

Real-Time Clock (RTC) Module

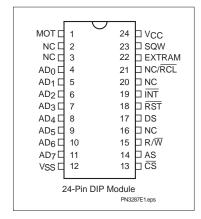
Features

- ➤ Direct clock/calendar replacement for IBM®AT-compatible computers and other applications
- ➤ Functionally compatible with the DS1287/DS1287A and MC146818A/MC146818B
- ➤ 242 bytes of general nonvolatile storage
- ➤ Provides a 32.768kHz output for power management
- System wake-up capability alarm interrupt active in battery-backup mode
- ➤ Integral lithium cell and crystal
- ➤ 160 ns cycle time allows fast bus operation
- ➤ 14 bytes for clock/calendar and control
- ➤ Time of day in seconds, minutes, and hours
 - 12- or 24-hour format
 - Optional daylight saving adjustment

- ➤ Calendar in day of the week, day of the month, months, and years with automatic leap-year adjustment
- ➤ Programmable square wave output
- ➤ Three individually maskable interrupt event flags:
 - Periodic rates from 122μs to 500ms
 - Time-of-day alarm once per second to once per day
 - End-of-clock update cycle
- ➤ Better than one minute per month clock accuracy

General Description

The CMOS bq3287E/bq3287EA is a low-power microprocessor peripheral providing a time-of-day clock and 100-year calendar with alarm features and battery operation. Other features include three maskable interrupt sources, square-wave output, and 242 bytes of general nonvolatile storage. A 32.768kHz output is available for sustaining power-management activities. Wake-up capability is pro-


vided by an alarm interrupt, which is active in battery-backup mode. The bq3287EA version is identical to the bq3287E, with the addition of the RAM clear input.

The bq3287E is a fully compatible real-time clock for IBM AT-compatible computers and other applications. The bq3287E write-protects the clock, calendar, and storage registers during power failure. The integral backup energy source then maintains data and operates the clock and calendar.

As shipped from Benchmarq, the real time clock is turned off to maximize battery capacity for in-system operation.

The bq3287E is functionally equivalent to the bq3285E, except the battery (16,20) and crystal pins (2,3) are not accessible. These pins are connected internally to a coin cell and quartz crystal. The coin cell is sized to provide 10 years of data retention and clock operation in the absence of power. For a complete description of features, operating conditions, electrical characteristics, bus timing, and pin descriptions, see the bq3285E data sheet.

Pin Connections

Sept. 1996 C

Pin Names

AD0-AD7	Multiplex address/data input/output	RST	Reset input
MOT		SQW	Square wave output
CS	Chip select input	EXTRAM	Extended RAM enable
AS	Address strobe input	NC	No connect
DS	Data strobe input	RCL	RAM clear input (bq3287EA only)
R/\overline{W}	Read/write input	V_{CC}	+5V supply
ĪNT	Interrupt request output	V_{SS}	Ground

Absolute Maximum Ratings

Symbol	Parameter	Value	Unit	Conditions
V_{CC}	DC voltage applied on V_{CC} relative to V_{SS}	-0.3 to 7.0	V	
V_{T}	DC voltage applied on any pin excluding V_{CC} relative to V_{SS}	-0.3 to 7.0	V	$V_T \le V_{CC} + 0.3$
T _{OPR}	Operating temperature	0 to +70	°C	Commercial
T _{STG}	Storage temperature	-40 to +70	°C	Commercial
T _{BIAS}	Temperature under bias	-10 to +70	°C	Commercial
T _{SOLDER}	Soldering temperature	260	°C	For 10 seconds

Note:

Permanent device damage may occur if **Absolute Maximum Ratings** are exceeded. Functional operation should be limited to the Recommended DC Operating Conditions detailed in this data sheet. Exposure to conditions beyond the operational limits for extended periods of time may affect device reliability.

Recommended DC Operating Conditions (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{SS}	Supply voltage	0	0	0	V
V_{IL}	Input low voltage	-0.3	-	0.8	V
V_{IH}	Input high voltage	2.2	-	$V_{CC} + 0.3$	V

Note:

Typical values indicate operation at T_A = 25 $^{\circ}\text{C}.$

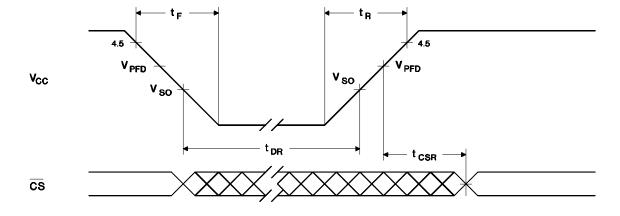
DC Electrical Characteristics (TA = TOPR, VCC = 5V ± 10%)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions/Notes
I_{LI}	Input leakage current	-	-	± 1	μΑ	$V_{IN} = V_{SS}$ to V_{CC}
I_{LO}	Output leakage current	-	-	± 1	μΑ	AD ₀ –AD ₇ , INT and SQW in high impedance
V _{OH}	Output high voltage	2.4	-	-	V	$I_{OH} = -1.0 \text{ mA}$
Vol	Output low voltage	-	-	0.4	V	$I_{OL} = 4.0 \text{ mA}$
I _{CC}	Operating supply current	-	7	15	mA	$\label{eq:min.cycle} \begin{array}{l} \mbox{Min. cycle, duty} = 100\%, \\ \mbox{I}_{OH} = 0\mbox{mA}, \mbox{I}_{OL} = 0\mbox{mA} \end{array}$
V _{SO}	Supply switch-over voltage	-	3.0	-	V	
V _{PFD}	Power-fail-detect voltage	4.0	4.17	4.35	V	
I _{RCL}	Input current when $\overline{RCL} = V_{SS}$	-	-	185	μΑ	Internal 30K pull-up (bq3287EA only)
I _{MOTH}	Input current when MOT = V _{CC}	-	-	-185	μΑ	Internal 30K pull-down
I _{XTRAM}	Input current when EXTRAM = V _{CC}	-	-	-185	μΑ	Internal 30K pull-down

Note:

Typical values indicate operation at $T_A = 25$ °C, $V_{CC} = 5V$.

Sept. 1996 C

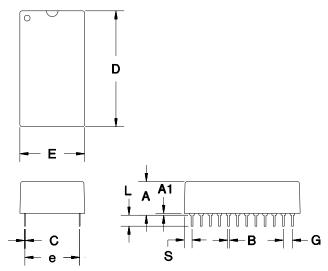

Power-Down/Power-Up Timing (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions
t_{F}	V _{CC} slew from 4.5V to 0V	300	-	-	μs	
t_R	V _{CC} slew from 0V to 4.5V	100	-	-	μs	
t _{CSR}	$\overline{\text{CS}}$ at V_{IH} after power-up	20	-	200	ms	$\begin{array}{c} Internal\ write-protection\\ period\ after\ V_{CC}\ passes\ V_{PFD}\\ on\ power-up. \end{array}$
t _{DR}	Data-retention and time- keeping time	10	-	-	years	$T_A = 25$ °C.

Note: Clock accuracy is better than $\pm~1$ minute per month at 25°C for the period of t_{DR} .

 ${\bf Caution:} \quad {\bf Negative \ under shoots \ below \ the \ absolute \ maximum \ rating \ of \ -0.3V \ in \ battery-backup \ mode \\ may \ affect \ data \ integrity.}$

Power-Down/Power-Up Timing



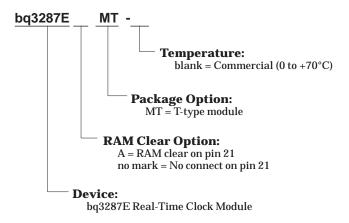
PD-4

Not Recommended For New Designs

bq3287E/bq3287EA

24-Pin MT (T-type module)

24-Pin MT (T-Type Module)


	Inc	hes	Millin	neters
Dimension	Min.	Max.	Min.	Max.
A	0.360	0.390	9.14	9.91
A1	0.015	-	0.38	-
В	0.015	0.022	0.38	0.56
С	0.008	0.013	0.20	0.33
D	1.320	1.335	33.53	33.91
Е	0.710	0.740	18.03	18.80
e	0.590	0.620	14.99	15.75
G	0.090	0.110	2.29	2.79
L	0.110	0.130	2.79	3.30
S	0.100	0.120	2.54	3.05

Data Sheet Revision History

Change No.	Page No.	Description	Nature of Change
1	8	Register C, bit 2	Was 0; is na (not affected)
2	2	I_{RCL} max. was 275; is now 185. Pull-down = 30K.	Value change
2	2	I _{XTRAM} max. was -75; is now -185.	Value change

Change 1 = Apr. 1994 B "Final" changes from Dec. 1993 A "Preliminary." Change 2 = Sept. 1996 C changes from April 1994 B. **Notes:**

Ordering Information

PACKAGE OPTION ADDENDUM

6-Jun-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
BQ3287EAMT	LIFEBUY	DIP MODULE	MT	24	15	Pb-Free (RoHS)	Call TI	N / A for Pkg Type	0 to 70		
BQ3287EMT	LIFEBUY	DIP MODULE	MT	24	15	Pb-Free (RoHS)	Call TI	N / A for Pkg Type	0 to 70		

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

power.ti.com

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

Power Mgmt

OMAP Applications Processors www.ti.com/omap **TI E2E Community** e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity