
SCLS595A - NOVEMBER 2004 - REVISED APRIL 2008

- Qualified for Automotive Applications
- Retriggerable/Resettable Capability
- Trigger and Reset Propagation Delays Independent of R_X, C_X
- Triggering From the Leading or Trailing Edge
- Q and Q Buffered Outputs Available
- Separate Resets
- Wide Range of Output Pulse Widths
- Schmitt-Trigger Input on A and B Inputs
- Retrigger Time Is Independent of C_X
- Fanout (Over Temperature Range)
 - Standard Outputs ... 10 LSTTL Loads
 - Bus Driver Outputs ... 15 LSTTL Loads

description/ordering information

The CD74HC4538 is a dual retriggerable/resettable precision monostable multivibrator for fixed-voltage timing applications. An external resistor (R_X) and

- Balanced Propagation Delay and Transition
 Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- V_{CC} Voltage = 2 V to 6 V
- High Noise Immunity N_{IL} or N_{IH} = 30% of V_{CC}, V_{CC} = 5 V

external capacitor (C_X) control the timing and accuracy for the circuit. Adjustment of R_X and C_X provides a wide range of output pulse widths from the Q and \overline{Q} terminals. The propagation delay from trigger input-to-output transition and the propagation delay from reset input-to-output transition are independent of R_X and C_X .

Leading-edge triggering (A) and trailing-edge triggering (\overline{B}) inputs are provided for triggering from either edge of the input pulse. An unused A input should be tied to GND and an unused \overline{B} input should be tied to V_{CC} . On power up, the IC is reset. Unused resets and sections must be terminated. In normal operation, the circuit retriggers on the application of each new trigger pulse. To operate in the nontriggerable mode, \overline{Q} is connected to \overline{B} when leading-edge triggering (A) is used, or Q is connected to A when trailing-edge triggering (\overline{B}) is used. The period (τ) can be calculated from τ = (0.7) R_X , C_X ; R_{MIN} is 5 $k\Omega$. C_{MIN} is 0 pF.

ORDERING INFORMATION[†]

T _A	T _A PACKAGE‡			TOP-SIDE MARKING
-40°C to 125°C	SOIC - M	Tape and reel	CD74HC4538QM96Q1	HC4538M
-40°C to 125°C	TSSOP - PW	Tape and reel	CD74HC4538QPWRQ1	HC4538M

[†] For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at http://www.ti.com.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

[‡] Package drawings, thermal data, and symbolization are available at http://www.ti.com/packaging.

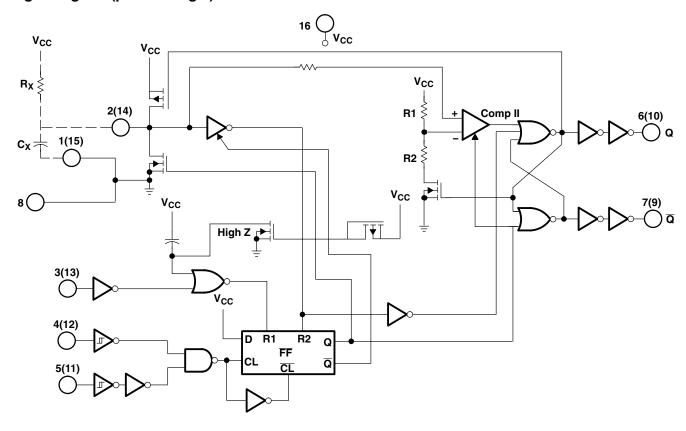
SCLS595A - NOVEMBER 2004 - REVISED APRIL 2008

FUNCTION TABLE

	INPUTS	OUT	PUTS	
R	Α	В	Q	Q
L	Х	Х	L	Н
Х	Н	Χ	L	Н
Х	Χ	L	L	Н
Н	L	\downarrow	Л	Т
Н	\uparrow	Н	Л	ъ

NOTE: H = High voltage level

L = Low voltage level

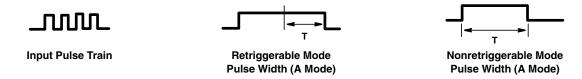

 \uparrow = Transition from low to high level

↓ = Transition from high to low level

☐ = one low-level pulse

X = Irrelevant

logic diagram (positive logic)


SCLS595A - NOVEMBER 2004 - REVISED APRIL 2008

FUNCTIONAL TERMINAL CONNECTIONS

FUNCTION		TO NUMBER		TO NUMBER	INPUT PI TERMINAL	ULSE TO . NUMBER	OTHER CONNECTIONS		
	MONO ₁	MONO ₂	MONO ₁	MONO ₂	MONO ₁	MONO ₂	MONO ₁	MONO ₂	
Leading-edge trigger/retriggerable	3, 5	11, 13			4	12			
Leading-edge trigger/nonretriggerable	3	13			4	12	5–7	11–9	
Trailing-edge trigger/retriggerable	3	13	4	12	5	11			
Trailing-edge trigger/nonretriggerable	3	13			5	11	4–6	12–10	

NOTES: 1. A retriggerable one-shot multivibrator has an output pulse width that is extended one full time period (T) after application of the last trigger pulse.

2. A nontriggerable one-shot multivibrator has a time period (T) referenced from the application of the first trigger pulse.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC} (see Note 1)	0.5 V to 7 V
Input clamp current, I_{IK} ($V_I < -0.5 \text{ V or } V_I > V_{CC} + 0.5 \text{ V}$)	±20 mA
Output clamp current, I_{OK} ($V_O < -0.5 \text{ V}$ or $V_O > V_{CC} + 0.5 \text{ V}$)	±20 mA
Switch current per output pin, I_O ($V_O > -0.5 \text{ V}$ or $V_O < V_{CC} + 0.5 \text{ V}$)	±25 mA
Continuous current through V _{CC} or GND	±50 mA
Package thermal impedance, θ_{JA} (see Note 2): M package	73°C/W
PW package	108°C/W
Maximum junction temperature, T _J	150°C
Lead temperature (during soldering):	
At distance $1/16 \pm 1/32$ inch $(1,59 \pm 0,79 \text{ mm})$ from case for 10 s max	300°C
Storage temperature range, T _{stg}	-65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltages are referenced to GND, unless otherwise specified.
 - 2. The package thermal impedance is calculated in accordance with JESD 51-7.

SCLS595A - NOVEMBER 2004 - REVISED APRIL 2008

recommended operating conditions (see Note 3)

				MIN	MAX	UNIT
V_{CC}	Supply voltage			2	6	V
			V _{CC} = 2 V	1.5		
V_{IH}	High-level input voltage		V _{CC} = 4.5 V	3.15		V
			V _{CC} = 6 V	4.2		
			V _{CC} = 2 V		0.5	
V_{IL}	Low-level input voltage		$V_{CC} = 4.5 \text{ V}$		1.35	V
			V _{CC} = 6 V		1.8	
VI	Input voltage			0	V_{CC}	V
Vo	Output voltage			0	V_{CC}	V
			V _{CC} = 2 V	0	1000	
		Reset input	V _{CC} = 4.5 V	0	500	
١.	Land to a self-or following of fally the se		V _{CC} = 6 V	0	400	
t _t	Input transition (rise and fall) time		V _{CC} = 2 V	0	Unlimited	ns
		Trigger inputs A or B	V _{CC} = 4.5 V	0	Unlimited	
			V _{CC} = 6 V	0	Unlimited	
R _X	External timing resistor (see Note 4)			5		kΩ
C _X	External timing capacitor (see Note 4)			0		F
T _A	Operating free-air temperature			-40	125	°C

NOTES: 3. All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

4. The maximum allowable values of R_X and C_X are a function of leakage of capacitor C_X , leakage of the CD74HC4538, and leakage due to board layout and surface resistance. Values of R_X and C_X should be chosen so that the maximum current into pin 2 or pin 14 is 30 mA. Susceptibility to externally induced noise signals may occur for $R_X > 1$ M Ω .

SCLS595A - NOVEMBER 2004 - REVISED APRIL 2008

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST (CONDITIONS	l _o	v _{cc}	T _A = 2	25°C	T _A = -		T _A = -40°C TO 125°C		UNIT
			(mA)		MIN	MAX	MIN	MAX	MIN	MAX	
				2 V	1.9		1.9		1.9		
		CMOS loads	-0.02	4.5 V	4.4		4.4		4.4		
V _{OH}	V_{OH} $V_I = V_{IH}$ or V_{IL}			6 V	5.9		5.9		5.9		V
		TTI Jacoba	-4	4.5 V	3.98		3.84		3.7		
		TTL loads	-5.2	6 V	5.48		5.34		5.2		
				2 V		0.1		0.1		0.1	
		CMOS loads	0.02	4.5 V		0.1		0.1		0.1	
V _{OL}	$V_i = V_{iH}$ or V_{iL}			6 V		0.1		0.1		0.1	V
		TTI Is a de	4	4.5 V		0.26		0.33		0.4	
		TTL loads	5.2	6 V		0.26		0.33		0.4	
	V V « CND	A, B, R		6 V		±0.1		±1		±1	
I _I	$V_I = V_{CC}$ or GND	R _X C _X (see Note 5)		6 V		±0.05		±0.5		±0.5	μ A
		Quiescent	0	6 V		8		80		160	μΑ
lcc	$V_I = V_{CC}$ or GND	Active, Q = high, Pins 2 and 14 at V _{CC} /4	0	6 V		0.6		0.8		1	mA
C _{IN}	C _L = 50 pF					10		10		10	pF

NOTE 5: When testing I_{IL} , the Q output must be high. If Q is low (device not triggered), the pullup P device is ON and the low-resistance path from V_{DD} to the test pin causes a current far exceeding the specification.

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

	PARAMETER	V _{CC}	T _A = 25°C			T _A = -40°C TO 85°C		T _A = -40°C TO 125°C		UNIT	
			MIN	TYP	MAX	MIN	MAX	MIN	MAX		
		2 V	80			100		120			
t _w	Input pulse width	4.5 V	16			20		24		ns	
		6 V	14			17		20			
		2 V	5			5		5			
t _{su}	Reset setup time	4.5 V	5			5		5		ns	
		6 V	5			5		5			
t _{rr}	Retrigger time (see Figure 4)	5 V		175						ns	
	Output pulse-width match, same package			±1						%	

SCLS595A - NOVEMBER 2004 - REVISED APRIL 2008

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	TO	LOAD	v _{cc}	T,	_A = 25°C	;	T _A = -		T _A = -		UNIT
	(INPUT)	(OUTPUT)	CAPACITANCE		MIN	TYP	MAX	MIN	MAX	MIN	MAX	
				2 V			250		315		375	
	A 15	0 0	C _L = 50 pF	4.5 V			50		63		75	
	A, \overline{B}	Q or Q		6 V			43		54		64	
			C _L = 15 pF	5 V		21						
t _{pd}				2 V			250		315		375	ns
	R	0 0	C _L = 50 pF	4.5 V			50		63		75	
	К	Q or Q		6 V			43		54		64	
			C _L = 15 pF	5 V		21						
				2 V			75		95		110	
t _t			C _L = 50 pF	4.5 V			15		19		22	ns
				6 V			13		16		19	
τţ			C _L = 50 pF	3 V	0.64		0.78	0.612	0.812	0.605	0.819	me
η, ι			OL = 50 pr	5 V	0.63		0.77	0.602	0.798	0.595	0.805	ms

 $[\]overline{^{\dagger}}$ Output pulse width with R_X = 10 k Ω and C_X = 0.1 μ F

operating characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$, input t_r , $t_f = 6 \text{ ns}$, $C_L = 15 \text{ pF}$

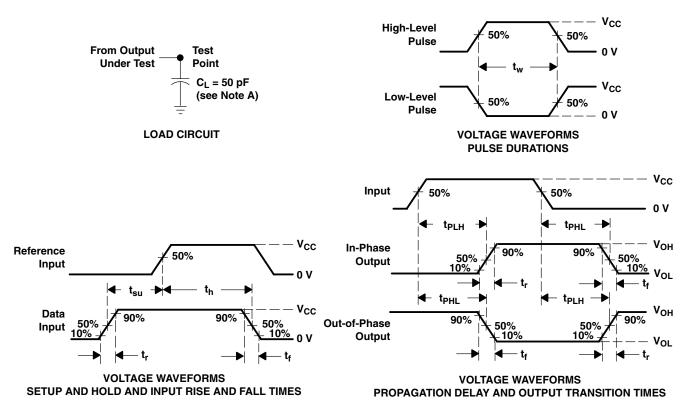
	PARAMETER	TYP	UNIT
С	Power dissipation capacitance (see Note 6)	136	pF

NOTE 6: C_{pd} is used to determine the dynamic power consumption, per one shot.

 $P_{D} = (C_{pd} + C_{X}) V_{CC}^{2} f_{I} \Sigma (C_{L} V_{CC}^{2} f_{O})$

f_I = input frequency

f_O = output frequency


C_L = output load capacitance

C_X = external capacitance

 V_{CC} = supply voltage, assuming $f_I \ll I/\tau$

SCLS595A - NOVEMBER 2004 - REVISED APRIL 2008

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and test-fixture capacitance.

- B. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \Omega$, $t_r = 6 \text{ ns}$, $t_f = 6 \text{ ns}$.
- C. For clock inputs, f_{max} is measured when the input duty cycle is 50%.
- D. The outputs are measured one at a time, with one input transition per measurement.
- E. t_{PLH} and t_{PHL} are the same as t_{pd}.

Figure 1. Load Circuit and Voltage Waveforms

SCLS595A - NOVEMBER 2004 - REVISED APRIL 2008

TYPICAL CHARACTERISTICS

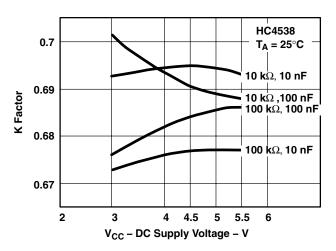


Figure 2. K Factor vs DC Supply Voltage

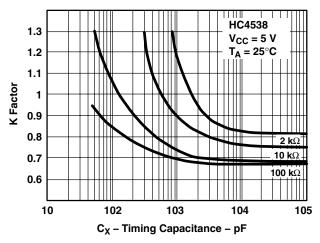


Figure 3. K Factor vs C_X

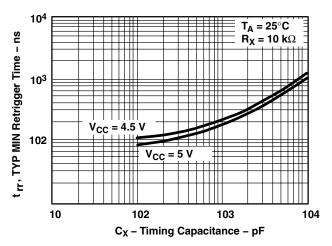


Figure 4. Minimum Retrigger Time vs Timing Capacitance

SCLS595A - NOVEMBER 2004 - REVISED APRIL 2008

TYPICAL APPLICATION DATA

power-down mode

During a rapid power-down condition (as would occur with a power-supply short circuit with a poorly filtered power supply), the energy stored in C_X could discharge into pin 2 or pin 14. To avoid possible device damage in this mode when C_X is $\geq 0.5 \, \mu F$, a protection diode with a 1-A rating or higher (1N5395 or equivalent) and a separate ground return for C_X should be provided (see Figure 5).

An alternate protection method is shown in Figure 6, where a $51-\Omega$ current-limiting resistor is inserted in series with C_X . Note that a small pulse-duration decrease occurs, however, and R_X must be increased appropriately to obtain the originally desired pulse duration.

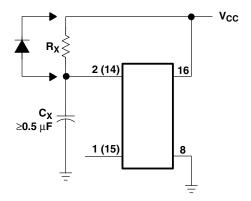


Figure 5. Rapid-Power-Down Protection Circuit

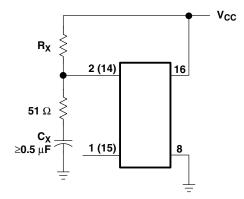


Figure 6. Alternative Rapid-Power-Down Protection Circuit

13-Sep-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type		Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)		(3)		(4/5)	
CD74HC4538QM96G4Q1	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	HC4538M	Samples
CD74HC4538QM96Q1	OBSOLETE	SOIC	D	16		TBD	Call TI	Call TI	-40 to 125	HC4538M	
CD74HC4538QPWRG4Q1	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	HC4538M	Samples
CD74HC4538QPWRQ1	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	HC4538M	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM

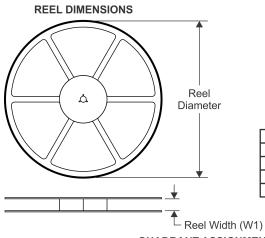
13-Sep-2013

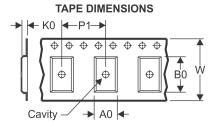
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF CD74HC4538-Q1:

• Catalog: CD74HC4538

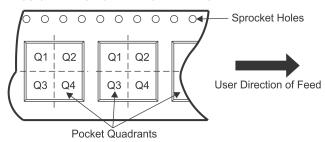
■ Military: CD54HC4538


NOTE: Qualified Version Definitions:

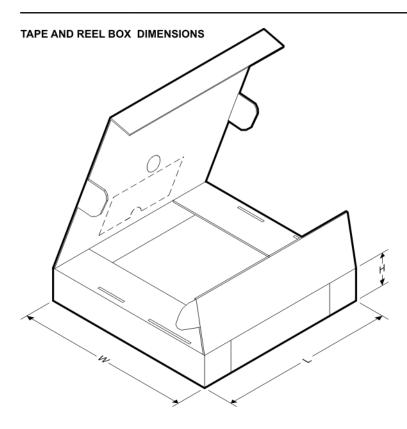

- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 14-Mar-2013


TAPE AND REEL INFORMATION

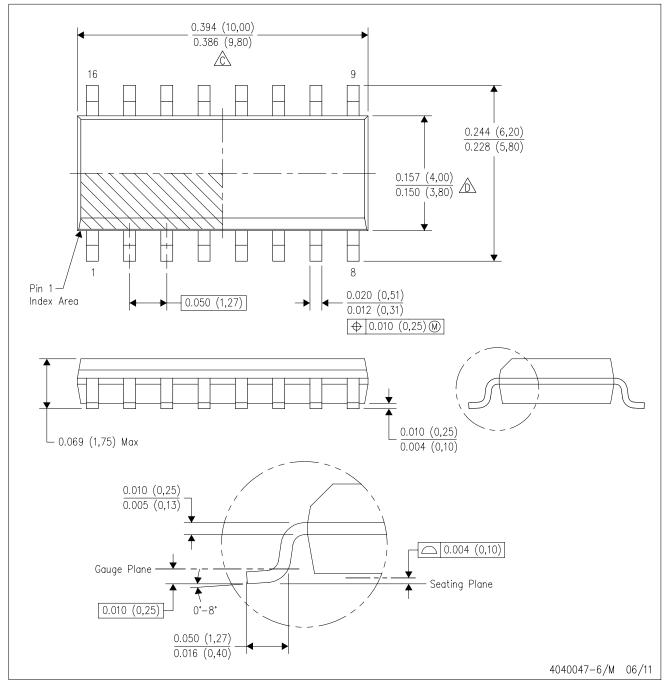
	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD74HC4538QPWRG4Q 1	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
CD74HC4538QPWRQ1	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

www.ti.com 14-Mar-2013

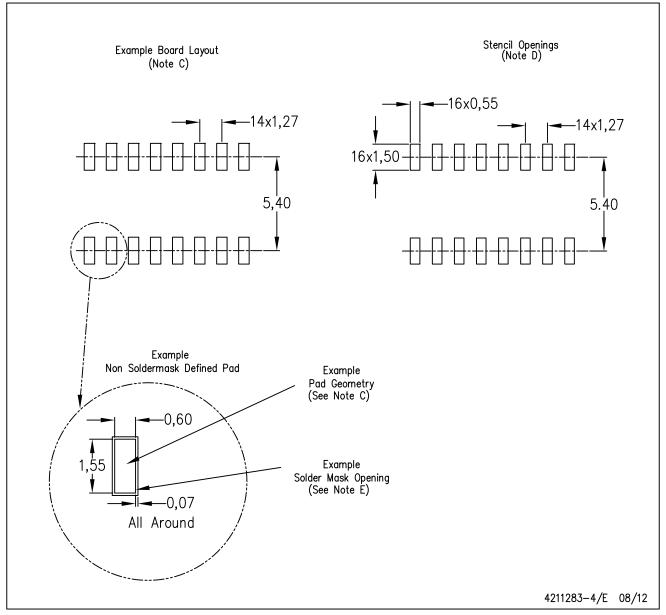


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD74HC4538QPWRG4Q1	TSSOP	PW	16	2000	367.0	367.0	35.0
CD74HC4538QPWRQ1	TSSOP	PW	16	2000	367.0	367.0	35.0

D (R-PDS0-G16)

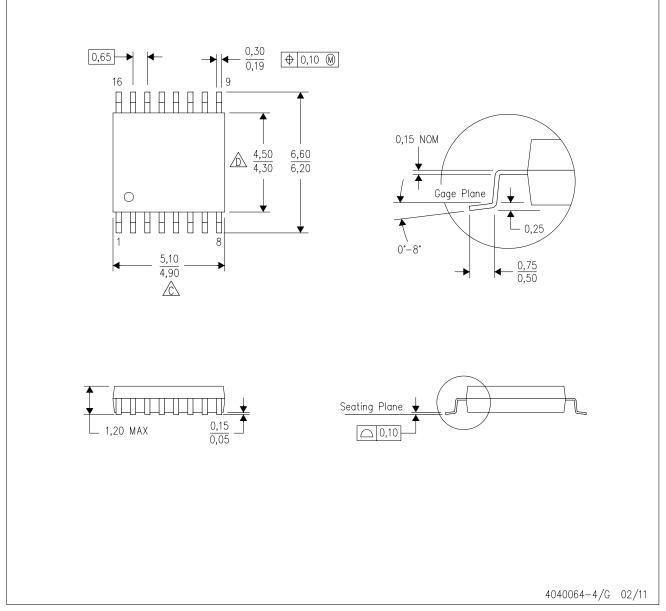
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

D (R-PDSO-G16)

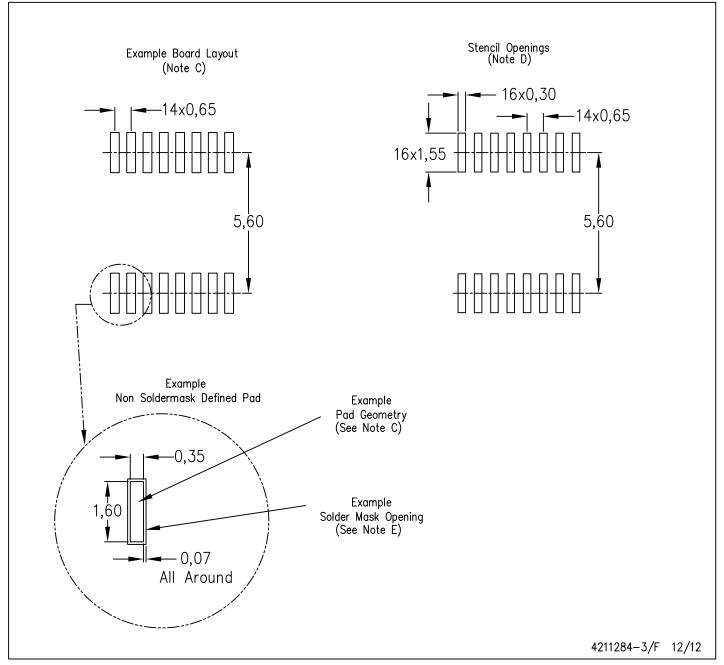
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors <u>www.ti.com/omap</u> TI E2E Community <u>e2e.ti.com</u>

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>