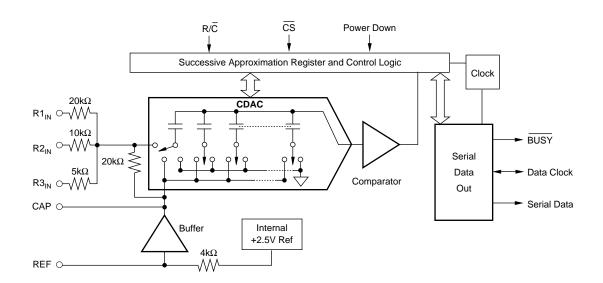


SBAS018A - JANUARY 1992 - REVISED SEPTEMBER 2003

12-Bit 10µs Serial CMOS Sampling ANALOG-to-DIGITAL CONVERTER

FEATURES


- 100kHz SAMPLING RATE
- 72dB SINAD WITH 45kHz INPUT
- ±1/2 LSB INL AND DNL
- SIX SPECIFIED INPUT RANGES
- SERIAL OUTPUT
- SINGLE +5V SUPPLY OPERATION
- PIN-COMPATIBLE WITH 16-BIT ADS7809
- USES INTERNAL OR EXTERNAL REFERENCE
- 100mW MAX POWER DISSIPATION
- 0.3" SO-20
- SIMPLE DSP INTERFACE

DESCRIPTION

The ADS7808 is a complete 12-bit sampling analog-to-digital using state-of-the-art CMOS structures. It contains a 12-bit capacitor-based SAR A/D with S/H, reference, clock, and a serial data interface. Data can be output using the internal clock, or can be synchronized to an external data clock. The ADS7808 also provides an output synchronization pulse for ease of use with standard DSP processors.

The ADS7808 is specified at a 100kHz sampling rate, and specified over the full temperature range. Laser-trimmed scaling resistors provide various input ranges including ±10V and 0V to 5V, while an innovative design operates from a single +5V supply, with power dissipation under 100mW.

The ADS7808 is available in a 0.3" SO-20, fully specified for operation over the industrial -40°C to +85°C range.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.

ABSOLUTE MAXIMUM RATINGS(1)

Analog Inputs: R1 _{IN}	±25V
R2 _{IN}	±25V
R3 _{IN}	±25V
CAP	V _{ANA} +0.3V to AGND2 -0.3V
REF	Indefinite Short to AGND2,
	Momentary Short to V _{ANA}
Ground Voltage Differences: DGNI	D, AGND2 ±0.3V
V _{ANA}	7V
V _{DIG} to V _{ANA}	+0.3
V _{DIG}	7V
Digital Inputs	0.3V to V _{DIG} +0.3V
	+165°C
Internal Power Dissipation	700mW
	+300°C

NOTE: (1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability.

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PACKAGE/ORDERING INFORMATION

PRODUCT	MAXIMUM INTEGRAL LINEARITY ERROR (LSB)	MINIMUM SIGNAL-TO- (NOISE + DISTORTION) RATIO (DB)		PACKAGE DESIGNATOR ⁽¹⁾	SPECIFIED TEMPERATURE RANGE	PACKAGE MARKING	ORDERING NUMBER	TRANSPORT MEDIA, QUANTITY
ADS7808U	±0.9	70 "	SO-20	DW "	-40°C to +85°C	ADS7808U	ADS7808U ADS7808U/1K	Tube, 38 Tape and Reel, 1000
ADS7808UB	±0.45	72 "	11	"	"	ADS7808UB	ADS7808UB ADS7808UB/1K	Tube, 38 Tape and Reel, 1000

NOTE: (1) For the most current specifications and package information, refer to our web site at www.ti.com.

ELECTRICAL CHARACTERISTICS

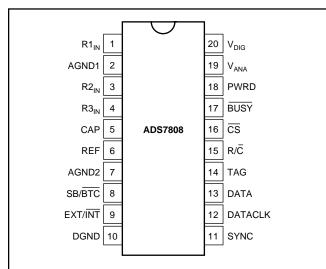
At $T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$, $f_S = 100\text{kHz}$, $V_{DIG} = V_{ANA} = +5V$, using internal reference and fixed resistors as shown in Figure 4, unless otherwise specified.

			ADS7808U			ADS7808U	В	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
RESOLUTION				12			*	Bits
ANALOG INPUT Voltage Ranges Impedance Capacitance			±10	V, 0V to 5V		Table I)		pF
THROUGHPUT SPEED Conversion Time Complete Cycle Throughput Rate	Acquire and Convert	100	5.7	8 10	*	*	*	μs μs kHz
DC ACCURACY Integral Linearity Error Differential Linearity Error No Missing Codes			Specified	±0.9 ±0.9		*	±0.45 ±0.45	LSB ⁽¹⁾ LSB
Transition Noise ⁽²⁾ Full Scale Error ^(3,4) Full Scale Error Drift			0.1 ±7	±0.5		* ±5	±0.25	LSB % ppm/°C
Full Scale Error ^(3,4) Full Scale Error Drift	Ext. 2.5000V Ref Ext. 2.5000V Ref		±2	±0.5		*	±0.25	% ppm/°C
Bipolar Zero Error ⁽³⁾ Bipolar Zero Error Drift	Bipolar Ranges Bipolar Ranges 0V to 10V Range		±2	±10 ±5		±2	*	mV ppm/°C mV
Unipolar Zero Error ⁽³⁾	0V to 10V Range 0V to 4V Range 0V to 5V Range			±3 ±3			* * *	mV mV
Unipolar Zero Error Drift Recovery to Rated Accuracy after Power Down	Unipolar Ranges 1μF Capacitor to CAP		±2 1			*		ppm/°C ms
Power Supply Sensitivity $(V_{DIG} = V_{ANA} = V_{D})$	+4.75V < V _D < +5.25V			±0.5			*	LSB
AC ACCURACY Spurious-Free Dynamic Range Total Harmonic Distortion Signal-to-(Noise+Distortion)	$f_{IN} = 45kHz$ $f_{IN} = 45kHz$ $f_{IN} = 45kHz$	80 70	90 -90 73	-80	* 72	* * *	*	dB ⁽⁵⁾ dB dB
Signal-to-(Noise+Distortion) Signal-to-Noise Full-Power Bandwidth ⁽⁶⁾	$f_{\text{IN}} = 45\text{kHz}$	70	73 250		72	* *		dB kHz

ELECTRICAL CHARACTERISTICS (Cont.)

At $T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$, $f_S = 100\text{kHz}$, $V_{DIG} = V_{ANA} = +5V$, using internal reference and fixed resistors shown in Figure 4, unless otherwise specified.

			ADS7808U	l		ADS7808UE	3	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
SAMPLING DYNAMICS Aperture Delay Aperture Jitter Transient Response Overvoltage Recovery ⁽⁷⁾	FS Step	Sufficier	40 nt to meet A	AC specs		* *	*	ns ns µs ns
REFERENCE Internal Reference Voltage Internal Reference Source Current (Must use external buffer)	No Load	2.48	2.5 1	2.52	*	* *	*	V μA
External Reference Voltage Range for Specified Linearity External Reference Current Drain	Ext. 2.5000V Ref	2.3	2.5	2.7	*	*	*	V μA
DIGITAL INPUTS Logic Levels V _{IL} V _{IH} (8) I _{IL} I _{IH}	V _{IL} = 0V V _{IH} = 5V	-0.3 +2.0		+0.8 V _D +0.3V ±10 ±10	*		* * *	V V μΑ μΑ
DIGITAL OUTPUTS Data Format Data Coding Pipeline Delay Data Clock Internal (Output Only When	EXT/ĪNT LOW	Serial 12 bits Binary Two's Complement or Straight Binary Conversion results only available after completed conversion. Selectable for internal or external data clock 2.3					version.	MHz
Transmitting Data) External (Can Run Continually)	EXT/INT HIGH	0.1		10	*		*	MHz
V _{OL} V _{OH} Leakage Current	I_{SINK} = 1.6mA I_{SOURCE} = 500 μ A High-Z State, V_{OUT} = 0V to V_{DIG}	+4		+0.4 ±5	*		*	V V μA
Output Capacitance	High-Z State			15			15	pF
POWER SUPPLIES Specified Performance VDIG VANA IDIG IANA Power Dissipation: PWRD LOW	Must be \leq V _{ANA} +4.75 V _{DIG} = V _{ANA} = 5V, f _S = 100kHz	+4.75 +5 0.3 16	+5 +5.25	+5.25 *	* * * *	*	* V mA mA	V
PWRD HIGH	VDIG = VANA = SV, IS = IOOKHZ		50	100		*	*	μW
TEMPERATURE RANGE Specified Performance Derated Performance Storage Thermal Resistance (θ_{1A})		-40 -55 -65		+85 +125 +150	* * *		* * *	°C °C °C
SO (OJA)		75			*		°CW	


^{*} Specifications same as ADS7808U.

NOTES: (1) LSB means Least Significant Bit. For the ±10V input range, one LSB is 4.88mV. (2) Typical rms noise at worst case transitions and temperatures. (3) As measured with fixed resistors in Figure 4. Adjustable to zero with external potentiometer. (4) For bipolar input ranges, full scale error is the worst case of –Full Scale or +Full Scale untrimmed deviation from ideal first and last code transitions, divided by the transition voltage (not divided by the full-scale range) and includes the effect of offset error. For unipolar input ranges, full scale error is the deviation of the last code transition divided by the transition voltage. It also includes the effect of offset error. (5) All specifications in dB are referred to a full-scale ±10V input. (6) Full-Power Bandwidth defined as Full-Scale input frequency at which Signal-to (Noise + Distortion) degrades to 60dB. (7) Recovers to specified performance after 2 x FS input overvoltage. (8) The minimum V_{IH} level for the DATACLK signal is 3V.

PIN ASSIGNMENTS

PIN#	NAME	DESCRIPTION
1	R1 _{IN}	Analog Input. See Table I and Figure 4 for input range connections.
2	AGND1	Analog Ground. Used internally as ground reference point. Minimal current flow.
3	R2 _{IN}	Analog Input. See Table I and Figure 4 for input range connections.
4	R3 _{IN}	Analog Input. See Table I and Figure 4 for input range connections.
5	CAP	Reference Buffer Capacitor. 2.2μF Tantalum to ground.
6	REF	Reference Input/Output. Outputs internal 2.5V reference. Can also be driven by external system reference. In both cases, bypass to ground with a $2.2\mu F$ Tantalum capacitor.
7	AGND2	Analog Ground.
8	SB/BTC	Select Straight Binary or Binary Two's Complement data output format. If HIGH, data will be output in a Straight Binary format. If LOW, data will be output in a Binary Two's complement format.
9	EXT/INT	Select External or Internal Clock for transmitting data. If HIGH, data will be output synchronized to the clock input on DATACLK. If LOW, a convert command will initiate the transmission of the data from the previous conversion, along with 12 clock pulses output on DATACLK.
10	DGND	Digital Ground.
11	SYNC	Synch Output. If EXT/INT is HIGH, either a rising edge on R/C with CS LOW or a falling edge on CS with R/C HIGH will output a pulse on SYNC synchronized to the external DATACLK.
12	DATACLK	Either an input or an output depending on the EXT/INT level. Output data will be synchronized to this clock. If EXT/INT is LOW, DATACLK will transmit 12 pulses after each conversion, and then remain LOW between conversions.
13	DATA	Serial Data Output. Data will be synchronized to DATACLK, with the format determined by the level of SB/BTC. In the external clock mode, after 12-bits of data, the ADS7808 will output the level input on TAG as long as CS is LOW and R/C is HIGH (see Figure 3.) If EXT/INT is LOW, data will be valid on both the rising and falling edges of DATACLK, and between conversions DATA will stay at the level of the TAG input when the conversion was started.
14	TAG	Tag Input for use in external clock mode. If EXT/INT is HIGH, digital data input on TAG will be output on DATA with a delay of 12 DATACLK pulses as long as $\overline{\text{CS}}$ is LOW and R/ $\overline{\text{C}}$ is HIGH. See Figure 3.
15	R/C	Read/Convert Input. With \overline{CS} LOW, a falling edge on R/ \overline{C} puts the internal sample/hold into the hold state and starts a conversion. When EXT/ $\overline{ NT }$ is LOW, this also initiates the transmission of the data results from the previous conversion. If EXT/ $\overline{ NT }$ is HIGH, a rising edge on R/ \overline{C} with \overline{CS} LOW, or a falling edge on \overline{CS} with R/ \overline{C} HIGH, transmits a pulse on SYNC and initiates the transmission of data from the previous conversion.
16	cs	Chip Select. Internally OR'ed with R/\overline{C} .
17	BUSY	Busy Output. Falls when a conversion is started, and remains LOW until the conversion is completed and the data is latched into the output shift register. \overline{CS} or R/\overline{C} must be HIGH when \overline{BUSY} rises, or another conversion will start without time for signal acquisition.
18	PWRD	Power Down Input. If HIGH, conversions are inhibited and power consumption is significantly reduced. Results from the previous conversion are maintained in the output shift register.
19	V_{ANA}	Analog Supply Input. Nominally +5V. Connect directly to pin 20, and decouple to ground with $0.1\mu F$ ceramic and $10\mu F$ Tantalum capacitors.
20	V_{DIG}	Digital Supply Input. Nominally +5V. Connect directly to pin 19. Must be ≤ V _{ANA} .

PIN CONFIGURATION

ANALOG INPUT RANGE	CONNECT R1 _{IN} VIA 200 Ω TO	CONNECT R2 _{IN} VIA 100 Ω TO	CONNECT R3 _{IN} TO	IMPEDANCE
±10V	V _{IN}	AGND	CAP	22.9kΩ
±5V	AGND	V _{IN}	CAP	13.3kΩ
±3.33	V _{IN}	V _{IN}	CAP	10.7kΩ
0V to 10V	AGND	V _{IN}	AGND	13.3kΩ
0V to 5V	AGND	AGND	V _{IN}	10.0kΩ
0V to 4V	V _{IN}	AGND	V _{IN}	10.7kΩ

TABLE I. Input Range Connections. See Figure 4 for complete information.

SYMBOL	DESCRIPTION	MIN	TYP	MAX	UNITS
t ₁	Convert Pulse Width	40		4500	ns
t ₂	BUSY Delay			65	ns
t ₃	BUSY LOW			8	μs
t ₄	BUSY Delay after End of Conversion		220		ns
t ₅	Aperture Delay		40		ns
t ₆	Conversion Time		5.7	8	μs
t ₇	Acquisition Time			2	μs
t ₆ + t ₇	Throughput Time		9	10	μs
t ₈	R/C LOW to DATACLK Delay		450		ns
t ₉	DATACLK Period		440		ns
t ₁₀	Data Valid to DATACLK HIGH Delay	20	75		ns
t ₁₁	Data Valid after DATACLK LOW Delay	100	125		ns
t ₁₂	External DATACLK Period	100			ns
t ₁₃	External DATACLK HIGH	20			ns
t ₁₄	External DATACLK LOW	30			ns
t ₁₅	DATACLK HIGH Setup Time	20		t ₁₂ + 5	ns
t ₁₆	R/\overline{C} to \overline{CS} Setup Time	10			ns
t ₁₇	SYNC Delay After DATACLK HIGH	15		35	ns
t ₁₈	Data Valid Delay	25		55	ns
t ₁₉	CS to Rising Edge Delay	25			ns
t ₂₀	Data Available after CS LOW	4.5			μs

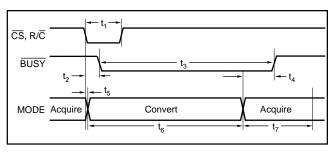


FIGURE 1. Basic Conversion Timing.

TABLE II. Conversion and Data Timing $T_A = -40^{\circ}\text{C}$ to +85°C.

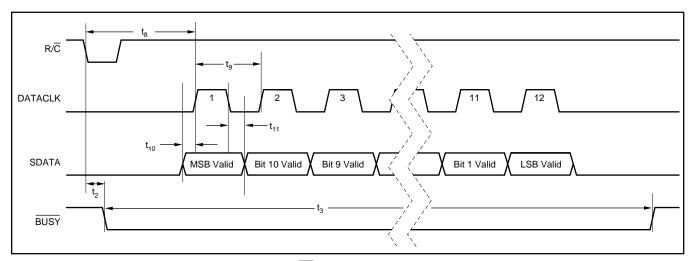


FIGURE 2. Serial Data Timing Using Internal Clock. ($\overline{\text{CS}}$, EXT/ $\overline{\text{INT}}$ and TAG Tied LOW.)

SPECIFIC FUNCTION	cs	R/C	BUSY	EXT/INT	DATACLK	PWRD	SB/BTC	OPERATION
Initiate Conversion and Output Data Using Internal Clock	1>0	0	1	0	Output	0	х	Initiates conversion "n". Data from conversion "n–1" clocked out on DATA synchronized to 12 clock pulses output on DATACLK.
	0	1>0	1	0	Output	0	х	Initiates conversion "n". Data from conversion "n-1" clocked out on DATA synchronized to 12 clock pulses output on DATACLK.
Initiate Conversion and	1>0	0	1	1	Input	0	х	Initiates conversion "n".
Output Data Using External Clock	0	1>0	1	1	Input	0	х	Initiates conversion "n".
Clock	1>0	1	1	1	Input	х	х	Outputs a pulse on SYNC followed by data from conversion "n" clocked out synchronized to external DATACLK.
	1>0	1	0	1	Input	0	х	Outputs a pulse on SYNC followed by data from conversion "n-1" clocked out synchronized to external DATACLK. ⁽¹⁾ Conversion "n" in process.
	0	0>1	0	1	Input	0	х	Outputs a pulse on SYNC followed by data from conversion "n-1" clocked out synchronized to external DATACLK . ⁽¹⁾ Conversion "n" in process.
Incorrect Conversions	0	0	0>1	х	х	0	х	CS or R/C must be HIGH or a new conversion will be initiated without time for acquisition.
Power Down	х	х	х	х	х	0	х	Analog circuitry powered. Conversion can proceed.
	x	x	х	х	х	1	х	Analog circuitry disabled. Data from previous conversion maintained in output registers.
Selecting Output Format	х	x	х	х	х	х	0	Serial data is output in Binary Two's Complement format.
	х	x	x	х	x	x	1	Serial data is output in Straight Binary format.

NOTE: (1) See Figure 3b for constraints on previous data valid during conversion.

Table III. Control Truth Table.

							DIGITAL OUTPUT				
							BINARY TWO COMPLEMENT (SB/BTC LO	NT	STRAIGHT BIN (SB/BTC HIC		
DESCRIPTION			ANALOG	INPUT			HEX BINARY CODE	CODE	HEX BINARY CODE	CODE	
Full-Scale Range	±10	±5	±3.33V	0V to 5V	0V to 10V	0V to 4V					
Least Significant Bit (LSB)	4.88mV	2.44mV	1.63mV	1.22mV	2.44mV	0.98mV					
+Full Scale (FS - 1LSB)	9.99512V	4.99756V	3.33171V	4.99878V	9.99756V	3.99902V	0111 1111 1111	7FF	1111 1111 1111	FFF	
Midscale	0V	0V	0V	2.5V	5V	2V	0000 0000 0000	000	1000 0000 0000	800	
One LSB Below Midscale	-4.88mV	-2.44mV	-1.63mV	2.49878V	4.99756V	1.99902V	1111 1111 1111	FFF	0111 1111 1111	7FF	
-Full Scale	-10V	-5V	-3.333333V	0V	0V	0V	1000 0000 0000	800	0000 0000 0000	000	

Table IV. Output Codes and Ideal Input Voltages.

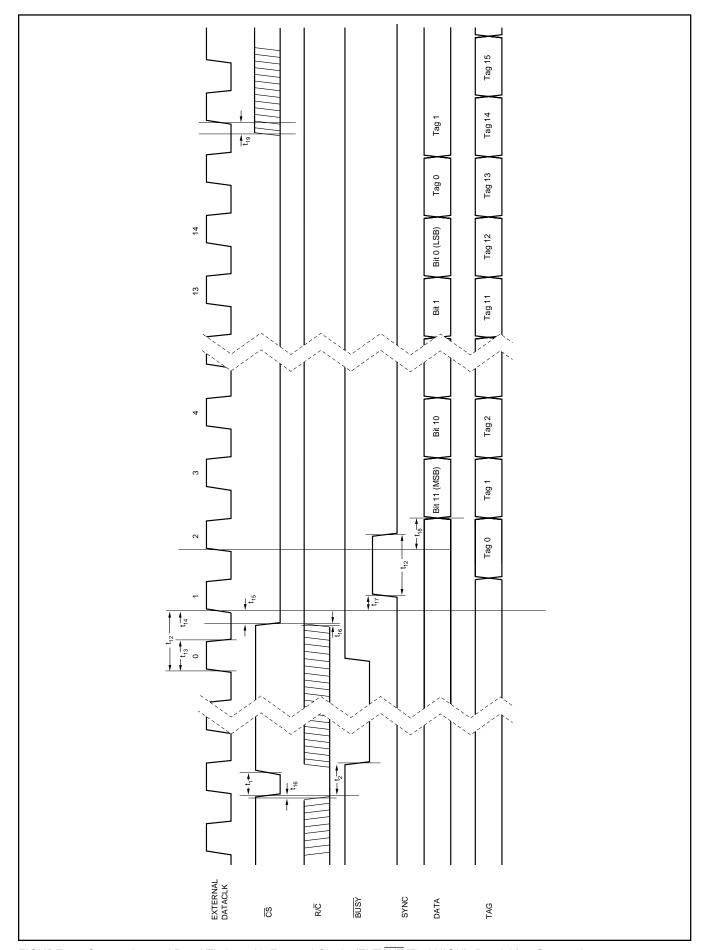


FIGURE 3a. Conversion and Read Timing with External Clock. (EXT/INT Tied HIGH). Read After Conversion.

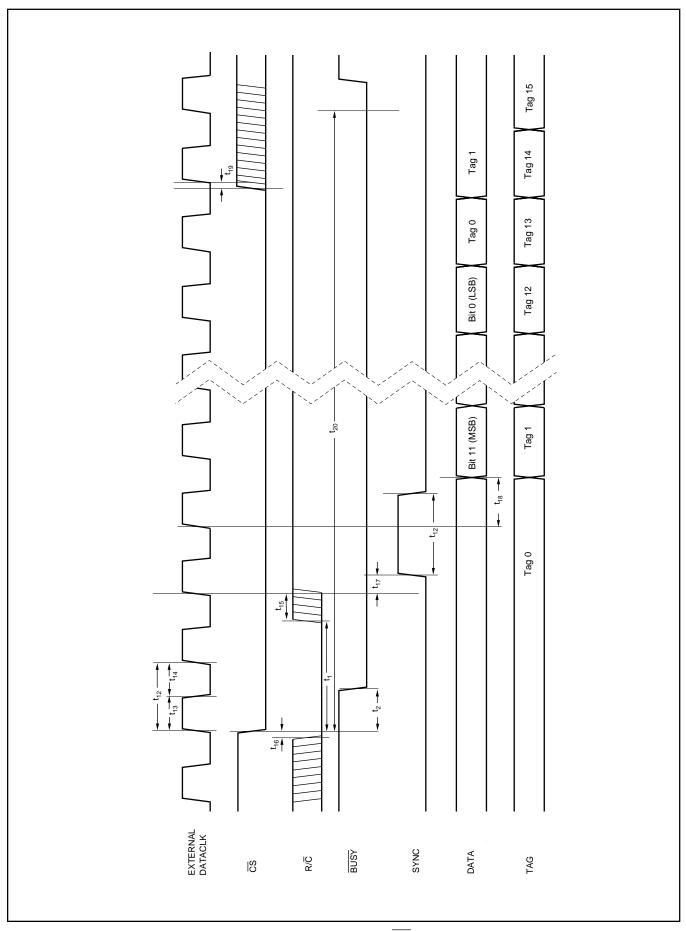


FIGURE 3b. Conversion and Read Timing with External Clock. (EXT/INT Tied HIGH.) Read During Conversion (Previous Conversion Results).

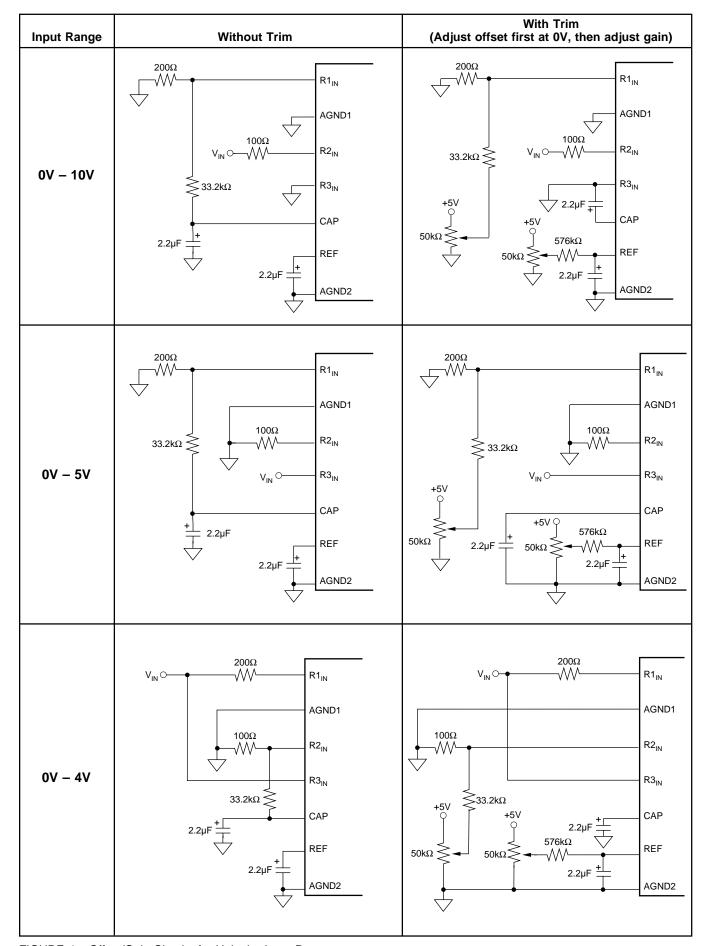


FIGURE 4a. Offset/Gain Circuits for Unipolar Input Ranges.

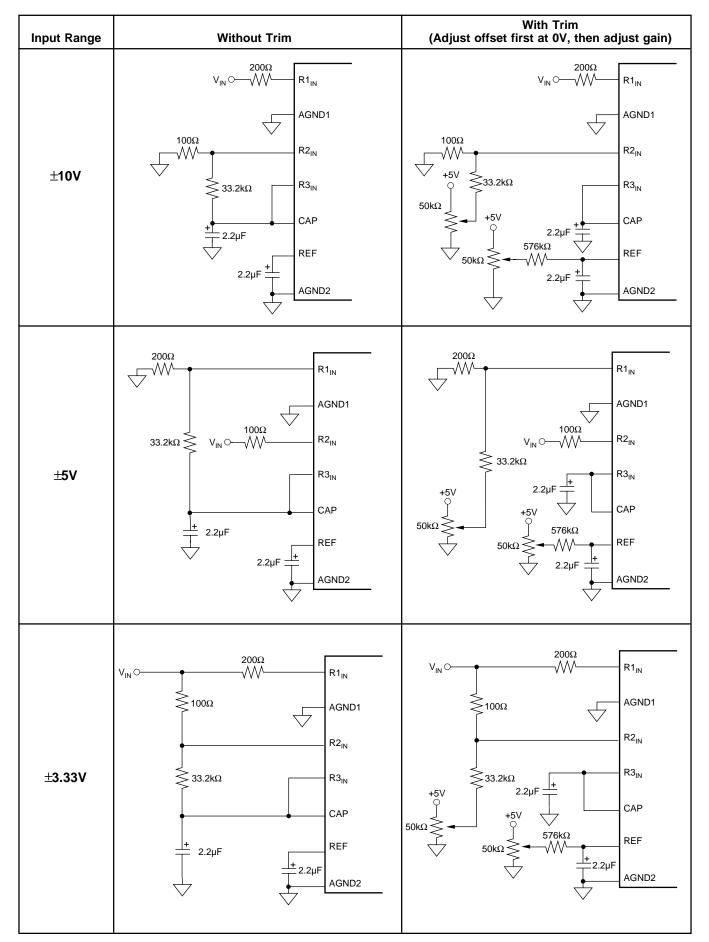


FIGURE 4b. Offset/Gain Circuits for Bipolar Input Ranges.

11-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing		Qty	(2)		(3)		(4)	
ADS7808P	OBSOLETE	PDIP	N	20		TBD	Call TI	Call TI			
ADS7808PB	OBSOLETE	PDIP	N	20		TBD	Call TI	Call TI			
ADS7808U	NRND	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	ADS7808U	
ADS7808U/1K	NRND	SOIC	DW	20	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	ADS7808U	
ADS7808U/1KE4	NRND	SOIC	DW	20	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	ADS7808U	
ADS7808UB	NRND	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	ADS7808U B	
ADS7808UBG4	NRND	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	ADS7808U B	
ADS7808UE4	NRND	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	ADS7808U	

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight

in homogeneous material)

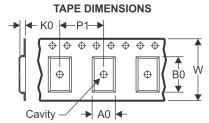
⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

PACKAGE OPTION ADDENDUM

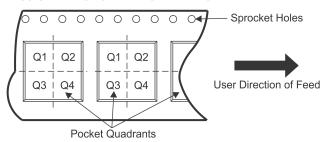
11-Apr-2013


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

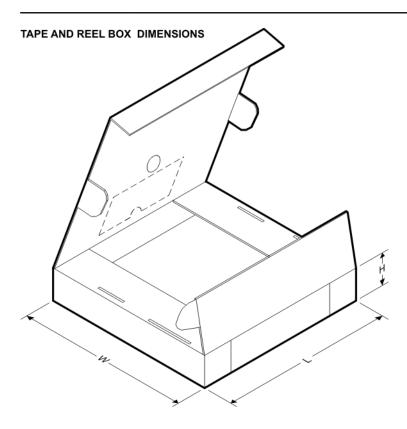
PACKAGE MATERIALS INFORMATION

www.ti.com 9-Sep-2013


TAPE AND REEL INFORMATION

A0	
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

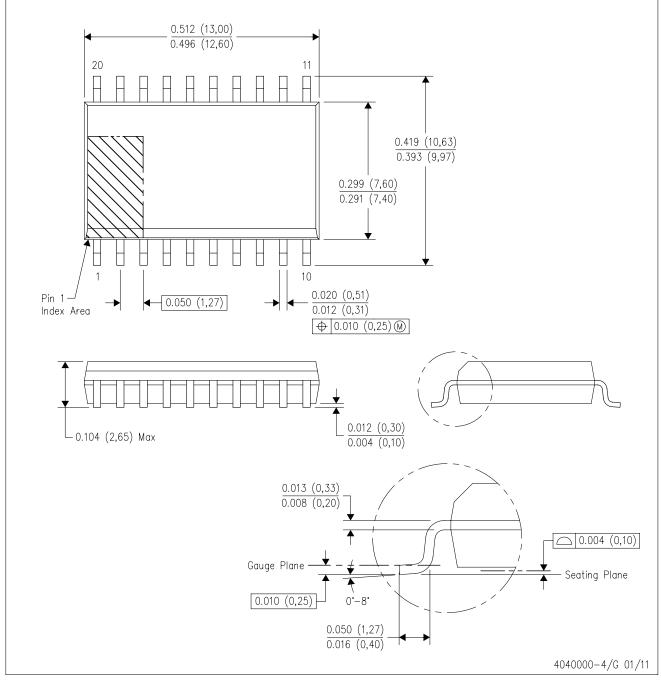


*All dimensions are nominal

Device	_	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ADS7808U/1K	SOIC	DW	20	1000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 9-Sep-2013

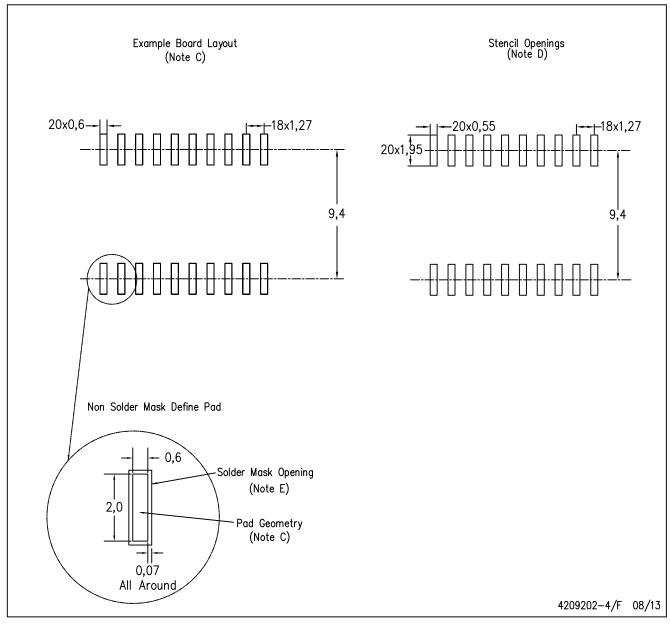


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ADS7808U/1K	SOIC	DW	20	1000	367.0	367.0	45.0

DW (R-PDSO-G20)

PLASTIC SMALL OUTLINE


NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AC.

DW (R-PDSO-G20)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Refer to IPC7351 for alternate board design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u>

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>