

## TS1003 Op Amp Demo Board

#### **FEATURES**

- > 0.8V to 5.5V Single-supply operation
- > AC-coupled Inverting configuration supplied
- Fully Assembled and Tested
- 2mm x 2mm 2-layer demo board

#### **COMPONENT LIST**

| DESIGNATION                                             | QTY | DESCRIPTION       |
|---------------------------------------------------------|-----|-------------------|
| C1, C2                                                  | 2   | 0.1µF ± 10%       |
|                                                         |     | capacitors (0805) |
| C6                                                      | 1   | 1μF ±10%          |
|                                                         |     | capacitors (0805) |
| R7                                                      | 1   | 500kΩ ± 1%        |
|                                                         |     | resistor (0805)   |
| R6, R10                                                 | 2   | 1MΩ ± 1%          |
|                                                         |     | resistors (0805)  |
| R8, R9                                                  | 2   | 1.25MΩ ± 1%       |
|                                                         |     | resistors (0805)  |
| U1                                                      | 1   | TS1003            |
|                                                         |     | operational       |
|                                                         |     | amplifier         |
| V <sub>DD</sub> ,V <sub>in</sub> ,V <sub>out</sub> ,GND | 6   | Test points       |

#### **DESCRIPTION**

The demo board for the TS1003 is a completely assembled and tested circuit board that can be used for evaluating the TS1003. The TS1003 is the industry's first sub-1µA supply current, precision CMOS operational amplifier fully specified to operate over a supply voltage range from 0.8V to 5.5V. Fully specified at 1.8V, the TS1003 is optimized for ultralong-life battery powered applications. The TS1003 exhibits a typical input bias current of 2pA, and rail-to-rail input and output stages.

The TS1003 is fully specified over the industrial temperature range (-40°C to +85°C). While the TS1003 is available in a PCB-space saving 5-lead SC70 or 5-lead SOT23 packaging, the SC70 version is mounted to the evaluation board.

Product data sheets and additional documentation can be found on factory web site at <a href="https://www.touchstonesemi.com">www.touchstonesemi.com</a>.

### **Ordering Information**

| Order Number | Description |
|--------------|-------------|
| TS1003DB     | Demo Board  |

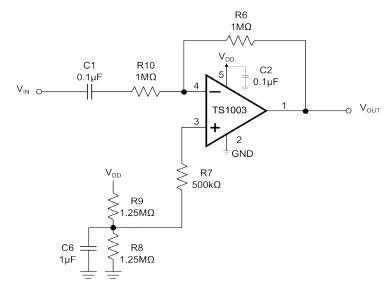



Figure 1. Inverting Configuration



Figure 2. TS1003 Evaluation Board

## **TS1003 Op Amp Demo Board**



## **Description**

The TS1003 demo board provides an inverting configuration. The input to the inverting circuit is AC-coupled. The demo board provides a re-biasing scheme at one-half the power supply or  $V_{DD}/2$  for the inverting configuration.

Within the inverting configuration, the AC-coupling capacitor creates a high pass filter. The resulting cutoff frequency,  $f_C$ , is given as:

$$f_C = \frac{1}{2\pi RC}$$

For the inverting amplifier, R=R10=1M $\Omega$  and C=C1=0.1 $\mu$ F. In both cases, these component values generate a high-pass cut-off frequency of 1.6Hz.

### Inverting configuration

In an inverting configuration, the circuit's transfer function is given by the following equation:

$$\frac{V_{OUT}}{V_{IN}} = -\frac{R6}{R10}$$

In this case, R6=1M $\Omega$  and R10=1M $\Omega$ . This results in a signal gain of -1 with a circuit bandwidth of 2kHz and an overall circuit bandwidth range of 1.6Hz to 2kHz.

#### **Quick Start Procedures**

### Required Equipment

- > TS1003 demo board
- DC Power Supply, Single or Dual Output
- Function Generator
- 4-channel Oscilloscope
- $\triangleright$  Two 1M $\Omega$  oscilloscope probes

In order to evaluate the TS1003 operational amplifier in the inverting configuration, the following steps are to be performed:

- 1) Before connecting the DC power supply to the demo board, turn on the power supply and set the DC voltage to 5.5V and then turn it off.
- 2) Set the function generator output frequency to 500Hz and output level with a  $V_{OH}$  = 2.35V and a  $V_{OL}$  = 2.15V. This sets the input swing to 200mV<sub>PP</sub>, centered at 2.25V.
- 3) In order to monitor the input and output signal, select two channels on the oscilloscope and set the vertical voltage scale and the vertical position on each channel to 100mV/DIV and -2.25V, respectively. Set the horizontal time scale to 500us/DIV.
- Connect the positive terminal of the DC power supply to V<sub>DD</sub> and the ground terminal to GND. For all other connections, please refer to Table 1.
- 5) Connect the signal output of the function generator to V<sub>in</sub> and the ground terminal to GND.
- 6) To monitor the input, connect the signal terminal of one of the oscilloscope probes to V<sub>in</sub> and the ground terminal to GND. To monitor the output, use the second probe to connect the signal terminal to V<sub>out</sub> and the ground terminal to GND.
- 7) Turn on the power supply and check that the power supply current is approximately 0.9μA.
- 8) Turn on the function generator.
- 9) Observe the input and output signal. The output signal is an inverted version of the input signal and the swing should be 200mV<sub>PP</sub>.



# **TS1003 Op Amp Demo Board**

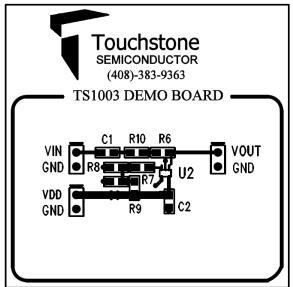



Figure 3. Top Layer #1

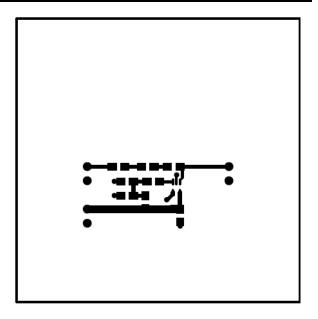



Figure 4. Top Layer #2

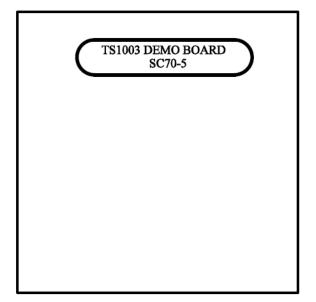



Figure 5. Bottom Layer (GND) #1

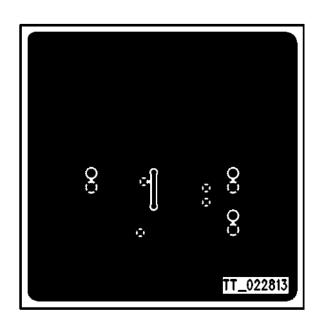



Figure 6. Bottom Layer (GND) #2