Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

User's Manual

M-78F0714

Micro-Board for μPD78F0714 Microcontroller For Use with Motor Control I/O Interface Board

Document No. U17707EU1V0UMU1 ©December 2005. NEC Electronics America, Inc. All rights reserved. The information in this document is current as of December 2005. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.

No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.

NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such NEC Electronics products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.

Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC Electronics no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.

While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.

NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

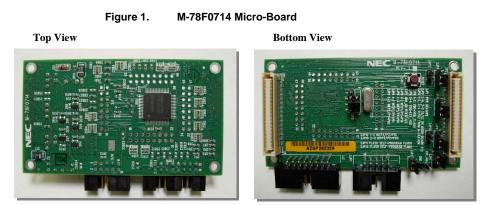
The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact NEC Electronics sales representative in advance to determine NEC Electronics 's willingness to support a given application.

Notes:

- 1. "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- 2. "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

M8E 02.10

Revision History


Date	Revision	Section	Description
12-2005	—		First release

Contents

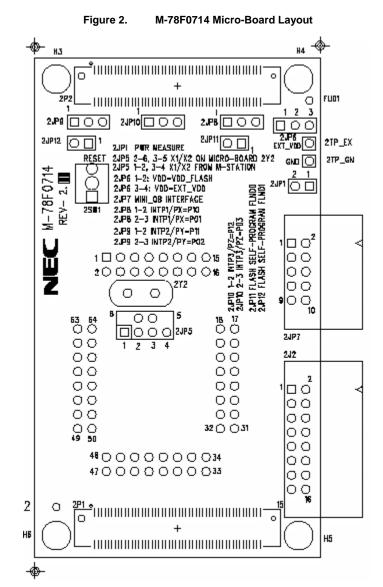
1.	Intr	oduction	1
2.	SYS	TEM SPECIFICATIONS	2
	2.1 2.2	Specifications of the µPD78F0714 Microcontroller Specifications of the M-78F0714 Micro-Board	2
3.	Har	dware Features	3
	3.1 3.2	Operating Modes. 3.1.1 Demonstration Configuration 3.1.2 Debugging Configuration Beween Supply Supply	4 4
	5.2 3.3 3.4	Power Supply Reprogramming the MCU's Flash Memory Measuring Power Consumption of the µPD78F0714	4
4.	On-	Board Components	6
	4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12	2J2: 16-Pin Flash Programming Interface Header SB× Array: Flash Interface Signal Selection	

1. Introduction

The M-78F0714 micro-board is designed to demonstrate and evaluate the CPU and on-chip peripheral functions of the NEC Electronics 8-bit µPD78F0714 microcontroller (MCU). The microboard can be operated in standalone mode to evaluate the main features of the MCU or it can be connected through two 100-pin connectors to a separately sold motor control interface board (MC-IO) to evaluate the MCU's dedicated 3-phase motor control peripherals. The micro-board also may be used with a low-cost evaluation system called the *M-Station* (sold in the U.S. only), but this manual only describes configuration and operation of the M-78F0714 when used with the MC-IO board.

2. SYSTEM SPECIFICATIONS

2.1 Specifications of the µPD78F0714 Microcontroller


- Flash program memory of 32 KB
- High-speed data RAM of 1 KB
- Forty-eight I/O ports: 40 CMOS input/output (I/O) pins and eight CMOS inputs

NE

- Eight-channel, 10-bit analog-to-digital (A/D) converter
- Serial interfaces
 - One-channel universal asynchronous receiver/transmitter (UART)
 - One-channel, 3-wire serial I/O
- Timers
 - One-channel, 10-bit inverter control timer
 - One-channel, 16-bit up/down counter for motor encoder interfacing
 - One-channel, 16-bit timer/event counter
 - One-channel, 8-bit timer/event counter
 - Two-channel, 8-bit timer
 - One-channel watchdog timer
- Eleven timer outputs (with six inverter control outputs for motor driving)
- Twenty vectored interrupts
- Eight external interrupts
- ♦ 4.0–5.5 V_{DC} power supply voltage
- 64-pin, 12 × 12 mm TQFP (μPD78F0714GK-9ET)
- ♦ Reference: µPD78F0714 User's Manual (U16928EJ1V0UD00)

2.2 Specifications of the M-78F0714 Micro-Board

- On-board 20 MHz main clock
- MCU I/O port connector that provides all I/O pins of the μPD78F0714
- 16-pin debugging and flash programming interface connector
- 10-pin QB-78K0MINI on-chip debugging interface connector
- Board size of 3.5×2 inches (W × L)

Table 1	Default	Jumper	Settings
	Derault	Jumper	ocunga

Jumper	Setting	Function	Description
2JP1	1–2	VDD_KX-VDD	μ D78F0714 V _{DD} is derived from VDD_KX
2JP5	2–6	X1/X2 select	Selects X1 and X2 from on-board oscillator
	3–5	Must be selected as a pair	
2JP6	2–3	VDD_KX – 2TPEXTVDD1	Supplies external VDD
2JP8	2–3	INTP1_PX to P01	Sensor input to P01/INTP1
2JP9	2–3	INTP2_PY to P02	Sensor input to P02/INTP2
2JP10	2–3	INTP3_PZ to P03	Sensor input to P03/INTP3
2JP7	Open		
2JP11	Open		
2JP12	Open		

3.1 Operating Modes

3.1.1 Demonstration Configuration

In standalone mode, the M-78F0714 micro-board can be used to execute programs loaded into the MCU's on-chip flash memory for the purpose of evaluating the CPU and its on-chip peripheral functions. To configure for standalone operation, attach the M-78F0714 micro-board to the MC-IO board through the two 100-pin connectors. By default, the M-78F0714 micro-board is configured to operate in this mode, as shown in Table 1.

3.1.2 Debugging Configuration

To debug a user program, connect the M-78F0714 micro-board to the separately sold 78K0MINI in-circuit emulator (ICE) using the 2JP7 on-chip debugging connector. In debugging mode, the 78K0MINI ICE supplies the clock to the CPU through that connector. Also disconnect the on-board, 20-MHz crystal oscillator by removing the jumpers on the 2JP5 headers

Alternatively the M-78F0714 board can be debugged using the 78K0 IECUBE full-function ICE. (Contact your NEC Electronics representative for additional information.)

3.2 Power Supply

When pins 1 and 2 of 2JP6 are connected, the MC-IO board supplies 5V_{DC} to the M-78F0714 micro-board through the two 100-pin connectors.

To use an external power source, connect pins 2 and 3 of 2JP6 with a jumper block and connect the power source ($5V_{DC}$ max.) to 2TP_EXTVDD1 and 2TP_GND1.

3.3 Reprogramming the MCU's Flash Memory

The on-chip flash memory can be reprogrammed at any time. To reprogram the on-chip flash memory, a dedicated flash programmer such as the PG-FP4-E (sold separately) can be used when connected to 2J2 16-pin header terminal. When the 78K0MINI ICE is used for debugging and the code is downloaded, the flash memory will retain the program.

3.4 Measuring Power Consumption of the µPD78F0714

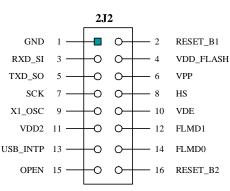
The power select jumper, 2JP1, is designed to connect an ampere meter to measure accurate power consumption for the μ PD78F0714, regardless of which power source is selected. To measure power consumption for the μ PD78F0714:

- 1. Remove the power select jumper on 2JP1.
- 2. Connect an ampere meter on the 2JP1 terminals.

Setting	Selected Power Source	Status
1 to 2	Connect with jumper: VDD_KX to VDD	Default
1 to 2	Connect with ampere meter: CPU current measurement	

Table 1. 2JP1: Current Measurement Terminal

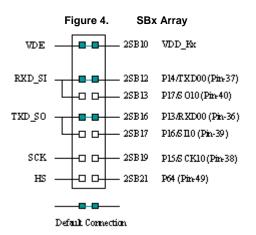
Special Note: 2JP1 is a dedicated terminal connected to the V_{DD} pin of the μ PD78F0714 so that MCU power consumption can be measured accurately. Therefore, the M-78F0714 micro-board can remain connected to the MC-IO board during power measurement.


4. On-Board Components

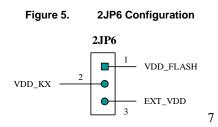
4.1 2J2: 16-Pin Flash Programming Interface Header

The 16-pin header provides flash programming Interface for the M-78F0714. To program the flash, the NEC Electronics flash programmer such as the PG-FP4-E can be used. For instructions on how to program the flash, refer to the *PG-FP4-E User's Manual*.

Note: The 16-pin flash programming interface header can also be used for debugging the program running on the M-78F0714 using the M-Station *that is sold in the U.S. only*. Some of the pin names shown in Figure 2 are dedicated for the M-Station interface. This manual only lists the interface signals for the PG-FP4-E flash programmer.


Figure 3. Signal Assignments for 16-Pin Debugging and Flash Programming Interface Connector

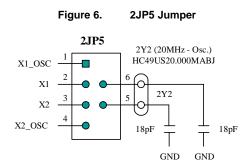
Pin No.	M-78F0714	PG-FP4-E Flash Programmer
1	GND	GND
2	RESET_B1	Reset to M-78F0714
3	RXD_SI	Serial I/O or UART data receive
4	VDD_FLASH	VDD from Flash programmer
5	TXD_SO	Serial I/O or UART data transmit
6	VPP	Not Used
7	SCK	SCK
8	HS	Handshake
9	X1_OSC	Clock to M-78F0714
10	VDE	VDD
11	VDD2	Not Used
12	FLMD1	Not Used
13	USB_INTP	Not Used
14	FLMD0	FLMD0
15	OPEN	
16	RESET_B2	Not Used


Table 2. Flash Programming Signal Descriptions

The SB× array (solder blobs) is used to connect the flash programming interface signals on the 16pin 2J2 header to appropriate pins of the μ PD78F0714. The default settings shown in Figure 4 are configured for flash programming.

4.3 2JP6: VDD_KX Selection

The M-78F0714 micro board can derive power from two sources: EXT_VDD, a user-supplied external power source between 4.0–5.5V_{DC} or VDD_FLASH, a power source derived from the MC-IO board's two 100-pin connectors, 2P1 and 2P2.


Setting	Selected Power Source	Status
1 to 2	Select VDD_FLASH from MC-IO board	Default
2 to 3	Select EXT_VDD from user's target system	

4.4 2JP5: Main Clock Selection Jumper

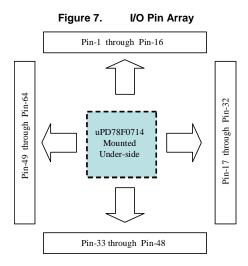
A 20 MHz crystal oscillator (2Y2) is mounted on the M-78F0714 micro-board as the main clock. If desired, it can be removed and replaced by a different model. A Citizen HC49US Series quartz crystal oscillator that uses 18-picofarad (pF) biasing capacitors for a range of frequencies is recommended.

The X1 and X2 pins of the μ PD78F0714 are also connected to the I/O pin array, and may be driven by external connection to the appropriate pins of the I/O pin array. In this case, all pins of 2JP5 should be left open.

The 2JP5 should be left open when using the 10-pin connector, 2JP7, connecting to the on-chip debugging emulator, such as QB-78K0MINI.

Table 4. 2JP5 Settings

Setting	Selected Main Clock Source	X1 Clock	Status
2 to 6	Select X2 from M-78F0714 micro-board	X1 = 20 MHz	Default
3 to 5	Select X1 from M-78F0714 micro-board	Must be selected as a pair	
1 to 2	Select X1_OSC from MC-IO board	Note	
Open	When using OCD connector 2JP7		
Open	When using clock from 2J1on the target system		


Note: For a driven clock, X1_OSC (X1_OSC from the MC-IO board connector 2P1) can be connected to X1 by inserting a jumper on pin 1 to pin 2 while X2_OSC is open. Refer to the μ PD78F0714 User's Manual for information about configuring a driven clock for X1 and X2.

4.5 Subclock Selection

The subclock is not supported for the µPD78F0714.

4.6 1J1: µPD78F0714 I/O Pin Array

1J1 is a pin array connecting the μ PD78F0714 I/O pins. It is an optional array for mounting the micro-board directly onto your target system, or for allowing easy access to all I/O pins. 1J1 is divided into four groups of 16 pins around the MCU.

4.7 2SW1 Pushbutton Switch

2SW1 is a pushbutton switch. Pressing 2SW1 connects the MCU's RESET pin to GND and resets the MCU.

4.8 2JP11: FLMD0 Connection for Flash Self-Programming Mode

Setting	Selected Power Source	Status
1 to 2	Open: normal operation	Default
1 to 2	Connect: P10 is used to drive FLMD0 for flash programming mode	

4.9 2JP12: FLMD01 Connection for Flash Self-Programming Mode

Setting	Selected Power Source	Status
1 to 2	Open: normal operation	Default
1 to 2	Connect: P11 is used to drive FLMD1 for flash programming mode	

4.10 Solder Blob Selection

Several signals of the μ PD78F0714 are connected to a *solder blob*, designated as SB× on the microboard. The solder blob is formed with two pads, making it easier to connect or disconnect with a blob of solder.

Figure 8. Solder Blob Pads

Connector	Description	Default	
2SB1-2SB8	Optional connection for P2[7:0] termination with $1M\Omega$ to GND	Connected	
2SB22	Optional connection for EVDD to VDD	Connected	
2SB23	Optional connection for AVREF to VDD	Connected	

Table 5. SB× Connections

Connector	Description	Default
2SB10	Optional connection for VDE to VDD_KX	Connected
2SB11	Optional connection for host computer interrupt to P00/INTP0	Open
2SB12	Optional connection for RXD_SI to P14/TXD00	Connected
2SB13	Optional connection for RXD_SI to P17/SO10	Open
2SB16	Optional connection for TXD_SO to P13/RXD00	Connected
2SB17	Optional connection for TXD_SO to P16/SI10	Open
2SB19	Optional connection for SCK to P15/SCK10_B	Open
2SB21	Optional connection for HS (handshake) to P64	Open
2SB24	Optional connection for RESET_QB to RESET_KX	Open (note 1)
2SB25	Optional connection for X2_QB to P32	Open (note 2)
2SB26	Optional connection for X2_QB to X2	Connected (note 2)
2SB27	Optional connection for X1_QB to X1	Connected (note 3)
2SB28	Optional connection for X1_QB to P31	Open (note 3)
2SB29	Optional connection for INTP1_PX for speed measure	Connected (note 4)
2SB30	Optional connection for INTP2_PY for speed measure	Open (note 4)
2SB31	Optional connection for INTP3_PZ for speed measure	Open (note 4)

Notes

- 1) SBx optional connections when using QB-78K0MINI ICE (refer to document no. U17029EJ2V0UM00)
 - When QB-78K0MINI is used, the QB-78K0MINI in-circuit emulator (ICE) handles the RESET connection.
 - When QB-78K0MINI is not used, connect 2JP7.1 to 2JP7.2 (10-pin header) with a shorting jumper.
 - 22SB24 can be used to permanently connect RESETB_KX to RESETB_QB.
- X2_QB: X2_QB is a single-wire, bi-directional data input that can be X2 or P32 (refer to the QB-78KOMINI User's Manual).
 - 2SB25 connects X2_QB to P32.
 - 2SB26 connects X2_QB to X2 (factory default).
- 3) X1_QB: X1_QB can be X1 or P31.
 - 2SB27 connects X1_QB to X1.
 - 2SB28 connects X1_QB to P31.
- 4) Motor speed measurement input
 - INTP1_PX, INTP2_PY or INTP3_PZ are signals from motor control I/O board.
 - These are the signals providing sensor (HALL or back-EMF detection) inputs.
 - The selected INTP_x signal is input to P53/TI000 (capture/compare register) of the on-chip timer for speed measurement.

4.11 2JP7: QB-78K0MINI ICE Connector

2JP7 is provided for connection to the QB-78K0MINI ICE. When QB-78K0MINI is connected, the MINICUBE controls the MCU's RESET line. When QB-78K0MINI is not connected, pins 1 and 2 of 2JP7 should be shorted to control the RESET from the on-board 2SW1 pushbutton or the MC-IO board's pushbutton through the 100-pin 2P2 target connector. To connect pins 1 and 2 on 2JP7, it is recommended to use a jumper block instead of SB×.

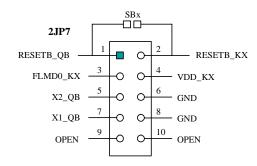


Figure 9. Micro-Board Connection to the MINICUBE

4.12 2P1 and 2P2: 100-Pin Connectors

Two 100-pin connectors are used to connect all μ PD78F0714 signals to the MC-IO board. The μ PD78F0714 signals are arranged so that selected signals connect to the motor control function signals on the MC-IO board, while the others can be used for prototyping. All signals are connected to pre-assigned positions of the 2P1 and 2P2 connectors.

The mating connector for the 100-pin connectors is a 0.6-millimeter (mm), single-row surface-mount technology type (Hirose FX8-Series, part number FX8C-100P-SV6).

Tables 8 and 9 show the pin assignments of the MCU to the 100-pin 2P1 and 2P2 connectors that correspond to the MC-IO board's 100-pin J1 and J2 connectors.

MC-78F0714 Micro-Board			N	IC-IO Board	
2P1 Pin Number	Pin Name	CPU Pin Number	J1 Pin Number	Pin Name	Motor Control Function
1			1	GND_IS	CPU ground
2			2	GND_IS	CPU ground
3	P13/RXD00	36	3	RS232_RXD	RS232 transceiver TXD output
4	P10	33	4	RS232_CTS	RS232 transceiver CTS output
5	P14/TXD00	37	5	RS232_TXD	RS232 transceiver RXD input
6	P11	34	6	RS232_RTS	RS232 transceiver RTS output
7	P64	49	7	J1007	N/A
8	P65	50	8	J1008	N/A
9	P27/ANI7	57	9	J1009	Power Module temperature
10			10	J1010	

	MC-78F0714 Micro-Board	4	N	IC-IO Board	
2P1 Pin Number	Pin Name	CPU Pin Number	J1 Pin Number	Pin Name	Motor Control Function
11	P00/INTP0/TW0TOFFP	12	11	P00_ITRIP	Over- current detection
12	P01/INTP1	11	12	J1012	Hall1/BEMF1 detect (from 2.IP8)
13	P02/INTP2	10	13	J1013	Hall2/BEMF detect (from 2JP9)
14	P03/INTP3	9	14	J1014	Hall3/BEMF detect (from 2.IP10)
15			15	J1015	
16			16	J1016	
17			17	J1017	
18			18	J1018	
19	P20/ANI0	64	19	J1019	Phase-U current
20	P21/ANI1	63	20	J1020	Phase-V current
21	P22/ANI2	62	21	J1021	Phase-W current
22	P23/ANI3	61	22	J1022	Motor temperature
23	P24/ANI4	60	23	J1023	Speed potentiometer
24	P25/ANI5	59	24	ANI5_ISHUNT	Common current shunt
25	P26/ANI6	58	25	J1025	Spare analogue
26	P27/ANI7	57	26	J1026	Power module temperature
27	P50	17	27	J1027	N/A
28	P51	18	28	J1028	N/A
29	P52/INTP4	19	29	J1029	N/A
30	P53/INTP5	20	30	J1030	N/A
31	P54	21	31	P54_TRIPB	Power module shut-down
32	P55/INTP6	22	32	J1032	N/A
33	P56/INTP7	23	33	J1033	N/A
34	P57	24	34	J1034	N/A
35	P40	41	35	J1035	N/A

	MC-78F0714 Micro-Bo	ard	n	IC-IO Board	
2P1 Pin Number	Pin Name	CPU Pin Number	J1 Pin Number	Pin Name	Motor Control Function
36	P41	42	36	J1036	N/A
37	P42	43	37	J1037	N/A
38	P43	44	38	J1038	N/A
39	P44	45	39	J1039	N/A
40	P45	46	40	J1040	N/A
41	P46	47	41	J1041	N/A
42	P47	48	42	J1042	N/A
43	P10	33	43	J1043	N/A
44	P11	34	44	J1044	N/A
45	P12	35	45	J1045	N/A
46	P13/RXD00	36	46	J1046	N/A
47	P14/TXD00	37	47	J1047	N/A
48	P15/SCK10_B	38	48	J1048	N/A
49	P16/SI10	39	49	J1049	N/A
50	P17/FLMD1	40	50	J1050	N/A
51			51	J1.051	
52			52	J1.052	
53			53	J1.053	
54			54	J1.054	
55	P30/BUZZ	13	55	J1.055	N/A
56	P31/PCL	14	56	J1.056	N/A
57	P32	15	57	J1.057	N/A
58	P33	16	58	J1.058	N/A
59	P70	53	59	J1059	MODE pushbutton
60	P71	54	60	J1060	REVERSE pushbutton
61	P72	55	61	J1061	FORWARD push -button
62	P73	56	62	J1062	START/STOP pushbutton

	MC-78F0714 Micro-Board		N	IC-IO Board	
2P1 Pin Number	Pin Name	CPU Pin Number	J1 Pin Number	Pin Name	Motor Control Function
63			63	J1063	
64			64	J1064	
65			65	J1065	
66			66	J1066	
67			67	J1067	
68			68	J1068	
69			69	J1069	
70			70	J1070	
71			71	J1071	
72			72	J1072	
73			73	J1073	
74			74	J1074	
75	Not used		75		
76	Not used		76		
77	Not used		77		
78	Not used		78		
79	Not used		79		
80	Not used		80		
81	Not used		81		
82	Not used		82		
83	Not used		83		
84	Not used		84		
85	Not used		85		
86	Not used		86		
87	Not used		87		
88	Not used		88		

	MC-78F0714 Micro-B	loard	r	IC-IO Board	
2P1 Pin Number	Pin Name	CPU Pin Number	J1 Pin Number	Pin Name	Motor Control Function
89	Not used		89		
90	Not used		90		
91	Not used		91		
92	Not used		92		
93	Not used		93		
94	Not used		94		
95	Not used		95		
96	Not used		96		
97	Not used		97		
98	Not used		98		
99	VDD_FLASH		99	VCC_IS	Flash programmer VDD
100	DD_FLASH		100	VCC_IS	Flash programmer VDD

 Table 7.
 J2 Connector Assignments

	MC-78F0714			MC-IO Board			
2P2 Pin Number	Pin Name	CPU Pin Number	J2 Pin Number	Pin Name	Function		
1			1	GND_IS	CPU ground		
2			2	GND_IS	CPU ground		
3			3	J2003			
4			4	J2004			
5			5	J2005			
6			6	J2006			
7	P66	51	7	J2007	N/A		
8	P67	52	8	J2008	N/A		
9	P26/ANI6	58	9	J2009	Spare analog		
10			10	J2010			
11			11	J2011			
12			12	J2012			
13			13	J2013			
14			14	J2014			
15	P64	49	15	LED0	I/O board: LED data latch 0		

	MC-78F0714			MC-IO Board				
2P2 Pin Number	Pin Name	CPU Pin Number	J2 Pin Number	Pin Name	Function			
16	P65	50	16	LED1	I/O board: LED data latch 1			
17	P66	51	17	LED2	I/O board: LED data latch 2			
18	P67	52	18	LED3	I/O board: LED data latch 3			
19	P40/RTP00	41	19	LED_A	I/O board: LED segment A			
20	P41/RTP01	42	20	LED_B	I/O board: LED segment B			
21	P42/RTP02	43	21	LED_C	I/O board: LED segment C			
22	P43/RTP03	44	22	LED_D	I/O board: LED segment D			
23	P44/RTP04	45	23	LED_E	I/O board: LED segment E			
24	P45/RTP05	46	24	LED_F	I/O board: LED segment F			
25	P46/RTP06	47	25	LED_G	I/O board: LED segment G			
26	P47/RTP07	48	26	LED_DP	I/O board: LED decimal point			
27			27	GND_IS	CPU ground			
28			28	GND_IS	CPU ground			
29	TW0TO0/RTP10	27	29	PWM_0	Phase U high			
30	TW0TO1/RTP11	28	30	PWM_1	Phase U low			
31			31	GND_IS	CPU ground			
32			32	GND_IS	CPU ground			
33	TW0TO2/RTP12	29	33	PWM_2	Phase V high			
34	TW0TO3/RTP13	30	34	PWM_3	Phase V low			
35			35	GND_IS	CPU ground			
36			36	GND_IS	CPU ground			
37	TW0TO4/RTP14	31	37	PWM_4	Phase W high			
38	TW0TO5/RTP15	32	38	PWM_5	Phase W low			
39			39	GND_IS	CPU ground			
40			40	GND_IS	CPU ground			
41	P53/INTP5/TI000	20	41	SPD_MSR	Speed measurement			
42			42	GND_IS	CPU ground			
43	P26/ANI6	58	43	J2043	Spare analog			
44	P27/ANI7	57	44	ANI7_TMP	Motor temperature			
45			45	GND_IS	CPU ground			
46			46	GND_IS	CPU ground			
47			47	INTP1_PX	To Hall1/BEMF1 selector (2JP8)			
48			48	INTP2_PY	To Hall2/BEMF2 selector (2JP9)			
49			49	GND_IS	CPU ground			
50			50	GND_IS	CPU ground			
51			51	INTP3_PZ	To Hall3/BEMF3 selector (2JP10)			
52	P20/ANI0	64	52	ANI0_IU	Phase U current			

MC-78F0714			MC-IO Board		
2P2 Pin Number	Pin Name	CPU Pin Number	J2 Pin Number	Pin Name	Function
53			53	GND_IS	CPU ground
54			54	GND_IS	CPU ground
55	P21/ANI1	63	55	ANI1_IV	Phase V current
56	P22/ANI2	62	56	ANI2_IW	Phase W current
57			57	GND_IS	CPU ground
58			58	GND_IS	CPU ground
59	P23/ANI3	61	59	ANI3_TEMP	Power module temperature
60	P55/INTP6/TIT20IUD	22	60	PX_ENCA	REVERSE pushbutton
61			61	GND_IS	CPU ground
62			62	GND_IS	CPU ground
63	P56/INTP7/TIT20CUD/TITCC0	23	63	PX_ENCB	Motor shaft encoder
64	P57/TIT20CLR/TIT20CC1	24	64	PX_ENCZ	Motor shaft encoder
65			65	GND_IS	CPU ground
66			66	GND_IS	CPU ground
67	P73	56	67	PX_START	START/STOP pushbutton
68	P72	55	68	PX_FORWAR D	FORWARD pushbutton
69			69	GND_IS	CPU ground
70			70	GND_IS	CPU ground
71	P71	54	71	PX_REVERSE	REVERSE pushbutton
72	P70	53	72	PX_MODE	MODE pushbutton
73			73	GND_IS	CPU ground
74			74	GND_IS	CPU ground
75			75	ANI4	Speed potentiometer
76			76	GND_IS	CPU ground
77			77	GND_IS	
78			78	J2078	
79	VDD	4	79	VDD_KX	External CPU VDD
80	EVDD	26	80	VDD1	CPU EVDD
81			81	J2081	
82	AVREF	1	82	AVREF	CPU AVREF
83			83	AVDD	CPU AVDD
84			84	J2084	
85	RESET_B	8	85	TG_RST	CPU reset
86	FLMD0	3	86	VPP_FLMD0	CPU FLMD0
87			87	J2087	
88	X2	7	88	X2	CPU X2
89	X1	6	89	X1	CPU X1
90			90	J2090	
91			91	J2091	

MC-78F0714			MC-IO Board		
2P2 Pin Number	Pin Name	CPU Pin Number	J2 Pin Number	Pin Name	Function
92			92	J2092	
93			93	J2093	
94			94	J2094	
95			95	J2095	
96			96	J2096	
97			97	J2097	
98			98	J2098	
99			99	VCC_IS	Non-isolated power (+5V DC)
100			100	VCC_IS	Non-isolated power (+5V DC)