

High-Performance RF Transmitter for Narrowband Systems

Check for Samples: CC1175

1 Introduction

1.1 Features

- High-Performance, Single-Chip Transmitter
 - Very Low Phase Noise: –111 dBc/Hz at 10-kHz Offset
- High Spectral Efficiency (9.6 kbps in 12.5-kHz Channel in Compliance with FCC Narrowbanding Mandate)
- 128-byte TX FIFO
- Support for seamless integration with the CC1190 device for increased range giving up to +27 dBm output power
- Programmable Output Power up to +16 dBm with 0.4-dB Step Size

Power Supply

- Wide Supply Voltage Range (2.0 V 3.6 V)
- Low Current Consumption:
 - TX: 45 mA at +14 dBm
- Power Down: 0.3 μA (0.5 μA with timer running)
- Automatic Output Power Ramping
- Configurable Data Rates: 0 to 200 kbps
- Supported Modulation Formats: 2-FSK, 2-GFSK, 4-FSK, 4-GFSK, MSK, OOK
- RoHS-Compliant 5x5mm QFN 32 Package

1.2 Applications

- One-way Narrowband Ultra-Low Power Wireless Systems with Channel Spacing Down to 6.25 kHz
- 169-, 315-, 433-, 868-, 915-, 920-, 950-MHz
 ISM/SRD Band Systems
- Wireless Metering and Wireless Smart Grid (AMR and AMI)
- IEEE 802.15.4g Systems
- Home and Building Automation
- Wireless Alarm and Security Systems
- Industrial Monitoring and Control
- Wireless Healthcare Applications
- Wireless Sensor Networks and Active RFID

1.3 Description

The CC1175 device is a fully integrated single-chip radio transmitter designed for high performance at very low-power and low-voltage operation in cost-effective wireless systems. All filters are integrated, thus removing the need for costly external SAW and IF filters. The device is mainly intended for the ISM (Industrial, Scientific, and Medical) and SRD (Short Range Device) frequency bands at 164–192 MHz, 274–320 MHz, 410–480 MHz, and 820–960 MHz.

The CC1175 device provides extensive hardware support for packet handling, data buffering, and burst transmissions. The main operating parameters of the CC1175 device can be controlled through an SPI interface. In a typical system, the CC1175 device will be used with a microcontroller and only a few external passive components.

Figure 1-1 shows pin names and locations for the CC1175 device.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

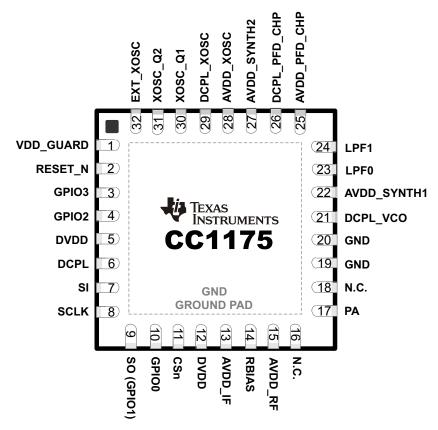


Figure 1-1. Package 5-mm × 5-mm QFN

1.4 Block Diagram

Figure 1-2 shows the system block diagram of the CC1175 device.

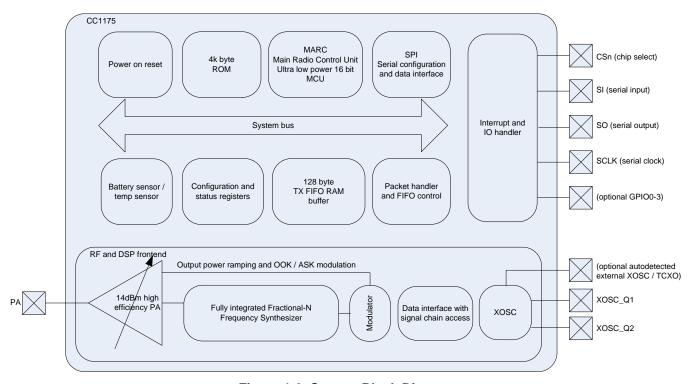


Figure 1-2. System Block Diagram

1.5 Regulations

Suitable for systems targeting compliance with:

- Europe: ETSI EN 300 220, ETSI EN 54-25
- US: FCC CFR47 Part 15, FCC CFR47 Part 90, 24, and 101
- Japan: ARIB RCR STD-T30, ARIB STD-T67, ARIB STD-T108

1.6 Peripherals and Support Functions

- · TCXO support and control, also in power modes
- Optional coding gain feature for increased range and robustness
- Temperature sensor

1	Intro	duction <u>1</u>		2.10	Wake-up and Timing	<u>11</u>
	1.1	Features <u>1</u>		2.11	High-Speed Crystal Oscillator	<u>11</u>
	1.2	Applications <u>1</u>		2.12	High-Speed Clock Input (TCXO)	<u>11</u>
	1.3	Description <u>1</u>		2.13	32-kHz Clock Input	<u>11</u>
	1.4	Block Diagram <u>3</u>		2.14	Low-Speed RC Oscillator	<u>11</u>
	1.5	Regulations <u>3</u>		2.15	I/O and Reset	12
	1.6	Peripherals and Support Functions 3		2.16	Temperature Sensor	12
Re	vision	History <u>5</u>		2.17	Typical Characteristics	13
2	Devi	ce Characteristics 6	3	Devic	ce Pins	15
	2.1	Electrical Specifications 6		3.1	Pin Configuration	15
	2.2	Absolute Maximum Ratings 6	4	Devic	ce Information	16
	2.3	General Characteristics 6		4.1	Block Diagram	16
	2.4	RF Characteristics 6		4.2	Frequency Synthesizer	16
	2.5	Regulatory Standards 7		4.3	Transmitter	<u>17</u>
	2.6	Current Consumption, Static Modes 7		4.4	Radio Control and User Interface	<u>17</u>
	2.7	Current Consumption, Transmit Modes 8		4.5	Low-Power and High-Performance Modes	<u>17</u>
	2.8	Transmit Parameters 9	5	Typic	cal Application Circuit	18
	2.9	PLL Parameters	6	Confi	iguration Software	19

Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

This data sheet revision history highlights the technical changes made to the SWRS116 device-specific data sheet.

Revision	Date	Description / Changes
SWRS116D	October 2013	Changed format to TI data manual Added links to reference designs Added comment on DC path to VDD required for PA pin
SWRS116C	March 2013	Added ARIB T-108 to list of regulations
SVVKSTTOC March 2013		Added optimum load impedance
		Added missing unit "dBm" in output power section
		Added temperature sensor data
		Clarified how the typical performance curves have been measured
		Pin CS_N renamed to CSn to comply with naming convention used in the user guide
		Added support for higher frequency crystals / external TCXOs
		Updated typical frequency of low frequency RCOSC to show that it scales with the reference it is calibrated against (i.e. the high speed XOSC)
		Clarified under max ratings that I/O voltages should not exceed device supply voltage by more than 0.3 V
		Various minor spelling errors corrected
SWRS116B	April 2012	Added ground pad on page 1 pin-out and pin description
		Fixed typo in EM list: CC1120EM_420_970 is corrected to CC1120EM_420_470
		Added TCXO clock input voltage requirement
		Changed wording in some sections, and fixed various typos/case errors
		Added 274 - 320 MHz band and pointed to app note for more info (added mention of 315 MHz band on front page)
		Removed reflow temperature from abs max ratings
		Moved ESR to max column
		Added history section
SWRS116A	Nov. 2011	Initial release

2 Device Characteristics

2.1 Electrical Specifications

All measurements performed on CC1200EM_868_930 rev.1.0.0, CC1200EM_420_470 rev.1.0.1, or CC1200EM_169 rev.1.2.

2.2 Absolute Maximum Ratings

Parameter	Min	Тур	Max	Unit	Condition
Supply voltage (VDD) (all supply pins must have the same voltage)	-0.3		3.9	V	
Storage temperature range	-40		125	°C	
ESD			2000	V	НВМ
ESD			500	V	CDM
Voltage on any digital pin	-0.3		VDD+0.3 max 3.9	V	
Voltage on analog pins (including DCPL pins)	-0.3		2.0	V	

2.3 General Characteristics

Parameter	Min	Тур	Max	Unit	Condition
Voltage supply range	2.0		3.6	V	
Temperature range	-40		85	°C	

2.4 RF Characteristics

Parameter	Min	Тур	Max	Unit	Condition
	820		960	MHz	
	410		480	MHz	
Frequency bands	274		320	MHz	For more information, see application note AN115, Using the CC112x/CC1175 at 274 to 320 MHz.
	164		192	MHz	
		30		Hz	In 820- to 960-MHz band
Frequency resolution		15		Hz	In 410- to 480-MHz band
		6		Hz	In 164- to 192-MHz band
Data sata	0		200	kbps	Packet mode
Data rate	0		100	kbps	Transparent mode
Data rate step size		1e-4		bps	

2.5 Regulatory Standards

Performance Mode	Frequency Band	Suitable for Compliance with	Comments
		ARIB T-108	
		ARIB T-96	
		ETSI EN 300 220	
		ETSI EN 54-25	Performance also suitable for
	000 000 MIL	FCC Part 101	systems targeting maximum allowed output power in the
	820–960 MHz	FCC Part 24 Submask D	respective bands, using a range
		FCC Part 15.247	extender such as the CC1190 device
		FCC Part 15.249	
		FCC Part 90 Mask G	
High-performance mode		FCC Part 90 Mask J	
		ARIB T-67	
		ARIB RCR STD-30	Performance also suitable for systems targeting maximum
	410–480 MHz	ETSI EN 300 220	allowed output power in the
		FCC Part 90 Mask D	respective bands, using a range extender
		FCC Part 90 Mask G	exterider
		ETSI EN 300 220	Performance also suitable for
	164–192 MHz	FCC Part 90 Mask D	systems targeting maximum allowed output power in the respective bands, using a range extender
		ETSI EN 300 220	
	820–960 MHz	FCC Part 15.247	
Low-power mode		FCC Part 15.249	
	410–480 MHz	ETSI EN 300 220	
	164–192 MHz	ETSI EN 300 220	

2.6 Current Consumption, Static Modes

 $T_A = 25$ °C, VDD = 3.0 V if nothing else is stated

Parameter	Min	Тур	Max	Unit	Condition
		0.3	1	μΑ	
Power down with retention		0.5		μA	Low-power RC oscillator running
XOFF mode		170		μA	Crystal oscillator / TCXO disabled
IDLE mode		1.3		mA	Clock running, system waiting with no radio activity

2.7 Current Consumption, Transmit Modes

2.7.1 950-MHz Band (High-Performance Mode)

 $T_A = 25$ °C, VDD = 3.0 V if nothing else is stated

Parameter	Min	Тур	Max	Unit	Condition
TX current consumption +10 dBm		37		mA	
TX current consumption 0 dBm		26		mA	

2.7.2 868-, 915-, and 920-MHz Bands (High-Performance Mode)

 $T_A = 25$ °C, VDD = 3.0 V if nothing else is stated

Parameter	Min	Тур	Max	Unit	Condition
TX current consumption +14 dBm		45		mA	
TX current consumption +10 dBm		34		mA	

2.7.3 434-MHz Band (High-Performance Mode)

 $T_A = 25$ °C, VDD = 3.0 V if nothing else is stated

A 20 0, 122 old 1 in inclining old is dialout								
Parameter	Min	Тур	Max	Unit	Condition			
TX current consumption +15 dBm		50		mA				
TX current consumption +14 dBm		45		mA				
TX current consumption +10 dBm		34		mA				

2.7.4 169-MHz Band (High-Performance Mode)

 $T_A = 25$ °C, VDD = 3.0 V if nothing else is stated

TA = 25 C, VDD = 5.0 V II Hottilling else is stated									
Parameter	Min	Тур	Max	Unit	Condition				
TX current consumption +15 dBm		54		mA					
TX current consumption +14 dBm		49		mA					
TX current consumption +10 dBm		41		mA					

2.7.5 Low-Power Mode

 $T_A = 25$ °C, VDD = 3.0 V, $f_C = 869.5$ MHz if nothing else is stated

Parameter	Min	Тур	Max	Unit	Condition
TX current consumption +10 dBm		32		mA	

2.8 Transmit Parameters

 $T_A = 25$ °C, VDD = 3.0 V, $f_c = 869.5$ MHz if nothing else is stated

Parameter	Min	Тур	Max	Unit	Condition
		+12		dBm	At 950 MHz
		+14		dBm	At 915 and 920 MHz
		+15		dBm	At 915 and 920 MHz with VDD = 3.6 V
		+15		dBm	At 868 MHz
Max output power		+16		dBm	At 868 MHz with VDD = 3.6 V
		+15		dBm	At 433 MHz
		+16		dBm	At 433 MHz with VDD = 3.6 V
		+15		dBm	At 169 MHz
		+16		dBm	At 169 MHz with VDD = 3.6 V
Min autout navian		-11		dBm	Within fine step size range
Min output power		-40		dBm	Within coarse step size range
Output power step size		0.4		dB	Within fine step size range
		-75		dBc	4-GFSK 9.6 kbps in 12.5-kHz channel, measured in 100-Hz bandwidth at 434 MHz (FCC Part 90 Mask D compliant)
Adjacent channel power		-58		dBc	4-GFSK 9.6 kbps in 12.5-kHz channel, measured in 8.75-kHz bandwidth (ETSI–300 220 compliant)
		-61		dBc	2-GFSK 2.4 kbps in 12.5-kHz channel, 1.2-kHz deviation
Spurious emissions (Not including harmonics)		< -60		dBm	
Harmonics					
Second Harm, 169 MHz		-39		dBm	
Third Harm, 169 MHz		-58		dBm	
Second Harm, 433 MHz		-56		dBm	Transmission at +14 dBm (or maximum
Third Harm, 433 MHz		-51		dBm	allowed in applicable band where this is less than +14 dBm) using TI reference design
Second Harm, 450 MHz		-60		dBm	Emissions measured according to ARIB T-
Third Harm, 450 MHz		-45		dBm	96 in 950-MHz band, ETSI EN 300 220 in
Second Harm, 868 MHz		-40		dBm	169-, 433-, and 868-MHz bands and FCC Part 15.247 in 450- and 915-MHz band
Third Harm, 868 MHz		-42		dBm	Fourth harmonic in 915-MHz band will
Second Harm, 915 MHz		56		dBuV/m	require extra filtering to meet FCC requirements if transmitting for long intervals
Third Harm, 915 MHz		52		dBuV/m	(>50-ms periods).
Fourth Harm, 915 MHz		60		dBuV/m	
Second Harm, 950 MHz		-58		dBm	
Third Harm, 950 MHz		-42		dBm	
Optimum load impedance					
868-, 915-, and 920-MHz bands		35 + j35		Ω	
433-MHz band		55 + j25		Ω	
169-MHz band		80 + j0		Ω	

2.9 PLL Parameters

2.9.1 High-Performance Mode

 $T_A = 25$ °C, VDD = 3.0 V, $f_c = 869.5$ MHz if nothing else is stated

Parameter	Min	Тур	Max	Unit	Condition
		-99		dBc/Hz	± 10 kHz offset
Phase noise in 950-MHz band		-99		dBc/Hz	± 100 kHz offset
		-123		dBc/Hz	± 1 MHz offset
		-99		dBc/Hz	± 10 kHz offset
Phase noise in 868-, 915-, and 920-MHz bands		-100		dBc/Hz	± 100 kHz offset
builds		-122		dBc/Hz	± 1 MHz offset
		-106		dBc/Hz	± 10 kHz offset
Phase noise in 433-MHz band		-107		dBc/Hz	± 100 kHz offset
		-127		dBc/Hz	± 1 MHz offset
		-111		dBc/Hz	± 10 kHz offset
Phase noise in 169-MHz band		-116		dBc/Hz	± 100 kHz offset
		-135		dBc/Hz	± 1 MHz offset

2.9.2 Low-Power Mode

 $T_A = 25$ °C, VDD = 3.0 V, $f_c = 869.5$ MHz if nothing else is stated

Parameter	Min	Тур	Max	Unit	Condition
		-90		dBc/Hz	± 10 kHz offset
Phase noise in 950-MHz band		-92		dBc/Hz	± 100 kHz offset
		-124		dBc/Hz	± 1 MHz offset
		- 95		dBc/Hz	± 10 kHz offset
Phase noise in 868- and 915-MHz bands		- 95		dBc/Hz	± 100 kHz offset
		-124		dBc/Hz	± 1 MHz offset
		-98		dBc/Hz	± 10 kHz offset
Phase noise in 433-MHz band		-102		dBc/Hz	± 100 kHz offset
		-129		dBc/Hz	± 1 MHz offset
		-106		dBc/Hz	± 10 kHz offset
Phase noise in 169-MHz band		-110		dBc/Hz	± 100 kHz offset
	·	-136		dBc/Hz	± 1 MHz offset

2.10 Wake-up and Timing

 $T_A = 25$ °C, VDD = 3.0 V, $f_c = 869.5$ MHz if nothing else is stated

Parameter	Min	Тур	Max	Unit	Condition
Powerdown to IDLE		0.4		ms	Depends on crystal
IDLE to TX		166		μs	Calibration disabled
IDLE to TX		461		μs	Calibration enabled
TV to IDI E time		296		μs	Calibrate when leaving TX enabled
TX to IDLE time		0		μs	Calibrate when leaving TX disabled
Frequency synthesizer calibration		391		μs	When using SCAL strobe

2.11 High-Speed Crystal Oscillator

 $T_{\Lambda} = 25^{\circ}C$. VDD = 3.0 V if nothing else is stated

1A - 23 C, VDD - 3.0 V II HOUTING E	oo io olaloa	1	1	1	
Parameter	Min	Тур	Max	Unit	Condition
Crystal frequency	32		44	MHz	Note: It is recommended that the crystal frequency is chosen so that the RF channel(s) are >1 MHz away from multiples of XOSC.
Load capacitance (C _L)		10		pF	
ESR			60	Ω	Simulated over operating conditions
Start-up time		0.4		ms	Depends on crystal

2.12 High-Speed Clock Input (TCXO)

 $T_{\Delta} = 25^{\circ}C$, VDD = 3.0 V if nothing else is stated

Parameter	Min	Тур	Max	Unit	Condition
Clock frequency	32		44	MHz	
Clock input amplitude (peak-to-peak)	8.0		VDD	٧	Simulated over operating conditions

2.13 32-kHz Clock Input

 $T_A = 25$ °C, VDD = 3.0 V if nothing else is stated

Parameter	Min	Тур	Max	Unit	Condition
Clock frequency		32		kHz	
32 kHz clock input pin input high voltage	0.8×VDD			V	
32 kHz clock input pin input low voltage			0.2×VDD	V	

2.14 Low-Speed RC Oscillator

 $T_A = 25$ °C, VDD = 3.0 V if nothing else is stated

TA = 25 G, VDD = 5.5 V II Hottilling class is stated									
Parameter	Min	Тур	Max	Unit	Condition				
Frequency		32/40		kHz	After calibration (calibrated against the high-speed XOSC)				
Frequency accuracy after calibration		±0.1		%	Relative to frequency reference (for example, 32-MHz crystal or TCXO)				
Initial calibration time		1.6		ms					

2.15 I/O and Reset

 $T_{\Delta} = 25^{\circ}C$, VDD = 3.0 V if nothing else is stated

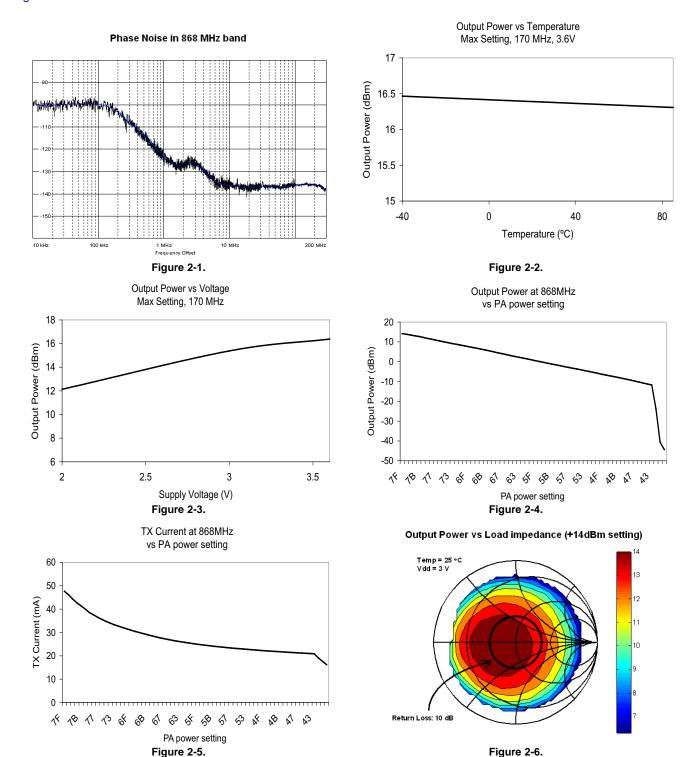
Parameter	Min	Тур	Max	Unit	Condition
Logic input high voltage	0.8×VDD			V	
Logic input low voltage			0.2×VDD	V	
Logic output high voltage	0.8×VDD			V	At 4 mA cutout load or load
Logic output low voltage			0.2×VDD	V	At 4-mA output load or less
Power-on reset threshold		1.3		V	Voltage on DVDD pin

2.16 Temperature Sensor

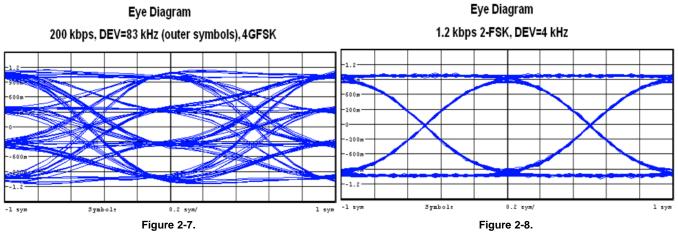
 $T_A = 25$ °C, VDD = 3.0 V if nothing else is stated

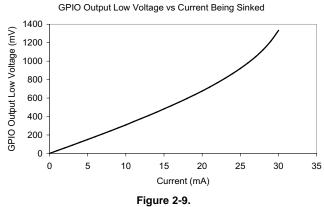
Parameter	Min	Тур	Max	Unit	Condition
Temperature sensor range	-40		85	°C	
Temperature coefficient		2.66		mV / °C	Change in sensor output voltage versus change in temperature
Typical output voltage		794		mV	Typical sensor output voltage at T _A = 25°C, VDD = 3.0 V
VDD coefficient		1.17		mV / V	Change in sensor output voltage versus change in VDD

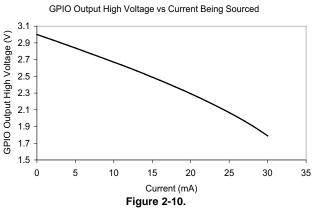
The CC1175 device can be configured to provide a voltage proportional to temperature on GPIO1. The temperature can be estimated by measuring this voltage (see Section 2.16). For more information, see the CC1175 user guide (SWRU295).



2.17 Typical Characteristics


 $T_A = 25$ °C, VDD = 3.0 V, $f_c = 869.5$ MHz if nothing else is stated


All measurements performed on CC1120EM_868_915 rev.1.0.1, CC1120EM_955 rev.1.2.1, CC1120EM_420_470 rev.1.0.1 or CC1120EM_169 rev.1.2 (fxosc = 32 MHz), and CC1125EM_868_915 rev.1.1.0, CC1125EM_420_470 rev.1.1.0, CC1125EM_169 rev.1.1.0, CC1125EM-Cat1-868 (fxosc = 40 MHz)


Figure 2-6 was measured at the $50-\Omega$ antenna connector.

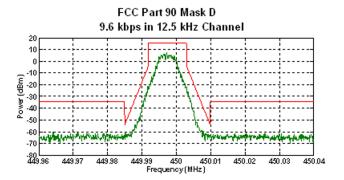


Figure 2-11.

3 Device Pins

3.1 Pin Configuration

The following table lists the pin-out configuration for the CC1175 device.

Pin No.	Pin Name	Type / Direction	Description
1	VDD_GUARD	Power	2.0-3.6 V VDD
2	RESET_N	Digital input	Asynchronous, active-low digital reset
3	GPIO3	Digital I/O	General-purpose I/O
4	GPIO2	Digital I/O	General-purpose I/O
5	DVDD	Power	2.0–3.6 VDD to internal digital regulator
6	DCPL	Power	Digital regulator output to external decoupling capacitor
7	SI	Digital input	Serial data in
8	SCLK	Digital input	Serial data clock
9	SO(GPIO1)	Digital I/O	Serial data out (general-purpose I/O)
10	GPIO0	Digital I/O	General-purpose I/O
11	CSn	Digital input	Active-low chip select
12	DVDD	Power	2.0-3.6 V VDD
13	AVDD_IF	Power	2.0-3.6 V VDD
14	RBIAS	Analog	External high-precision resistor
15	AVDD_RF	Power	2.0-3.6 V VDD
16	N.C.		Not connected
17	PA	Analog	Single-ended TX output (requires DC path to VDD)
18	N.C.		Not connected
19	GND1	Analog	Analog ground
20	GND0	Analog	Analog ground
21	DCPL_VCO	Power	Pin for external decoupling of VCO supply regulator
22	AVDD_SYNTH1	Power	2.0–3.6 V VDD
23	LPF0	Analog	External loop filter components
24	LPF1	Analog	External loop filter components
25	AVDD_PFD_CHP	Power	2.0-3.6 V VDD
26	DCPL_PFD_CHP	Power	Pin for external decoupling of PFD and CHP regulator
27	AVDD_SYNTH2	Power	2.0-3.6 V VDD
28	AVDD_XOSC	Power	2.0-3.6 V VDD
29	DCPL_XOSC	Power	Pin for external decoupling of XOSC supply regulator
30	XOSC_Q1	Analog	Crystal oscillator pin 1 (must be grounded if a TCXO or other external clock connected to EXT_XOSC is used)
31	XOSC_Q2	Analog	Crystal oscillator pin 2 (must be left floating if a TCXO or other external clock connected to EXT_XOSC is used)
32	EXT_XOSC	Digital input	Pin for external clock input (must be grounded if a regular crystal connected to XOSC_Q1 and XOSC_Q2 is used)
-	GND	Ground pad	The ground pad must be connected to a solid ground plane.

15

4 Device Information

4.1 Block Diagram

Figure 4-1 shows the system block diagram of the CC1175 device.

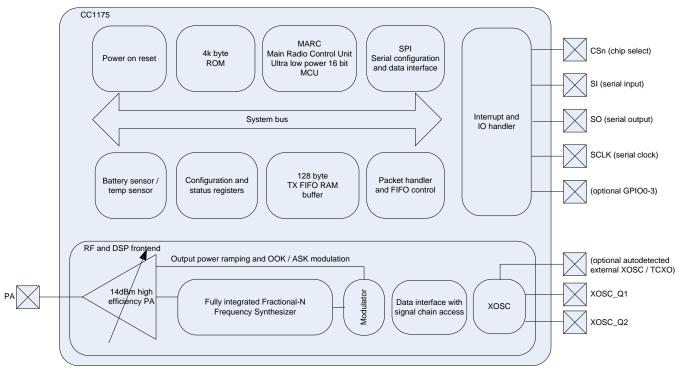


Figure 4-1. System Block Diagram

4.2 Frequency Synthesizer

At the center of the CC1175 device there is a fully integrated, fractional-N, ultra-high-performance frequency synthesizer. The frequency synthesizer is designed for excellent phase noise performance. The system is designed to comply with the most stringent regulatory spectral masks at maximum transmit power.

Either a crystal can be connected to XOSC_Q1 and XOSC_Q2, or a TCXO can be connected to the EXT_XOSC input. The oscillator generates the reference frequency for the synthesizer, as well as clocks for the digital part. If a TCXO is used, the CC1175 device automatically turns on and off the TCXO when needed to support low-power modes.

4.3 Transmitter

The CC1175 transmitter is based on direct synthesis of the RF frequency (in-loop modulation). To achieve effective spectrum usage, the CC1175 device has extensive data filtering and shaping in TX mode to support high throughput data communication in narrowband channels. The modulator also controls power ramping to remove issues such as spectral splattering when driving external high-power RF amplifiers.

The modulator also controls the PA power level to support on/off keying (OOK) and amplitude shift keying (ASK).

4.4 Radio Control and User Interface

The CC1175 digital control system is built around the main radio control (MARC), which is implemented using an internal high-performance, 16-bit ultra-low-power processor. MARC handles power modes, radio sequencing, and protocol timing.

A 4-wire SPI serial interface is used for configuration and data buffer access. The digital baseband includes support for channel configuration, packet handling, and data buffering. The host MCU can stay in power-down mode until a valid RF packet is received. This greatly reduces power consumption. When the host MCU receives a valid RF packet, it burst-reads the data. This reduces the required computing power.

The CC1175 radio control and user interface are based on the widely used CC1101 transceiver. This relationship enables an easy transition between the two platforms. The command strobes and the main radio states are the same for the two platforms.

For legacy formats, the CC1175 device also supports two serial modes.

- Synchronous serial mode: The CC1175 device provides the MCU with a bit clock for sampling input data.
- Transparent mode: The CC1175 device samples the input pin at a configurable rate.

4.5 Low-Power and High-Performance Modes

The CC1175 device is highly configurable, enabling trade-offs between power and performance to be made based on the needs of the application. This data sheet describes two modes, low-power mode and high-performance mode, which represent configurations where the device is optimized for either power or performance.

5 Typical Application Circuit

NOTE

This section is intended only as an introduction.

Very few external components are required for the operation of the CC1175 device. Figure 5-1 shows a typical application circuit. The board layout will greatly influence the RF performance of the CC1175 device. Figure 5-1 does not show decoupling capacitors for power pins.

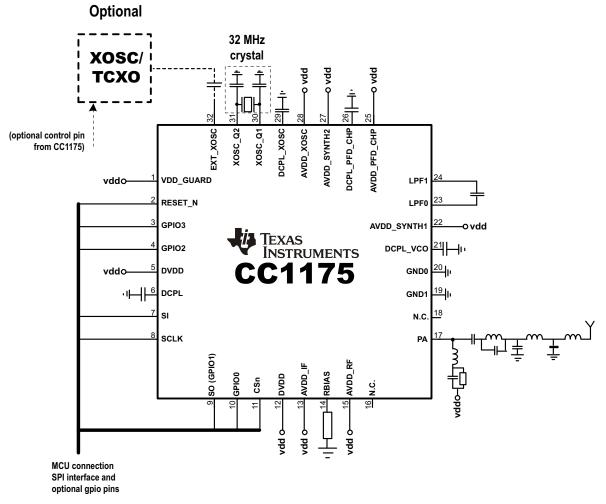


Figure 5-1. Typical Application Circuit

For more information, see the reference designs available for the CC1175 device:

• CC1175EM 868- to 915-MHz Reference Design (SWRR093).

6 Configuration Software

The CC1175 device can be configured using the SmartRF™ Studio software (SWRC046). The SmartRF Studio software is highly recommended for obtaining optimum register settings, and for evaluating performance and functionality.

7-Oct-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
	. ,		- J					` ,		· '	
CC1175RHBR	ACTIVE	VQFN	RHB	32	3000	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-3-260C-168 HR	-40 to 85	CC1175	Samples
CC1175RHBT	ACTIVE	VQFN	RHB	32	250	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-3-260C-168 HR	-40 to 85	CC1175	Samples
CC1175RHMR	ACTIVE	VQFN	RHM	32	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	CC1175	Samples
CC1175RHMT	ACTIVE	VQFN	RHM	32		Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	CC1175	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

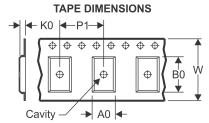
- (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

PACKAGE OPTION ADDENDUM

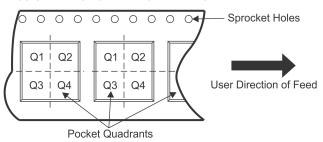
7-Oct-2013

continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

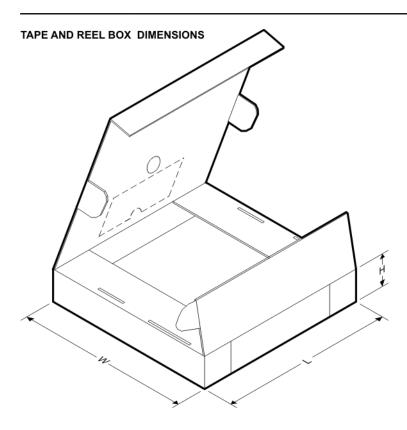

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 4-Oct-2013


TAPE AND REEL INFORMATION

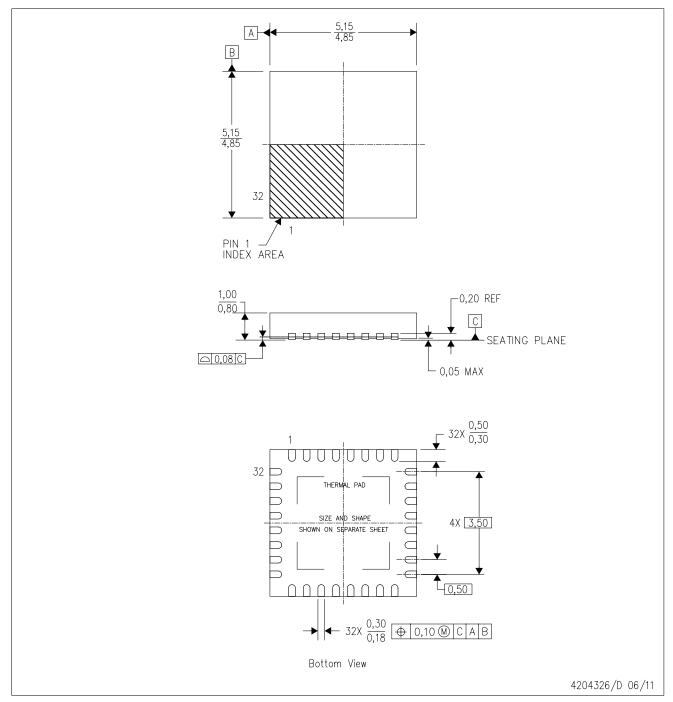
	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CC1175RHBR	VQFN	RHB	32	3000	330.0	12.4	5.3	5.3	1.5	8.0	12.0	Q2
CC1175RHBT	VQFN	RHB	32	250	180.0	12.4	5.3	5.3	1.5	8.0	12.0	Q2

www.ti.com 4-Oct-2013



*All dimensions are nominal

ĺ	Device	Package Type	Package Drawing	Pins SPQ		Length (mm)	Width (mm)	Height (mm)	
I	CC1175RHBR	VQFN	RHB	32	3000	338.1	338.1	20.6	
I	CC1175RHBT	VQFN	RHB	32	250	210.0	185.0	35.0	

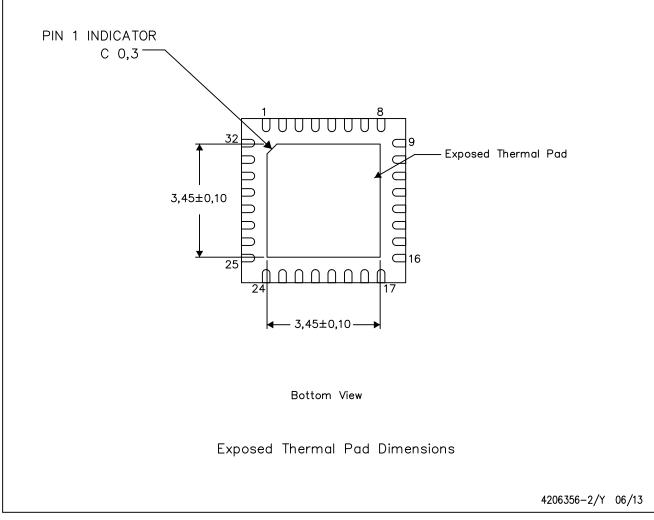
RHB (S-PVQFN-N32)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.

- B. This drawing is subject to change without notice.
- C. QFN (Quad Flatpack No-Lead) Package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- F. Falls within JEDEC MO-220.

RHB (S-PVQFN-N32)

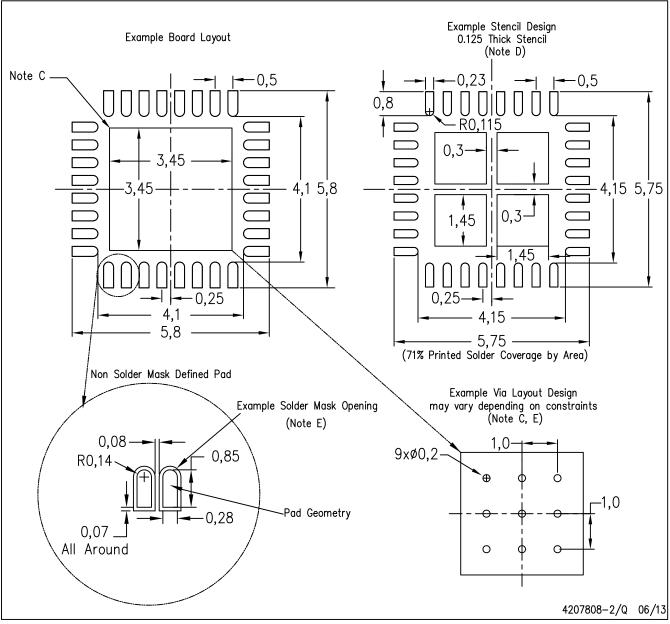

PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

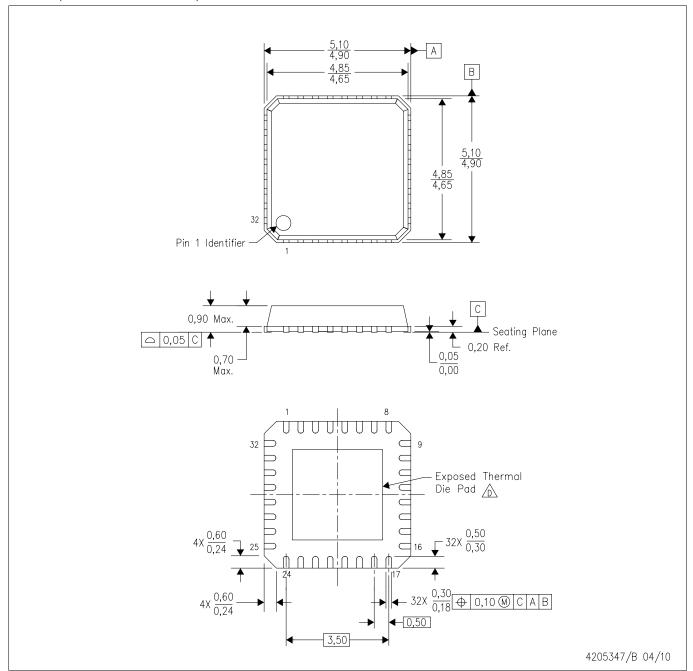
The exposed thermal pad dimensions for this package are shown in the following illustration.



NOTE: A. All linear dimensions are in millimeters

RHB (S-PVQFN-N32)

PLASTIC QUAD FLATPACK NO-LEAD


NOTES:

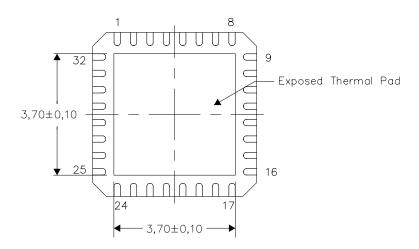
- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- E. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in the thermal pad.

RHM (S-PVQFN-N32)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. QFN (Quad Flatpack No-Lead) Package configuration.
- The package thermal pad must be soldered to the board for thermal and mechanical performance. See the Product Data Sheet for details regarding the exposed thermal pad dimensions.



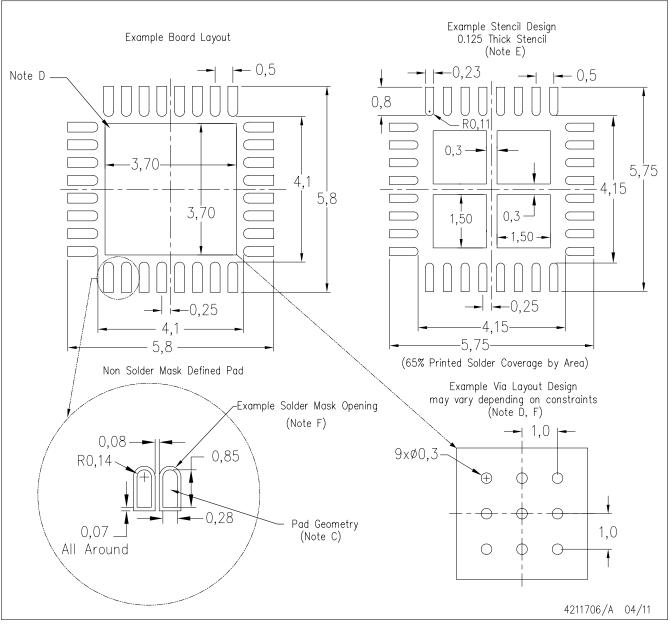
THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View


NOTE: All linear dimensions are in millimeters

Exposed Thermal Pad Dimensions

RHM (S-PVQFN-N32)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in the thermal pad.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u>

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>