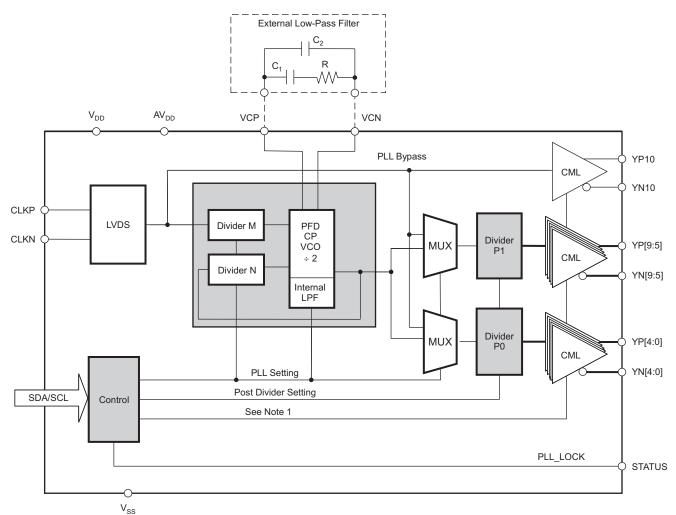
NOTE

The device must be soldered to ground (V_{SS}) using as many ground vias as possible. The device performance will be severely impacted if the exposed thermal pad is not grounded appropriately.

6

SLLS780B-FEBRUARY 2007-REVISED MARCH 2011

PIN FUNCTIONS

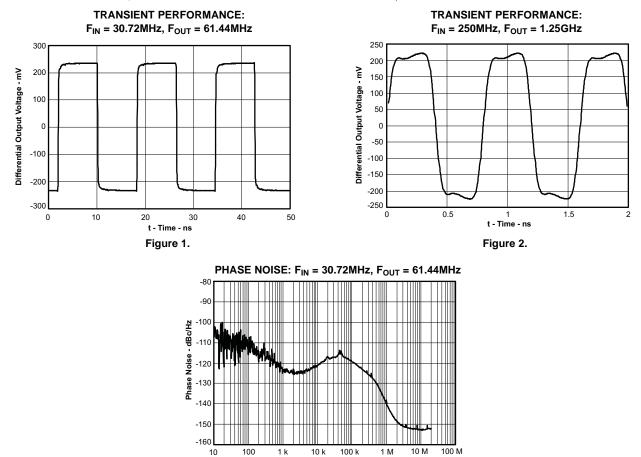

P	PIN					
NAME	PIN NO.	TYPE	DESCRIPTION			
V _{DD}	8, 11, 14,17, 20, 23, 26, 29, 32, 35, 38, 41	Power	1.8V digital power supply.			
AV _{DD}	2, 5, 44, 47	Power	1.8V analog power supply.			
V _{SS}	Exposed thermal pad and pin 12	Power	Ground reference.			
VCP, VCN	1, 48	I	External loop filter terminals.			
CLKP, CLKN	3, 4	Ι	Differential LVDS input. Single-ended 1.8V input can be dc-coupled to pin 3 with pin 4 either tied to pin 3 (recommended) or left open.			
YP0, YN0 YP1, YN1 YP2, YN2 YP3, YN3 YP4, YN4 YP5, YN5 YP6, YN6 YP7, YN7 YP8, YN8 YP9, YN9	6, 7 9, 10 15, 16 18, 19 21, 22 27, 28 30, 31 33, 34 40, 39 43, 42	0	10 differential CML outputs with support for jitter cleaning and clock multiplication. Support optional PLL bypass mode when jitter cleaning is not needed.			
YP10, YN10	46, 45	0	Differential CML output. Straight bypass with no jitter cleaning and no clock multiplication.			
SCL	24	Ι	SCL serial clock pin. Open drain. Always connect to a pull-up resistor. SCL tolerated 1.8V on the input only.			
SDA	25	I/O	SDA bidirectional serial data pin. Open drain. Always connect to a pull-up resistor. SDA tolerates 1.8V on the input only			
STATUS	13	0	LVCMOS status signaling. High status indicates PLL lock.			
ADD1, ADD0	37, 36	I	Configurable least significant bits (ADD[1:0]) of the SDA/SCL device address. The fixed most significant bits (ADD[6:2]) of the 7-bit device address are 11010.			

TEXAS INSTRUMENTS

SLLS780B-FEBRUARY 2007-REVISED MARCH 2011

www.ti.com

FUNCTIONAL BLOCK DIAGRAM


(1) Outputs can be disabled to floating. When outputs are left floating, internal 50 Ω termination to V_{DD} pulls both YN and YP to V_{DD}.

www.ti.com

TYPICAL CHARACTERISTICS

Typical operating conditions are at V_{DD} = 1.8V and T_A = +25°C, $V_{D,IN}$ = 200m V_{PP} (unless otherwise noted).

Offset Frequency - Hz Figure 3.

www.ti.com

SDA/SCL INTERFACE

This section describes the SDA/SCL interface of the CDCL6010 device. The CDCL6010 operates as a slave device of the industry standard 2-pin SDA/SCL bus. It operates in the fast-mode at a bit-rate of up to 400kbit/s and supports 7-bit addressing compatible with the popular two-pin serial interface standard.

SDA/SCL Bus Slave Device Address

A6	A5	A4	A3	A2	A1	A0	R/W
1	1	0	1	0	ADD1	ADD0	0/1

The device address is made up of the fixed internal address, 11010 (A6:A2), and configurable external pins ADD1 (A1) and ADD0 (A0). Four different devices with addresses 1101000, 1101001, 1101010 and 1101011, can be addressed via the same SDA/SCL bus interface. The least significant bit of the address byte designates a write or read operation.

R/W Bit:

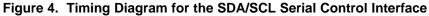
0 = Write to CDCL6010 device

1 = Read from CDCL6010 device

Command Code Definition

BIT	DESCRIPTION
C7	1 = Byte Write / Read or Word Write / Read operation
(C6:C0)	Byte Offset for Byte Write / Read and Word Write / Read operation.


Command Code for <i>Byte Write / Read</i> Operation	Hex Code	С7	C6	C5	C4	C3	C2	C1	C0
Byte 0	80h	1	0	0	0	0	0	0	0
Byte 1	81h	1	0	0	0	0	0	0	1
Byte 2	82h	1	0	0	0	0	0	1	0
Byte 3	83h	1	0	0	0	0	0	1	1
Byte 4	84h	1	0	0	0	0	1	0	0
Byte 5	85h	1	0	0	0	0	1	0	1
Byte 6	86h	1	0	0	0	0	1	1	0
Byte 7	87h	1	0	0	0	0	1	1	1


Command Code for <i>Word Write / Read</i> Operation	Hex Code	C7	C6	C5	C4	C3	C2	C1	C0
Word 0: Byte 0 and byte 1	80h	1	0	0	0	0	0	0	0
Word 1: Byte 1 and byte 2	81h	1	0	0	0	0	0	0	1
Word 2: Byte 2 and byte 3	82h	1	0	0	0	0	0	1	0
Word 3: Byte 3 and byte 4	83h	1	0	0	0	0	0	1	1
Word 4: Byte 4 and byte 5	84h	1	0	0	0	0	1	0	0
Word 5: Byte 5 and byte 6	85h	1	0	0	0	0	1	0	1
Word 6: Byte 6 and byte 7	86h	1	0	0	0	0	1	1	0
Word 7: Byte 7	87h	1	0	0	0	0	1	1	1

SLLS780B-FEBRUARY 2007-REVISED MARCH 2011

SDA/SCL Timing Characteristics

SDA/SCL Programming Sequence

LEGEND FOR PROGRAMMING SEQUENCE

1	7	1	1	8	1	1	
S	Slave Address	Wr	А	Data Byte	А	Ρ	
S	Start condition						
Sr	Repeated start cond	ition	I				
Rd	Read (bit value = 1)						
Wr	Write (bit value = 0)						
A	Acknowledge (bit val	lue :	= 0)				
Ν	Not acknowledge (bi	t va	lue	= 1)			
Ρ	Stop condition						
	Master to Slave trans	smis	sio	ı			
	Slave to Master trans	smis	sio	n			

Byte Write Programming Sequence:

							-
S Slave Address	Wr	А	Command Code	А	Data Byte	А	Р

Byte Read Programming Sequence:

1	7	1	1	8	1	1	7	1	1	8	1	1
S	Slave Address	Wr	А	Command Code	А	S	Slave Address	Rd	А	Data Byte	Ν	Р

SLLS780	B-FEBRUARY 2007-	REVISED	MARCH 20	011					w
Word	Write Program	ning Se	equenc	e:					
1	7	1	1	8	1	8	1	8	1
S	Slave Address	Wr	А	Command Code	А	Data Byte Low	А	Data Byte High	А

Word Read Programming Sequence:

1	7	1	1	8	1	1	7	1	1	8	1	8	1	1
S	Slave Address	Wr	А	Command Code	А	S	Slave Address	Rd	А	Data Byte	А	Data Byte	Ν	Ρ

SDA/SCL Connections Recommendations

The serial interface inputs don't have glitch suppression circuit. So, any noises or glitches at serial input lines may cause programming error. The serial interface lines should be routed in such a way that the lines would have minimum noise impact from the surroundings.

Figure 5 is recommended to improve the interconnections.

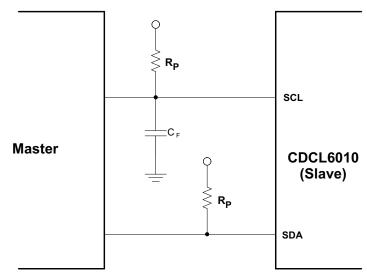


Figure 5. Serial Interface Connections

Lower R_P resistor value (around 1 kΩ) should be chosen so that signals will have faster rise time. A capacitor can be connected to SCL line to ground which will act as a filter.

An I²C level translator will help to overcome the noises issue.

1

Ρ

EXAS

SDA/SCL Bus Configuration Command Bitmap

Byte 0:

Bit	Bit Name	Description/Function	Туре	Power Up Condition	Reference To
7	PLL-LOCK	1 if PLL has achieved lock, otherwise 0	R	0	
6	MANF[6]	Manufacturer reserved	R		
5	MANF[5]	Manufacturer reserved	R		
4	MANF[4]	Manufacturer reserved	R		
3	MANF[3]	Manufacturer reserved	R		
2	MANF[2]	Manufacturer reserved	R		
1	MANF[1]	Manufacturer reserved	R		
0	MANF[0]	Manufacturer reserved	R		

Byte 1:

Bit	Bit Name	Description/Function	Туре	Power Up Condition	Reference To
7	RES	Reserved	R/W	0	
6	RES	Reserved	R/W	0	
5	ENPH	Phase select enable	R/W	1	
4	PH1[4]	Phase select for YP[9:5] and YN[9:5]	R/W	0	Table 5, Table 6
3	PH1[3]	Phase select for YP[9:5] and YN[9:5]	R/W	0	Table 5, Table 6
2	PH1[2]	Phase select for YP[9:5] and YN[9:5]	R/W	0	Table 5, Table 6
1	PH1[1]	Phase select for YP[9:5] and YN[9:5]	R/W	0	Table 5, Table 6
0	PH1[0]	Phase select for YP[9:5] and YN[9:5]	R/W	0	Table 5, Table 6

Byte 2:

Bit	Bit Name	Description/Function	Туре	Power Up Condition	Reference To
7	RES	Reserved	R/W	0	
6	RES	Reserved	R/W	0	
5	ENP1	Post-divider P1 enable; if 0 output YP[9:5] and YN[9:5] are disabled	R/W	1	
4	ENBP1	Bypass PLL for post-divider P1: If 1 input is CLKP/CLKN, if 0 input is PLL clock	R/W	0	
3	SELP1[3]	Divide ratio select for post-divider P1	R/W	0	Table 2
2	SELP1[2]	Divide ratio select for post-divider P1	R/W	1	Table 2
1	SELP1[1]	Divide ratio select for post-divider P1	R/W	1	Table 2
0	SELP1[0]	Divide ratio select for post-divider P1	R/W	1	Table 2

CDCL6010

SLLS780B-FEBRUARY 2007-REVISED MARCH 2011

www.ti.com

Byte 3:

Bit	Bit Name	Description/Function	Туре	Power Up Condition	Reference To
7	RES	Reserved	R/W	0	
6	RES	Reserved	R/W	0	
5	PLLLOC K OW	PLL Lock Overwrite: If 1 output not gated by PLL Lock status.	R/W	0	
4	PH0[4]	Phase select for YP[4:0] and YN[4:0]	R/W	0	Table 5, Table 6
3	PH0[3]	Phase select for YP[4:0] and YN[4:0]	R/W	0	Table 5, Table 6
2	PH0[2]	Phase select for YP[4:0] and YN[4:0]	R/W	0	Table 5, Table 6
1	PH0[1]	Phase select for YP[4:0] and YN[4:0]	R/W	0	Table 5, Table 6
0	PH0[0]	Phase select for YP[4:0] and YN[4:0]	R/W	0	Table 5, Table 6

Byte 4:

Bit	Bit Name	Description/Function	Туре	Power Up Condition	Reference To
7	RES	Reserved	R/W	0	
6	RES	Reserved	R/W	0	
5	ENP0	Post-divider P0 enable. If 0, output YP[4:0] and YN[4:0] are disabled	R/W	1	
4	ENBP0	Bypass PLL for post-divider P0. If 1, input is CLKP/CLKN; if 0 input is PLL clock	R/W	0	
3	SELP0[3]	Divide ratio select for post-divider P0	R/W	0	Table 2
2	SELP0[2]	Divide ratio select for post-divider P0	R/W	1	Table 2
1	SELP0[1]	Divide ratio select for post-divider P0	R/W	1	Table 2
0	SELP0[0]	Divide ratio select for post-divider P0	R/W	1	Table 2

Byte 5:

Bit	Bit Name	Description/Function	Туре	Power Up Condition	Reference To
7	EN	Chip enable; if 0 chip is in Iddq mode	R/W	1	
6	ENDRV10	YP10, YN10 enable; if 0 output is disabled	R/W	1	
5	ENDRV9	YP[9], YN[9] enable; if 0 output is disabled	R/W	1	
4	ENDRV8	YP[8], YN[8] enable; if 0 output is disabled	R/W	1	
3	ENDRV7	YP[7], YN[7] enable; if 0 output is disabled	R/W	1	
2	ENDRV6	YP[6], YN[6] enable; if 0 output is disabled	R/W	1	
1	ENDRV5	YP[5], YN[5] enable; if 0 output is disabled	R/W	1	
0	ENDRV4	YP[4], YN[4] enable; if 0 output is disabled	R/W	1	

Byte 6:

Bit	Bit Name	Description/Function	Туре	Power Up Condition	Reference To
7	ENDRV3	YP[3], YN[3] enable; if 0 output is disabled	R/W	1	
6	ENDRV2	YP[2], YN[2] enable; if 0 output is disabled	R/W	1	
5	ENDRV1	YP[1], YN[1] enable; if 0 output is disabled	R/W	1	
4	ENDRV0	YP[0], YN[0] enable; if 0 output is disabled	R/W	1	
3	SELBW[3]	PLL BW select; if 1 external loop filter is expected	R/W	0	Table 7
2	SELBW[2]	PLL BW select; if 1 external loop filter is expected	R/W	0	Table 7
1	SELBW[1]	PLL BW select; if 1 external loop filter is expected	R/W	0	Table 7
0	SELBW[0]	PLL BW select; if 1 external loop filter is expected	R/W	0	Table 7

Byte 7:

Bit	Bit Name	Description/Function	Туре	Power Up Condition	Reference To
7	ENPLL	PLL enable; if 0 PLL is switched off	R/W	1	
6	RES	Reserved	R/W	0	
5	SELM[1]	Divide ratio select for input clock CLKP and CLKN	R/W	0	Table 4
4	SELM[0]	Divide ratio select for input clock CLKP and CLKN	R/W	0	Table 4
3	SELN[3]	Divide ratio select for pre-divider N (PLL clock)	R/W	1	Table 3
2	SELN[2]	Divide ratio select for pre-divider N (PLL clock)	R/W	0	Table 3
1	SELN[1]	Divide ratio select for pre-divider N (PLL clock)	R/W	0	Table 3
0	SELN[0]	Divide ratio select for pre-divider N (PLL clock)	R/W	1	Table 3

TEXAS INSTRUMENTS

www.ti.com

SLLS780B-FEBRUARY 2007-REVISED MARCH 2011

Table 2. Divide Ratio Settings for Post-Divider P0 or P1

Divide Ratio	SELP1[3] or SELP0[3]	SELP1[2] or SELP0[2]	SELP1[1] or SELP0[1]	SELP1[0] or SELP0[0]	Notes
1	0	0	0	0	
2	0	0	0	1	
4	0	0	1	0	
5	0	0	1	1	
8	0	1	0	0	
10	0	1	0	1	
16	0	1	1	0	
20	0	1	1	1	Default
32	1	0	0	0	
40	1	0	0	1	
80	1	0	1	0	

Table 3. Divide Ratio Settings for Divider N

Divide Ratio	SELN[3]	SELN[2]	SELN[1]	SELN[0]	Notes
32	1	0	0	0	
40	1	0	0	1	Default

Table 4. Divide Ratio Settings for Divider M

Divide Ratio	SELM[1]	SELM[0]	Notes
1	0	0	Default
2	0	1	
4	1	0	
8	1	1	

SLLS780B-FEBRUARY 2007-REVISED MARCH 2011

Table 5. Phase Settings for Divide Ratio = 5, 10, 20, 40, 80

		With P	H0[4:0]	= 0000	0		
Divide			PH1			Phase Lead	
Ratio	[4]	[3]	[2]	[2] [1] [0]		(radian)	Notes
5	Х	Х	Х	Х	Х	0	Phase setting not available
10	Х	Х	Х	0	Х	0	
	Х	Х	Х	1	Х	(2π/2)	
20	Х	Х	0	0	Х	0	00000:Default
	Х	Х	0	1	Х	(2π/4)	
	Х	Х	1	0	Х	2(2π/4)	
	Х	Х	1	1	Х	3(2π/4)	
40	Х	0	0	0	Х	0	
	Х	0	0	1	Х	(2π/8)	
	Х	0	1	0	Х	2(2π/8)	
	Х	0	1	1	Х	3(2π/8)	
	Х	1	0	0	Х	4(2π/8)	
	Х	1	0	1	Х	5(2π/8)	
	Х	1	1	0	Х	6(2π/8)	
	Х	1	1	1	Х	7(2π/8)	
80	0	0	0	0	Х	0	
	0	0	0	1	Х	(2π/16)	
	0	0	1	0	Х	2(2π/16)	
	0	0	1	1	Х	3(2π/16)	
	0	1	0	0	Х	4(2π/16)	
	0	1	0	1	Х	5(2π/16)	
	0	1	1	0	Х	6(2π/16)	
	0	1	1	1	Х	7(2π/16)	
	1	0	0	0	Х	8(2π/16)	
	1	0	0	1	Х	9(2π/16)	
	1	0	1	0	Х	10(2π/16)	
	1	0	1	1	Х	11(2π/16)	
	1	1	0	0	Х	12(2π/16)	
	1	1	0	1	Х	13(2π/16)	
	1	1	1	0	Х	14(2π/16)	
	1	1	1	1	Х	15(2π/16)	

www.ti.com

		With P	H0[4:0]				Divide Ratio = 1, 2, 4, 6, 16, 52			
Divide			PH1			Phase Lead				
Ratio	[4]	[3]	[2]	[1]	[0]	(radian)	Notes			
1	Х	Х	Х	Х	Х	0	Phase setting not available			
2	Х	Х	Х	Х	0	0				
	Х	Х	Х	Х	1	(2π/2)				
4	Х	Х	Х	0	0	0				
	Х	Х	Х	0	1	(2π/4)				
	Х	Х	Х	1	0	2(2π/4)				
	Х	Х	Х	1	1	3(2π/4)				
8	Х	Х	0	0	0	0				
	Х	Х	0	0	1	(2π/8)				
	Х	Х	0	1	0	2(2π/8)				
	Х	Х	0	1	1	3(2π/8)				
	Х	Х	1	0	0	4(2π/8)				
	Х	Х	1	0	1	5(2π/8)				
	Х	Х	1	1	0	6(2π/8)				
	Х	Х	1	1	1	7(2π/8)				
16	Х	0	0	0	0	0				
	Х	0	0	0	1	(2π/16)				
	Х	0	0	1	0	2(2π/16)				
	Х	0	0	1	1	3(2π/16)				
	Х	0	1	0	0	4(2π/16)				
	Х	0	1	0	1	5(2π/16)				
	Х	0	1	1	0	6(2π/16)				
	Х	0	1	1	1	7(2π/16)				
	Х	1	0	0	0	8(2π/16)				
	Х	1	0	0	1	9(2π/16)				
	Х	1	0	1	0	10(2π/16)				
	Х	1	0	1	1	11(2π/16)				
	Х	1	1	0	0	12(2π/16)				
	Х	1	1	0	1	13(2π/16)				
	Х	1	1	1	0	14(2π/16)				
	Х	1	1	1	1	15(2π/16)				

Table 6. Phase Settings for Divide Ratio = 1, 2, 4, 8, 16, 32

SLLS780B-FEBRUARY 2007-REVISED MARCH 2011

Table 6. Phase Settings for Divide Ratio = 1, 2, 4, 8, 16, 32 (continued)

		With P	H0[4:0]	= 0000	0		
Divide			PH1			Phase Lead	
Ratio	[4]	[3] [2] [1] [0		[0]	(radian)	Notes	
32	0	0	0	0	0	0	
	0	0	0	0	1	(2π/32)	
	0	0	0	1	0	2(2π/32)	
	0	0	0	1	1	3(2π/32)	
	0	0	1	0	0	4(2π/32)	
	0	0	1	0	1	5(2π/32)	
	0	0	1	1	0	6(2π/32)	
	0	0	1	1	1	7(2π/32)	
	0	1	0	0	0	8(2π/32)	
	0	1	0	0	1	9(2π/32)	
	0	1	0	1	0	10(2π/32)	
	0	1	0	1	1	11(2π/32)	
	0	1	1	0	0	12(2π/32)	
	0	1	1	0	1	13(2π/32)	
	0	1	1	1	0	14(2π/32)	
	0	1	1	1	1	15(2π/32)	
	1	0	0	0	0	16(2π/32)	
	1	0	0	0	1	17(2π/32)	
	1	0	0	1	0	18(2π/32)	
	1	0	0	1	1	19(2π/32)	
	1	0	1	0	0	20(2π/32)	
	1	0	1	0	1	21(2π/32)	
	1	0	1	1	0	22(2π/32)	
	1	0	1	1	1	23(2π/32)	
	1	1	0	0	0	24(2π/32)	
	1	1	0	0	1	25(2π/32)	
	1	1	0	1	0	26(2π/32)	
	1	1	0	1	1	27(2π/32)	
	1	1	1	0	0	28(2π/32)	
	1	1	1	0	1	29(2π/32)	
	1	1	1	1	0	30(2π/32)	
	1	1	1	1	1	31(2π/32)	

									5
PLL									
Bandwidth ⁽¹⁾ (kHz)	[3]	[2]	[1]	[0]	C ₁ (nF)	R (Ω)	C ₂ (nF)	On-Chip Loop Filter ON/OFF	Notes
400	0	0	0	0	N/A	N/A	N/A	ON	Default
350	0	0	1	0	2.2	8660	0	OFF	
300	0	0	1	1	3.3	7500	0	OFF	
250	0	1	0	0	4.7	6200	0	OFF	
200	0	1	1	0	8.2	4990	0	OFF	
175	1	0	0	0	10	4300	0	OFF	
150	1	0	1	0	15	3740	0	OFF	
125	1	1	1	1	22	3090	0	OFF	
100	1	1	1	1	33	2490	0.24	OFF	
75	1	1	1	1	56	1870	0.82	OFF	
50	1	1	1	1	150	1210	2.70	OFF	
20	1	1	1	1	680	470	18	OFF	
10	1	1	1	1	3300	220	68	OFF	

Table 7. PLL Bandwidth Setting

(1) Refer to Functional Block Diagram for the external low pass filter architecture.

FREQUENCY SETTINGS FOR SOME APPLICATIONS

				APPLICATION	1				
PROTOCOL	Output Clock MHz	Output Divider P0, P1	VCO Freq GHz	PLL Divider N (max f)	Ref Clock Divider M (max f)	Ref Clock Max Freq MHz	PLL Divider N (min f)	Ref Clock Divider M (min f)	Ref Clock Min Freq MHz
10G Ethernet	312.5	4	1.250	32	8	312.5	40	1	31.25
(XAUI)	156.25	8	1.250	32	8	312.5	40	1	31.25
	78.125	16	1.250	32	8	312.5	40	1	31.25
	62.5	20	1.250	32	8	312.5	40	1	31.25
1G Ethernet	250	5	1.250	40	8	250	40	1	31.25
Serial ATA	125	10	1.250	40	8	250	40	1	31.25
	62.5	20	1.250	40	8	250	40	1	31.25
10X FIBRE CHANNEL	159.375	8	1.275	32	8	318.75	40	1	31.875
	63.75	20	1.275	32	8	318.75	40	1	31.875
CPRI	245.76	5	1.229	40	8	245.78	40	1	30.72
	122.88	10	1.229	40	8	245.78	40	1	30.72
	61.44	20	1.229	40	8	245.78	40	1	30.72
	30.72	40	1.229	40	8	245.78	40	1	30.72
OBSAI	153.6	8	1.229	32	8	307.2	32	1	38.4
	76.8	16	1.229	32	8	307.2	32	1	38.4
PCI Express	250	5	1.250	40	8	250	40	1	31.25
Serial ATA	150	8	1.200	32	8	300	32	1	37.5
	75	16	1.200	32	8	300	32	1	37.5
SONET	622.08	2	1.244	32	8	311.04	40	1	31.104
	311.04	4	1.244	32	8	311.04	40	1	31.104
	155.52	8	1.244	32	8	311.04	40	1	31.104
	62.208	20	1.244	32	8	311.04	40	1	31.104

www.ti.com

Page

SLLS780B-FEBRUARY 2007-REVISED MARCH 2011

www.ti.com

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

C	hanges from Original (February 2007) to Revision A	Page
•	Added second specification condition for clock output skew parameter.	4

Changes from Revision A (March 2008) to Revision B

•	Added Sentence to the Description: The serial interface is 1.8V tolerant only	2
•	Changed V _{ILVDS} From: -0.3 to 4.0 To: -0.3 to V _{DD} + 0.6 in the Abs Max table	3
•	Changed V _I From: -0.3 to 3.0 To: -0.3 to V _{DD} + 0.6 in the Abs Max table	3
•	Added the THERMAL INFORMATION table	3
•	Changed the Test Conditions of V _{D,OUT} in the AC Electrical Characteristics table	4
•	Changed the description of SCL and SDA in the PIn Functions table	7
•	Added Note 1 to the FUNCTIONAL BLOCK DIAGRAM	8
•	Added the SDA/SCL Connections Recommendations section	12

18-Oct-2013

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
CDCL6010RGZR	ACTIVE	VQFN	RGZ	48	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-3-260C-168 HR	-40 to 85	CDCL 6010	Samples
CDCL6010RGZRG4	ACTIVE	VQFN	RGZ	48	2500	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-3-260C-168 HR	-40 to 85	CDCL 6010	Samples
CDCL6010RGZT	ACTIVE	VQFN	RGZ	48	250	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-3-260C-168 HR	-40 to 85	CDCL 6010	Samples
CDCL6010RGZTG4	ACTIVE	VQFN	RGZ	48	250	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-3-260C-168 HR	-40 to 85	CDCL 6010	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

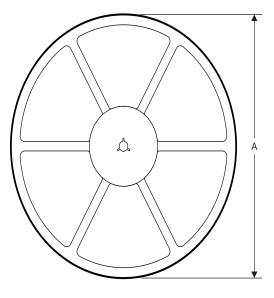
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

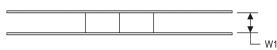
⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

18-Oct-2013

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

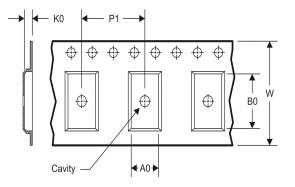
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


PACKAGE MATERIALS INFORMATION


www.ti.com

TAPE AND REEL INFORMATION

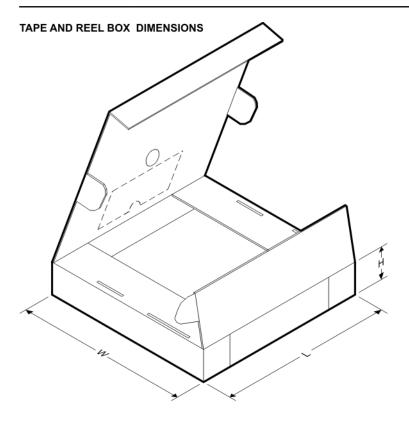
REEL DIMENSIONS


Texas Instruments

TAPE AND REEL INFORMATION

TAPE DIMENSIONS

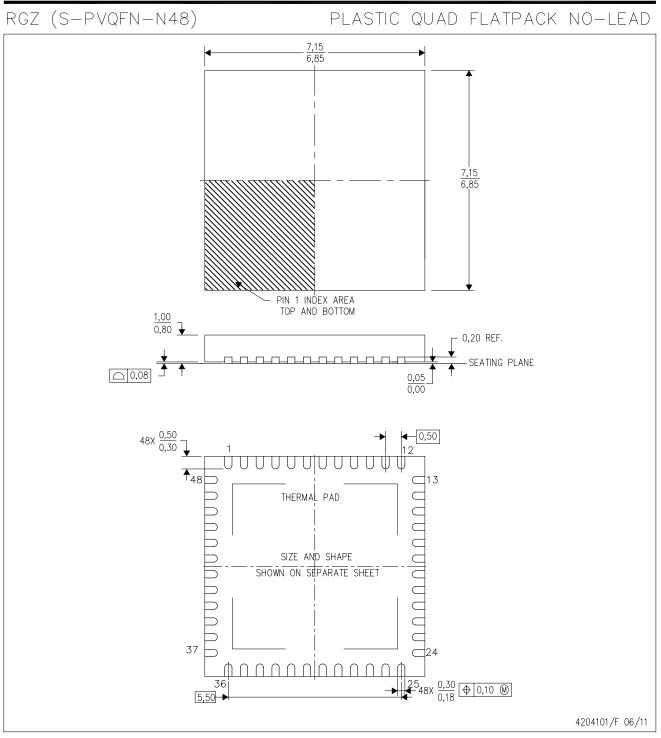
A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CDCL6010RGZR	VQFN	RGZ	48	2500	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q2
CDCL6010RGZT	VQFN	RGZ	48	250	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q2

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION


16-Feb-2012

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CDCL6010RGZR	VQFN	RGZ	48	2500	336.6	336.6	28.6
CDCL6010RGZT	VQFN	RGZ	48	250	336.6	336.6	28.6

MECHANICAL DATA

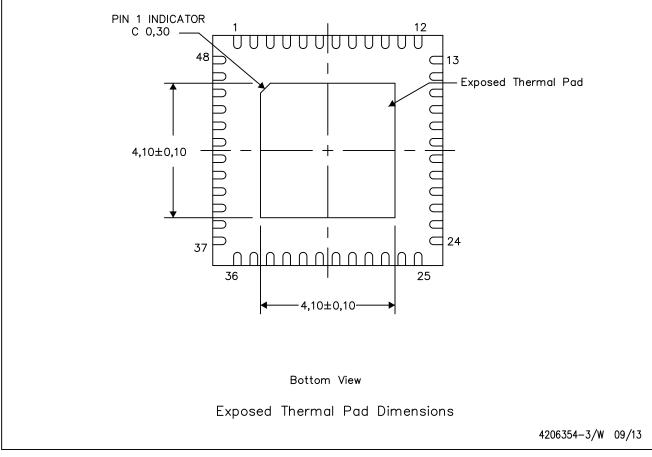
NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

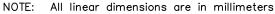
- B. This drawing is subject to change without notice.
- C. Quad Flatpack, No-leads (QFN) package configuration.

D. The package thermal pad must be soldered to the board for thermal and mechanical performance.

E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.

F. Falls within JEDEC MO-220.

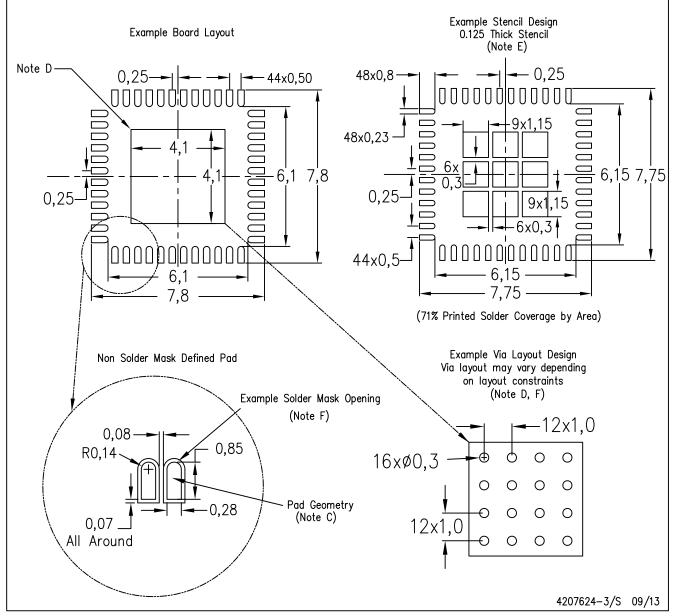

RGZ (S-PVQFN-N48) PLASTIC QUAD FLATPACK NO-LEAD


THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.



RGZ (S-PVQFN-N48)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in the thermal pad.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications			
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive		
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications		
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers		
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps		
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy		
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial		
Interface	interface.ti.com	Medical	www.ti.com/medical		
Logic	logic.ti.com	Security	www.ti.com/security		
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense		
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video		
RFID	www.ti-rfid.com				
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com		
Wireless Connectivity	www.ti.com/wirelessconne	ectivity			

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated