

CD54/74AC374, CD54/74AC534 CD54/74ACT374, CD54/74ACT534

Data sheet acquired from Harris Semiconductor SCHS290

Octal D-Type Flip-Flops, 3-State Positive-Edge Triggered CD54/74AC/ACT374 - Non-Inverting CD54/74AC/ACT534 - Inverting

Type Features:

Buffered inputs
 Typical propagation delay:

5 ns @ Vcc = 5 V, TA = 25°C, CL = 50 pF

FUNCTIONAL DIAGRAM

74AC/ACT574.)

temperature range.

The RCA-CD54/74AC374 and CD54/74AC534 and the

CD54/74ACT374 and CD54/74ACT534 octal D-type, 3-state,

positive-edge triggered flip-flops use the RCA ADVANCED

CMOS technology. The eight flip-flops enter data into their

registers on the LOW-to-HIGH transition of the clock (CP).

The Output Enable (OE) controls the 3-state outputs and is

independent of the register operation. When the Output

Enable (OE) is HIGH, the outputs are in the high-impedance

state. The CD54/74AC/ACT374 and CD54/74AC/ACT534

share the same pin configurations, but the CD54/74AC/

ACT374 outputs are non-inverted while the CD54/74AC/

ACT534 devices have inverted outputs. (For flow-through

pin configurations, see CD54/74AC/ACT564 and CD54/

The CD74AC/ACT374 and CD74AC/ACT534 are supplied in 20-lead dual-in-line plastic packages (E suffix) and in 20-lead dual-in-line small-outline plastic packages (M suffix).

Both package types are operable over the following temperature ranges: Commercial (0 to 70°C); Industrial (-40 to +85°C); and Extended Industrial/Military (-55 to +125°C). The CD54AC/ACT374 and CD54AC/ACT534, available in chip form (H suffix), are operable over the -55 to +125×C

Family Features:

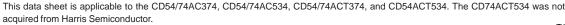
- Exceeds 2-kV ESD Protection MIL-STD-883, Method 3015
 - SCR-Latch-up-resistant CMOS process and circuit design
 Speed of bipolar FAST*/AS/S with significantly
 - reduced power consumption
 - Balanced propagation delays
 - AC types feature 1.5-V to 5.5-V operation and balanced noise immunity at 30% of the supply
 - ± 24-mA output drive current
 - Fanout to 15 FAST* ICs
 - Drives 50-ohm transmission lines

*FAST is a Registered Trademark of Fairchild Semiconductor Corp.

TRUTH TABLE

	INPUTS	OUTPUTS			
			374	534	
ŌE	СР	Dn	Qn	Qn	
L		н	н	L	
L		L	L	н	
L	L	X	QO	QO	
н	X	Х	Z	Z	

H = High level (steady state)


L = Low level (steady state)

X = Don't care

 $-\sqrt{-}$ = Transition from low to high level

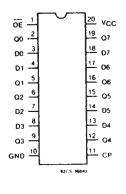
QO = The level of Q before the indicated steady-state input conditions were established

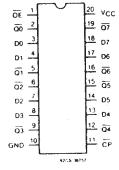
Z = High impedance

File Number 1883

Technical Data ______ CD54/74AC374, CD54/74AC534 CD54/74ACT374, CD54/74ACT534 MAXIMUM BATINGS Absolute Maximum Values

-0.5 to 6 V
±20 mA
±50 mA
(V _{cc} + 0.5 V) ±50 mA
±100 mA*
500 144
500 mW
Jerale Linearly at 6 may C to 300 may
Derate Linearly at 6 mW/°C to 70 mW
65 to +150°C
10050.0
lead tips only +300°C


RECOMMENDED OPERATING CONDITIONS:


For maximum reliability, normal operating conditions should be selected so that operation is always within the following ranges:

	LIN			
CHARACTERISTIC	MIN.	MAX.	UNITS	
Supply-Voltage Range, V_{cc}^* : (For T _A = Full Package-Temperature Range)				
AC Types ACT Types	1.5 4.5	5.5 5.5	V V	
DC Input or Output Voltage, V ₁ , V ₀	0	Vcc	V	
Operating Temperature, T _A	-55	+125	°C	
Input Rise and Fall Slew Rate, dt/dv at 1.5 V to 3 V (AC Types) at 3.6 V to 5.5 V (AC Types) at 4.5 V to 5.5 V (ACT Types)	0 0 0	50 20 10	ns/V ns/V ns/V	

*Unless otherwise specified, all voltages are referenced to ground.

TERMINAL ASSIGNMENT DIAGRAMS

CD54/74AC/ACT534

CD54/74AC/ACT374

STATIC ELECTRICAL CHARACTERISTICS: AC Series

					AMBIENT TEMPERATURE (TA) - °C]
CHARACTERIST	ICS	TEST CO	TEST CONDITIONS		+	25	-40 1	lo +85	-55 to +125		UNITS
		V, (V)	l _o (mA)	(V)	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
High-Level Input				1.5	1.2	- 1	1.2	-	1.2	<u> </u>	1
Voltage	ViH			3	2.1	- 1	2.1	- 1	2.1		1 v
				5.5	3.85	-	3.85	_	3.85	1	1
Low-Level Input				1.5		0.3	-	0.3	- 1	0.3	<u> </u>
Voltage	VIL			3		0.9	- 1	0.9		0.9	1 v
				5.5	-	1.65	-	1.65	- 1	1.65	1
High-Level Output	<u></u>		-0.05	1.5	1.4	- 1	1.4	- 1	1.4	- 1	
Voltage	Vон	Viн	-0.05	3	2.9		2.9		2.9	_	1
		or	-0.05	4.5	4.4		4.4	- 1	4.4	-	1
		ViL	-4	3	2.58	- 1	2.48	-	2.4	-	l v
			-24	4.5	3.94		3.8		3.7		
		#, * {	-75	5.5	l _		3.85	_		_	1
		" , {	-50	5.5	_		-		3.85		1
Low-Level Output			0.05	1.5	_	0.1		0.1	_	0.1	
Voltage	Vol	Vін	0.05	3	_	0.1	_	0.1	_	0.1	1
		or	0.05	4.5	_	0.1		0.1	_	0.1	
		Vil	12	3		0.36	_	0.44		0.5	l v
			24	4.5		0.36	—	0.44		0.5	
		#, * {	75	5.5	_			1.65		_	
		"' [50	5.5	_			_	_	1.65	
Input Leakage Current	łı	V _{cc} or GND		5.5		±0.1	_	±1	-	±1	μA
3-State Leakage Current	loz	ViH									
	.02	or									
		VIL									
		V _o =		5.5	-	±0.5	—	±5	-	±10	μA
		V _{cc}									
		or									
Quites and Current		GND									
Quiescent Supply Current, MSI	lα	V _{cc} or GND	0	5.5	-	8	-	80	-	160	μA

#Test one output at a time for a 1-second maximum duration. Measurement is made by forcing current and measuring voltage to minimize power dissipation. *Test verifies a minimum 50-ohm transmission-line-drive capability at +85°C, 75 ohms at +125°C.

9

STATIC ELECTRICAL CHARACTERISTICS: ACT Series

		TEST CONDITIONS				AMBIEN	ТЕМРЕ	RATURE	(T _A) - °C	2	
CHARACTERISTI	cs			V _{cc}	+	25	-40 t	o +85	-55 to +125		
		V, (V)	l _o (mA)	(Ÿ)	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
High-Level Input Voltage	Vін			4.5 to 5.5	2	_	2		2	_	v
Low-Level Input Voltage	ViL			4.5 to 5.5		0.8	_	0.8	_	0.8	v
High-Level Output		ViH	-0.05	4.5	4.4	-	4.4		4.4		1
Voltage	Vон	or V _{IL}	-24	4.5	3.94		3.8		3.7		v
		#, * {	-75	5.5	_	—	3.85				
		" , " {	-50	5.5		—	-		3.85		ļ
Low-Level Output Voltage		VIH	0.05	4.5	—	0.1		0.1		0.1	
	Vol	or ViL	24	4.5	_	0.36	_	0.44		0.5	v
		#, * {	75	5.5		-		1.65			1
		", ^ {	50	5.5	_		-	-		1.65	
Input Leakage Current	► I ₁	V _{cc} or GND		5.5	_	±0.1	-	±1		±1	μA
3-State Leakage Current	loz	VIH or VIL Vo = Vcc or GND		5.5		±0.5	_	±5	_	±10	μΑ
Quiescent Supply Current, MSI	Icc	V _{cc} or GND	0	5.5		8	_	80		160	μA
Additional Quiescent Current per Input P TTL Inputs High 1 Unit Load		V _{cc} -2.1		4.5 to 5.5	_	2.4	_	2.8		3	mA

#Test one output at a time for a 1-second maximum duration. Measurement is made by forcing current and measuring voltage to minimize power dissipation. * Test verifies a minimum 50-ohm transmission-line-drive capability at +85°C, 75 ohms at +125°C.

ACT INPUT LOADING TABLE

INPUT	UNIT LOADS*
D, ÖE	0.7
CP	1.17

*Unit load is Alcc limit specified in Static Characteristics Chart, e.g., 2.4 mA max. @ 25°C.

PREREQUISITE FOR SWITCHING: AC Series

	· · · ·		AMBI	Γ _A) - °C	1		
CHARACTERISTICS	SYMBOL	V _{cc} (V)	-40 t	o +85	-55 to	UNITS	
		(•)	MIN.	MAX.	MIN.	MAX.]
Clock Pulse Width	tw	1.5 3.3* 5†	44 4.9 3.5		50 5.6 4	_	ns
Setup Time Data to Clock	tsu	1.5 3.3 5	2 2 2		2 2 2	-	ns
Hold Time Data to Clock	tн	1.5 3.3 5	2 2 2		2 2 2		ns
Maximum Clock Frequency	f _{MAX}	1.5 3.3 5	11 101 143		10 89 125		MHz

*3.3 V: min. is @ 3 V

†5 V: min. is @ 4.5 V

SWITCHING CHARACTERISTICS: AC Series; t,, t, = 3 ns, CL = 50 pF

			AMBI	ENT TEMPE	RATURE (1	「₄) - °C		
CHARACTERISTICS	SYMBOL	V _{cc} (V)	-40 1	o +85	-55 te	o +125		
		(•)	MIN.	MAX.	MIN.	MAX.]	
Propagation Delays: Clock to Q AC374	t _{PLH} tphl	1.5 3.3* 5†	3.9 2.8	123 13.7 9.8		135 15.1 10.8	ns	
Clock to Q AC534	tрін tрні	1.5 3.3 5	 4.1 2.9	128 14.4 10.3		141 15.8 11.3	ns	
Output Enable to Q, \overline{Q}	tezi tezi	1.5 3.3 5	 5.6 3.7	165 19.8 13.2	 5.5 3.6	181 21.8 14.5	ns	
Output Disable to Q, \overline{Q}	tpLz tpнz	1.5 3.3 5	4.7 3.7	165 16.5 13.2	4.5 3.6	181 18.1 14.5	ns	
Power Dissipation Capacitance	CPD§		67	Тур.	67 Typ.		pF	
Min. (Valley) V _{OH} During Switching of Other Outputs (Output Under Test Not Switching)	V _{онv} See Fig. 1	5		4 Typ. @ 25°C			v	
Max. (Peak) VoL During Switching of Other Outputs (Output Under Test Not Switching)	V _{OLP} See Fig. 1	5	1 Тур. @ 25°С			v		
Input Capacitance	Ci	-		10		10	рF	
3-State Output Capacitance	Co		_	15		15	pF	

*3.3 V: min. is @ 3.6 V

max. is @ 3 V

†5 V: min. is @ 5.5 V max. is @ 4.5 V

§CPD is used to determine the dynamic power consumption, per flip flop.

 $P_D = C_{PD} V_{CC}^2 f_i + \Sigma V_{CC}^2 f_0 C_L$ where $f_i = input$ frequency

fo = output frequency

 $C_L =$ output load capacitance $V_{CC} =$ supply voltage.

9

PREREQUISITE FOR SWITCHING: ACT Series

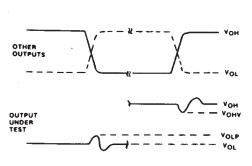
-			AMBI	Ţ			
CHARACTERISTICS	SYMBOL	V _{cc} (V)	-40 to +85		-55 to		
		(*)	MIN.	MAX.	MIN.	MAX.	
Clock Pulse Width	tw	5†	3.9		4.5	_	ns
Setup Time Data to Clock	tsu	5	2	_	2	-	ns
Hold Time Data to Clock	t _H	5	2.6	_	3	-	ns
Maximum Clock Frequency	f _{MAX}	5	125	_	110	· _	MHz

15 V: min. is @ 4.5 V

SWITCHING CHARACTERISTICS: ACT Series; t,, t, = 3 ns, C_L = 50 pF

	T T			ENT TEMPE	RATURE (1	۲) - °C		
CHARACTERISTICS	SYMBOL	V _{cc}	-40 1	lo +85	-55 to	o +125		
		(V)	MIN.	MAX.	MIN.	MAX.		
Propagation Delays: Clock to Q ACT374	telh tehl	5†	2.9	10.2	2.8	11.2	ns	
Clock to Q ACT534	tрін tрні	5	3	10.6	2.9	11.7	ns	
Output Enable and Disable to Q ACT374	telz tehz tezi tezi tezi	5	3.7	13.2	3.6	14.5	'ns	
Output Enable and Disable to Q ACT534	tplz tphz tpzl tpzн	5	3.7	13.2	3.6	14.5	ns	
Power Dissipation Capacitance	CPD§		67	Тур.	67	Тур.	pF	
Min. (Valley) V _{он} During Switching of Other Outputs (Output Under Test Not Switching)	V _{онv} See Fig. 1	5	4 Typ. @ 25° C				v	
Max. (Peak) VoL During Switching of Other Outputs (Output Under Test Not Switching)	Volp See Fig. 1	5	1 Typ. @ 25°C			v		
Input Capacitance	C,		-	10		10	pF	
3-State Output Capacitance	Co	_	-	15	_	15	pF	

†5 V: min. is @ 5.5 V

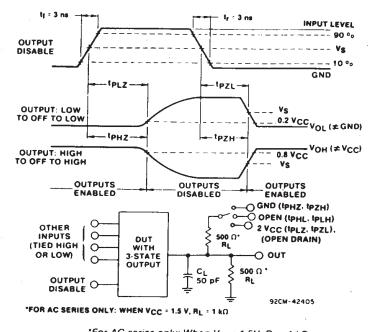

max. is @ 4.5 V

 $f_0 = output frequency$

 $C_L = output load capacitance$

 V_{CC} = supply voltage.

PARAMETER MEASUREMENT INFORMATION



NOTES:

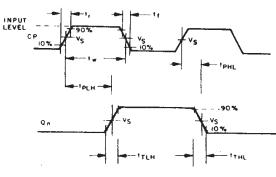
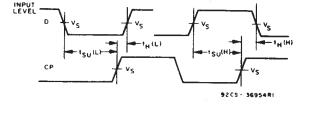

- NOTES: 1. VORY AND VOLP ARE MEASURED WITH RESPECT TO A GROUND REFERENCE NEAR THE OUTPUT UNDER TEST. 2. INPUT PULSES MAVE THE FOLLOWING CHARACTERISTICS: PRR ≤ 1 MHz, t_i , \exists an, t_i ; \exists an, skew 1 ne. 3. R.F. FIXTURE WITH 700-MHz DESIGN RULES REQUIRED. IC SHOULD BE SOLDERED INTO TEST BOARD AND BYPASSED WITH 0.1 # CAPACITOR. SCOPE AND PROBES REQUIRE 700-MHz BANDWIDTH.

Fig. 1 - Simultaneous switching transient waveforms.


9205-42406



*For AC series only: When $V_{CC} = 1.5V$, $R_L = 1 \ k\Omega$ Fig. 2 - Three-state propagation delay waveforms and test circuit.

9205 - 42389

Fig. 3 - Propagation delay times and test circuit.

	CD54/74AC	CD54/74ACT
Input Level	Vcc	3 V
Input Switching Voltage, Vs	0.5 V _{cc}	1.5 V
Output Switching Voltage, Vs	0.5 V _{cc}	0.5 Vcc

11-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
CD54AC374F3A	ACTIVE	CDIP	J	20	1	TBD	A42	N / A for Pkg Type	-55 to 125	CD54AC374F3A	Samples
CD54ACT374F3A	ACTIVE	CDIP	J	20	1	TBD	A42	N / A for Pkg Type	-55 to 125	CD54ACT374F3A	Samples
CD54ACT534F3A	OBSOLETE	CDIP	J	20		TBD	Call TI	Call TI	-55 to 125		
CD74AC374E	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD74AC374E	Samples
CD74AC374EE4	ACTIVE	PDIP	Ν	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD74AC374E	Samples
CD74AC374M	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC374M	Samples
CD74AC374M96	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC374M	Samples
CD74AC374M96E4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC374M	Samples
CD74AC374M96G4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC374M	Samples
CD74AC374ME4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC374M	Samples
CD74AC374MG4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC374M	Samples
CD74AC534M96	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC534M	Samples
CD74AC534M96E4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC534M	Samples
CD74AC534M96G4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC534M	Samples
CD74ACT374E	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD74ACT374E	Samples
CD74ACT374EE4	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD74ACT374E	Samples
CD74ACT374M	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT374M	Samples
CD74ACT374M96	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT374M	Samples

11-Apr-2013

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish		Op Temp (°C)	Top-Side Markings	Samples
	(1)		J		QLY	(2)		(3)		(4)	
CD74ACT374M96E4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT374M	Samples
CD74ACT374M96G4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT374M	Samples
CD74ACT374ME4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT374M	Samples
CD74ACT374MG4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT374M	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com

11-Apr-2013

OTHER QUALIFIED VERSIONS OF CD54AC374, CD54ACT374, CD74AC374, CD74ACT374 :

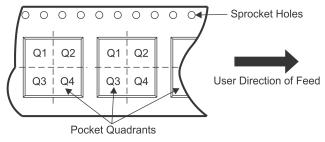
- Catalog: CD74AC374, CD74ACT374
- Military: CD54AC374, CD54ACT374

NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

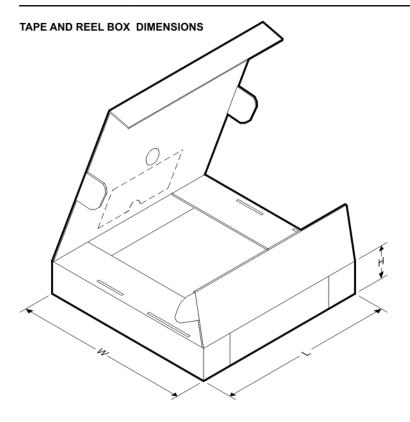
PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD74AC374M96	SOIC	DW	20	2000	330.0	24.4	10.8	13.0	2.7	12.0	24.0	Q1
CD74AC534M96	SOIC	DW	20	2000	330.0	24.4	10.8	13.0	2.7	12.0	24.0	Q1
CD74ACT374M96	SOIC	DW	20	2000	330.0	24.4	10.8	13.0	2.7	12.0	24.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

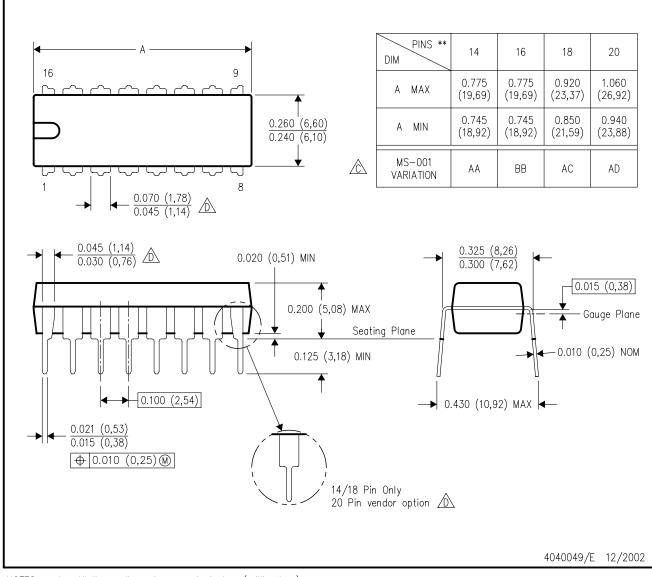
26-Jan-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD74AC374M96	SOIC	DW	20	2000	367.0	367.0	45.0
CD74AC534M96	SOIC	DW	20	2000	367.0	367.0	45.0
CD74ACT374M96	SOIC	DW	20	2000	367.0	367.0	45.0

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE

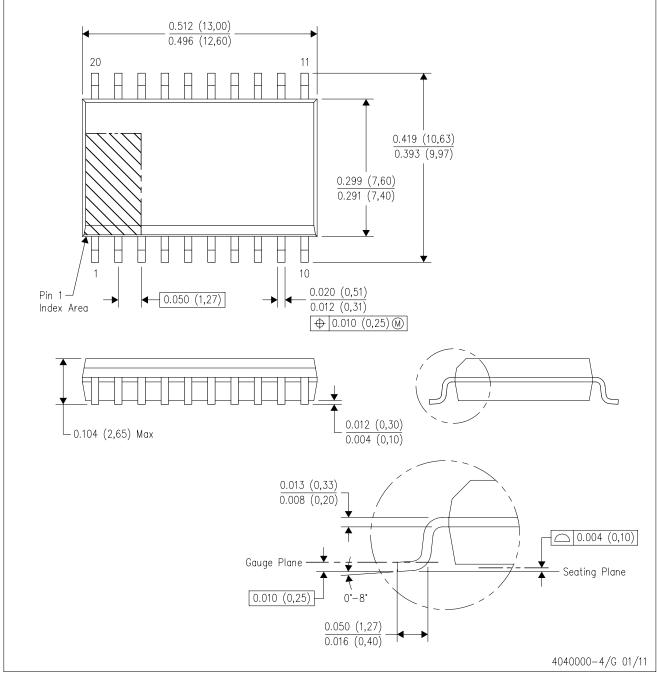

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

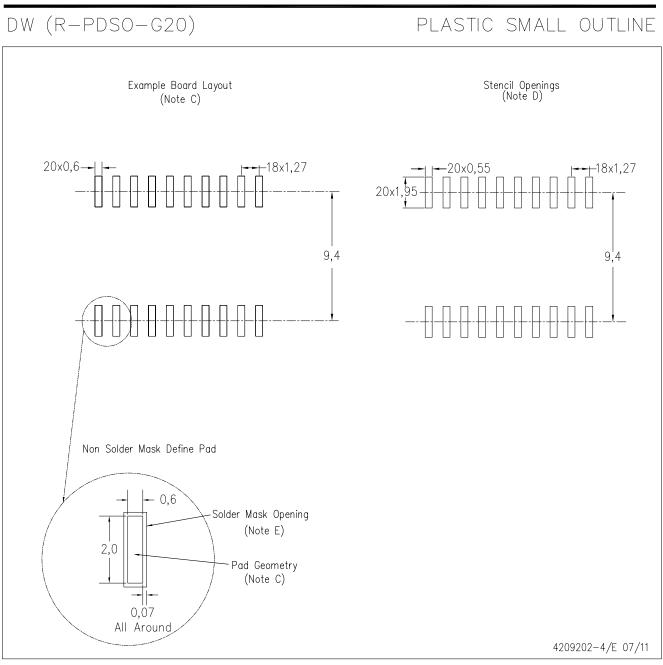

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

DW (R-PDSO-G20)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.


B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-013 variation AC.

LAND PATTERN DATA

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Refer to IPC7351 for alternate board design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated