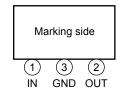
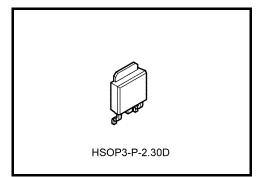
TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic

TA48015BF,TA48018BF,TA48025BF, TA48033BF,TA4805BF,TA4808BF,TA4809BF

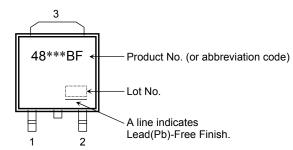

1 A Three-Terminal Low-Dropout Voltage Regulator


The TA48***BF series consists of fixed-positive-output, low-dropout regulators with an output current of 1 A (max) that utilize V-PNP transistors for the output stage. In response to the need for low-voltage and low-power dissipation devices for use in consumer electronics and industrial appliances, the series offers devices with low output voltages:1.5 V, 1.8 V, 2.5 V, 3.3 V, 5 V, 8 V, 9 V

Features

- Maximum output current: 1 A
- Low output voltage : 1.5 / 1.8 / 2.5 / 3.3 / 5.0 / 8.0 / 9.0 V
- Output voltage accuracy : $V_{OUT} \pm 3\%$ (@T_j = 25°C)
- Low standby current $: 850 \ \mu A (typ.) (@I_{OUT} = 0 A)$
- Low starting quiescent current
- Low-dropout voltage $: V_D = 0.5 V (max) (@I_{OUT} = 0.5 A)$ (1.1V only for TA48015BF)
 - (1.1V only for TA48015B)
 - COUT (reference): 2.2 uF(multi-layer ceramic type)Protection function: Overcurrent protection / overheating protection / SOA
- Package type
- Surface-mount New PW-Mold

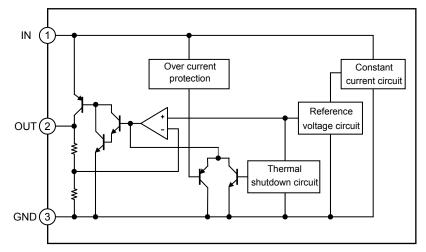
Pin Assignment



The product(s) in this document ("Product") contain functions intended to protect the Product from temporary small overloads such as minor short-term overcurrent or overheating. The protective functions do not necessarily protect Product under all circumstances. When incorporating Product into your system, please design the system (1) to avoid such overloads upon the Product, and (2) to shut down or otherwise relieve the Product of such overload conditions immediately upon occurrence. For details, please refer to the notes appearing below in this document and other documents referenced in this document.

Marking

TA48***BF Series



Note: The "***" part of each product number varies according to the output voltage of the product. Be careful of static electricity when handling.

How to Order

Product No.	Package	Packing Type and Unit for Orders
TA48***BF (T6L1, NQ)	New PW-Mold: Surface-mount	Tape (2000 pcs/reel)

Block Diagram

Absolute Maximum Ratings (Ta = 25°C)

Characteristic		Symbol	Rating	Unit
Input voltage		V _{IN}	16	V
Output current		IOUT	1	А
Operating junction temperature		Tjopr	-40 to 150	°C
Junction temperature		Tj	150	°C
Storage temperatur	Storage temperature		–55 to 150	°C
Power dissipation	Ta = 25°C	PD	1	W
Power dissipation	Tc= 25°C	۲D	10	vv

Note 1: Do not apply external current and voltage (including negative voltage) to non-specified pins.

Note 2: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Thermal Characteristics

Characteristic	Symbol	Max	Unit
Thermal resistance, junction to ambient	R _{th (j−a)}	125	°C/W
Thermal resistance, junction to case	R _{th (j−c)}	12.5	°C/W

Protection Function (reference)

Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit	
Thermal shutdown	T _{SD}	V _{IN} = 3.4 V (015 to 018BF) / 3.5 V (025BF)	150	175	_	°C	
Thermal shutdown hysteresis width	T _{SD} (hys)	4.3 V (033BF) / 6.0 V (05BF) / 9.0 V (08BF) / 10.0 V (09BF)	_	20	_	°C	
Poak circuit current	IPEAK	$V_{IN} = V_{OUT} + 2 V$, $T_j = 25^{\circ}C$	_	1.7	_	A	
Peak circuit current		$V_{IN} = 12 \text{ V}, \text{ T}_{j} = 25^{\circ}\text{C}$	_	1.8	_		
Short circuit current	I _{SC}	$V_{IN} = V_{OUT} + 2 V$, $T_j = 25^{\circ}C$		1.2		^	
		$V_{IN} = 12 \text{ V}, \text{ T}_{j} = 25^{\circ}\text{C}$	_	1.3	_	A	

Note 3: Ensure that the devices operate within the limits of the maximum rating when in actual use.

TA48015BF Electrical Characteristics (C_{IN} = 0.33 μ F, C_{OUT} = 2.2 μ F, T_j = 25°C, unless otherwise specified)

Characteristics	Symbol	Test Conditions	Min	Тур.	Max	Unit
		V _{IN} = 3.5 V, I _{OUT} = 0.5 A	1.455	1.500	1.545	
Output voltage	Vout	$\begin{array}{l} 3.4 \ V \leq V_{IN} \leq 6.5 \ V, \\ 5 \ mA \leq I_{OUT} \leq 1 \ A, \ 0^\circ C \leq T_j \leq 125^\circ C \end{array}$	1.44	1.50	1.56	V
Line regulation	Reg∙line	3.4 V \leq V $_{IN}$ \leq 6.5 V, I $_{OUT}$ = 0.5 A	_	4.5	20.0	mV
Load regulation	Reg·load	$V_{IN}=3.5~V,~5~mA \leq I_{OUT} \leq 1~A$	_	2	20	mV
Quiescent current	Ι _Β	$3.4~V \leq V_{IN} \leq 6.5~V,~I_{OUT} = 0~A$	_	0.85	1.70	- mA
Quiescent current		$3.4~V \leq V_{IN} \leq 6.5~V,~I_{OUT} = 1~A$	_	10	20	
Starting guidescent current	IBstart	V _{IN} = 2.1 V, I _{OUT} = 0 A	_	0.7	2.3	- mA
Starting quiescent current		V _{IN} = 3.4 V, I _{OUT} = 1 A	_	13.0	28.5	
Output noise voltage	V _{NO}	$\label{eq:VIN} \begin{array}{l} V_{IN}=3.5 \ V, \ I_{OUT}=50 \ \text{mA}, \\ 10 \ Hz \leq f \leq 100 \ \text{kHz} \end{array}$	_	75	_	μV _{rms}
Ripple rejection	R.R.	$3.5~V \leq V_{IN} \leq 6.5~V,~I_{OUT} = 50~mA,$ $f = 120~Hz$	54	65	_	dB
Dranaut voltage	\/-	I _{OUT} = 0.5 A	_	0.95	1.10	v
Dropout voltage	VD	I _{OUT} = 1 A	_	1.9		v
Average temperature coefficient of output voltage	T _{CVO}	$\label{eq:VIN} \begin{array}{l} V_{IN}=3.5 \ V, \ I_{OUT}=5 \ mA, \\ 0^{\circ}C \leq T_{j} \leq 125^{\circ}C \end{array}$	_	0.14	_	mV/°C

TA48018BF Electrical Characteristics ($C_{IN} = 0.33 \ \mu\text{F}, C_{OUT} = 2.2 \ \mu\text{F}, T_j = 25^{\circ}\text{C}$, unless otherwise specified)

Characteristics	Symbol	Test Conditions	Min	Тур.	Max	Unit
Output voltage		$V_{IN} = 3.8 V, \ I_{OUT} = 0.5 A$	1.746	1.800	1.854	
	Vout	$\begin{array}{l} 3.4 \ V \leq V_{IN} \leq 6.8 \ V, \\ 5 \ mA \leq I_{OUT} \leq 1 \ A, \ 0^\circ C \leq T_j \leq 125^\circ C \end{array}$	1.728	1.800	1.872	V
Line regulation	Reg·line	$3.4~V \leq V_{IN} \leq 6.8~V,~I_{OUT} = 0.5~A$	_	5.6	20.0	mV
Load regulation	Reg·load	$V_{IN}=3.8~V,~5~mA\leq I_{OUT}\leq 1~A$	_	2.4	20.0	mV
Quiescent current	IB	$3.4~V \leq V_{IN} \leq 6.8~V,~I_{OUT} = 0~A$	_	0.85	1.70	mA
		$3.4~V \leq V_{IN} \leq 6.8~V,~I_{OUT} = 1~A$	_	10	20	
Starting quicegent ourrent	I _{Bstart}	$V_{IN} = 2.1 V$, $I_{OUT} = 0 A$	_	0.7	2.3	- mA
Starting quiescent current		$V_{IN} = 3.4 V$, $I_{OUT} = 1 A$	_	14.0	28.5	
Output noise voltage	V _{NO}	V_{IN} = 3.8 V, I_{OUT} = 50 mA, 10 Hz \leq f \leq 100 kHz	_	75	_	μV_{rms}
Ripple rejection	R.R.	$\begin{array}{l} 3.4 \ V \leq V_{IN} \leqq 6.8 \ V, \ I_{OUT} = 50 \ mA, \\ f = 120 \ Hz \end{array}$	54	66	_	dB
Dropout voltago	\/-	I _{OUT} = 0.5 A	_	0.41	0.50	v
Dropout voltage	VD	I _{OUT} = 1 A	_	1.6		V
Average temperature coefficient of output voltage	T _{CVO}	$\label{eq:VIN} \begin{array}{l} V_{IN}=3.8 \ V, \ I_{OUT}=5 \ mA, \\ 0^\circ C \leq T_j \leq 125^\circ C \end{array}$	_	0.15	_	mV/°C

TA48025BF Electrical Characteristics (C_{IN} = 0.33 μ F, C_{OUT} = 2.2 μ F, T_j = 25°C, unless otherwise specified)

Characteristics	Symbol	Test Conditions	Min	Тур.	Max	Unit
		$V_{IN} = 4.5 \text{ V}, I_{OUT} = 0.5 \text{ A}$	2.425	2.500	2.575	
Output voltage	Vout	$\begin{array}{l} 3.5 \ V \leq V_{IN} \leq 7.5 \ V, \\ 5 \ mA \leq I_{OUT} \leq 1 \ A, \ 0^\circ C \leq T_j \leq 125^\circ C \end{array}$	2.4	2.5	2.6	V
Line regulation	Reg∙line	$3.5 \text{ V} \le \text{V}_{IN} \le 7.5 \text{ V}, \text{ I}_{OUT} = 0.5 \text{ A}$	_	6.7	20.0	mV
Load regulation	Reg·load	$V_{IN} = 4.5 \text{ V}, \text{ 5 mA} \leq I_{OUT} \leq 1 \text{ A}$	_	2.9	20.0	mV
Quiescent current	Ι _Β	$3.5~V \leq V_{IN} \leq 7.5~V,~I_{OUT} = 0~A$	_	0.85	1.70	- mA
		$3.5~V \leq V_{IN} \leq 7.5~V,~I_{OUT} = 1~A$	_	10	20	
Starting quiagont ourrant	IBstart	V _{IN} = 2.1 V, I _{OUT} = 0 A	_	2.2	3.5	- mA
Starting quiescent current		V _{IN} = 3.4 V, I _{OUT} = 1 A	_	16.0	28.5	
Output noise voltage	V _{NO}	$\label{eq:VIN} \begin{array}{l} V_{IN} = 4.5 \ V, \ I_{OUT} = 50 \ mA, \\ 10 \ Hz \leq f \leq 100 \ kHz \end{array}$	_	95	_	μV _{rms}
Ripple rejection	R.R.	$3.5~V \leq V_{IN} \leq 7.5~V,~I_{OUT} = 50~mA,$ $f = 120~Hz$	52	64	_	dB
Dranaut voltage	¥-	I _{OUT} = 0.5 A	_	0.32	0.50	v
Dropout voltage	VD	I _{OUT} = 1 A	_	0.88		v
Average temperature coefficient of output voltage	T _{CVO}	$\label{eq:VIN} \begin{array}{l} V_{IN} = 4.5 \ V, \ I_{OUT} = 5 \ mA, \\ 0^\circ C \leq T_j \leq 125^\circ C \end{array}$		0.2	_	mV/°C

TA48033BF Electrical Characteristics ($C_{IN} = 0.33 \ \mu\text{F}, C_{OUT} = 2.2 \ \mu\text{F}, T_j = 25^{\circ}\text{C}$, unless otherwise specified)

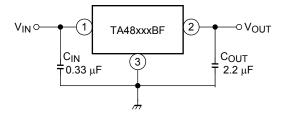
Characteristics	Symbol	Test Conditions	Min	Тур.	Max	Unit
		V _{IN} = 5.3 V, I _{OUT} = 0.5 A	3.201	3.300	3.399	v
Output voltage	V _{OUT}	$\begin{array}{l} 4.3 \ V \leq V_{IN} \leq 8.8 \ V, \\ 5 \ mA \leq I_{OUT} \leq 1 \ A, \ 0^\circ C \leq T_j \leq 125^\circ C \end{array}$	3.168	3.300	3.432	
Line regulation	Reg·line	$4.3~V \leq V_{IN} \leq 8.8~V,~I_{OUT} = 0.5~A$	_	8.3	20.0	mV
Load regulation	Reg·load	$V_{IN} = 5.3 \text{ V}, 5 \text{ mA} \le I_{OUT} \le 1 \text{ A}$	_	3.7	20.0	mV
Quiescent current	IB	$4.3~V \leq V_{IN} \leq 8.8~V,~I_{OUT} = 0~A$	_	0.85	1.70	mA
		$4.3 \text{ V} \leq \text{V}_{IN} \leq 8.8 \text{ V}, \text{ I}_{OUT} = 1 \text{ A}$	_	10	20	IIIA
Ctarting quippenent ourrent	I _{Bstart}	$V_{IN} = 2.1 V, I_{OUT} = 0 A$	_	3.3	4.0	- mA
Starting quiescent current		$V_{IN} = 3.5 V, I_{OUT} = 1 A$	_	17.0	28.5	ШA
Output noise voltage	V _{NO}	V_{IN} = 5.3 V, I_{OUT} = 50 mA, 10 Hz \leq f \leq 100 kHz	_	115	_	μV _{rms}
Ripple rejection	R.R.	4.3 V \leq VIN \leq 8.8 V, I_{OUT} = 50 mA, f = 120 Hz	50	62	_	dB
Dranaut voltage	\/-	I _{OUT} = 0.5 A	_	0.32	0.50	V
Dropout voltage	VD	I _{OUT} = 1 A		0.69		V
Average temperature coefficient of output voltage	T _{CVO}	$\label{eq:VIN} \begin{array}{l} V_{IN} = 5.3 \; V, \; I_{OUT} = 5 \; mA, \\ 0^\circ C \leq T_j \leq 125^\circ C \end{array}$	_	0.3	_	mV/°C

TA4805BF Electrical Characteristics (C_{IN} = 0.33 μ F, C_{OUT} = 2.2 μ F, T_j = 25°C, unless otherwise specified)

Characteristics	Symbol	Test Conditions	Min	Тур.	Max	Unit
Output voltage		V _{IN} = 7 V, I _{OUT} = 0.5 A	4.85	5.00	5.15	
	Vout	$\begin{array}{l} 6 \hspace{0.1cm} V \leq V_{IN} \leq 10 \hspace{0.1cm} V, \hspace{0.1cm}, \\ 5 \hspace{0.1cm} mA \leq I_{OUT} \leq 1 \hspace{0.1cm} A, \hspace{0.1cm} 0^{\circ}C \leq T_{j} \leq 125^{\circ}C \end{array}$	4.8	5.0	5.2	V
Line regulation	Reg·line	$6~V \leq V_{IN} \leq 10~V,~I_{OUT} = 0.5~A$	_	10	20	mV
Load regulation	Reg·load	$V_{IN} = 7 \text{ V}, 5 \text{ mA} \le I_{OUT} \le 1 \text{ A}$	_	4.2	20.0	mV
Quiescent current	IB	$6~V \leq V_{IN} \leq 10~V,~I_{OUT} = 0~A$	_	0.85	1.70	- mA
		$6 \text{ V} \leq \text{V}_{IN} \leq 10 \text{ V}, \text{ I}_{OUT} = 1 \text{ A}$	_	10	20	
Starting guiageant ourrant	I _{Bstart}	$V_{IN} = 2.1 V, I_{OUT} = 0 A$	_	2.5	4.2	- mA
Starting quiescent current		$V_{IN} = 4.5 V, I_{OUT} = 1 A$	_	18.0	28.5	
Output n oise voltage	V _{NO}	$V_{IN} = 7 \text{ V}, I_{OUT} = 50 \text{ mA},$ 10 Hz $\leq f \leq 100 \text{ kHz}$	_	150	_	μV _{rms}
Ripple rejection	R.R.	6 V \leq V $_{IN}$ \leq 10 V, I $_{OUT}$ = 50 mA, f = 120 Hz	48	60	_	dB
Dropoutvoltago	\/-	I _{OUT} = 0.5 A	_	0.32	0.50	v
Dropout voltage	VD	I _{OUT} = 1 A	_	0.69		V
Average temperature coefficient of output voltage	T _{CVO}	$\label{eq:VIN} \begin{array}{l} V_{IN} = 7 \ V, \ I_{OUT} = 5 \ mA, \\ 0^\circ C \leq T_j \leq 125^\circ C \end{array}$	_	0.45	_	mV/°C

TA4808BF Electrical Characteristics ($C_{IN} = 0.33 \ \mu\text{F}, C_{OUT} = 2.2 \ \mu\text{F}, T_j = 25^{\circ}\text{C}$, unless otherwise specified)

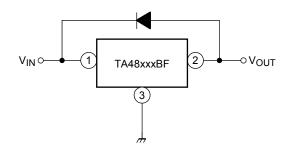
Characteristics	Symbol	Test Conditions	Min	Тур.	Max	Unit
		V _{IN} = 10 V, I _{OUT} = 0.5 A	7.76	8.00	8.24	
Output voltage	V _{OUT}	$\begin{array}{l} 9 \hspace{0.1cm} V \leq V_{IN} \leq 13 \hspace{0.1cm} V, \\ 5 \hspace{0.1cm} mA \leq I_{OUT} \leq 1 \hspace{0.1cm} A, \hspace{0.1cm} 0^{\circ}C \leq T_{j} \leq 125^{\circ}C \end{array}$	7.68	8.00	8.32	V
Line regulation	Reg·line	9 V \leq V $_{IN}$ \leq 13 V, I_{OUT} = 0.5 A		12.5	20.0	mV
Load regulation	Reg·load	$V_{IN} = 10~V,~5~mA \leq I_{OUT} \leq 1~A$	_	9.4	30.0	mV
Quiescent current	IB	9 V \leq V $_{IN}$ \leq 13 V, I_{OUT} = 0 A	_	0.9	1.7	- mA
		$9~V \leq V_{IN} \leq 13~V,~I_{OUT} = 1~A$	_	10	20	
Ctarting quippenent ourrent	I _{Bstart}	$V_{IN} = 2.1 V, I_{OUT} = 0 A$	_	2.6	4.4	- mA
Starting quiescent current		$V_{IN} = 7.2 V, I_{OUT} = 1 A$	_	20.0	28.5	
Output noise voltage	V _{NO}	$V_{IN} = 10 \text{ V}, I_{OUT} = 50 \text{ mA},$ 10 Hz $\leq f \leq 100 \text{ kHz}$	_	225	_	μV _{rms}
Ripple rejection	R.R.	9 V \leq V $_{IN}$ \leq 13 V, I $_{OUT}$ = 50 mA, f = 120 Hz	45	56	_	dB
Dranaut voltage	N/-	I _{OUT} = 0.5 A	_	0.32	0.50	V
Dropout voltage	VD	I _{OUT} = 1 A		0.69		V
Average temperature coefficient of output voltage	T _{CVO}	$\label{eq:VIN} \begin{array}{l} V_{IN} = 10 \ V, \ I_{OUT} = 5 \ mA, \\ 0^{\circ}C \leq T_{j} \leq 125^{\circ}C \end{array}$		0.7	_	mV/°C


TA4809BF Electrical Characteristics (C_{IN} = 0.33 μ F, C_{OUT} = 2.2 μ F, T_j = 25°C, unless otherwise specified)

Characteristics	Symbol	Test Conditions	Min	Тур.	Max	Unit
		V _{IN} = 11 V, I _{OUT} = 0.5 A	8.73	9.00	9.27	
Output voltage	V _{OUT}	$\begin{array}{l} 10 \ V \leq V_{IN} \leq 14 \ V, \ 5 \ mA \leq I_{OUT} \leq 1 \ A, \\ 0^{\circ}C \leq T_{j} \leq 125^{\circ}C \end{array}$	8.64	9.00	9.36	V
Line regulation	Reg·line	10 V \leq V $_{IN}$ \leq 14 V, I $_{OUT}$ = 0.5 A		12.5	20.0	mV
Load regulation	Reg·load	$V_{IN} = 11 \ V, \ 5 \ mA \leq I_{OUT} \leq 1 \ A$	_	9.4	30.0	mV
Quieseent eurrent	IB	$10~V \leq V_{IN} \leq 14~V,~I_{OUT} = 0~A$	_	0.9	1.7	- mA
Quiescent current		$10~V \leq V_{IN} \leq 14~V,~I_{OUT} = 1~A$		10	20	
Storting guicecont ourrent	I _{Bstart}	$V_{IN} = 2.1 \text{ V}, I_{OUT} = 0 \text{ A}$	_	2.6	4.4	mA
Starting quiescent current		V _{IN} = 8.2 V, I _{OUT} = 1 A	_	20.0	28.5	ШA
Output noise voltage	V _{NO}	$\label{eq:VIN} \begin{array}{l} V_{IN} = 11 \ V, \ I_{OUT} = 50 \ mA, \\ 10 \ Hz \leq f \leq 100 \ kHz \end{array}$	_	250	_	μV _{rms}
Ripple rejection	R.R.	10 V \leq V $_{IN}$ \leq 14 V, I_{OUT} = 50 mA, f = 120 Hz	44	55	_	dB
Dranaut voltage	N/-	I _{OUT} = 0.5 A		0.32	0.50	V
Dropout voltage	VD	I _{OUT} = 1 A		0.69	_	V
Average temperature coefficient of output voltage	T _{CVO}	$\label{eq:VIN} \begin{array}{l} V_{IN} = 11 \ V, \ I_{OUT} = 5 \ mA, \\ 0^\circ C \leq T_j \leq 125^\circ C \end{array}$	_	0.8	_	mV/°C

Electrical Characteristics for All Products

• $T_j = 25^{\circ}C$ in the measurement conditions of each item is the standard condition when a pulse test is carried out, and any drift in the electrical characteristic due to a rise in the junction temperature of the chip may be disregarded.

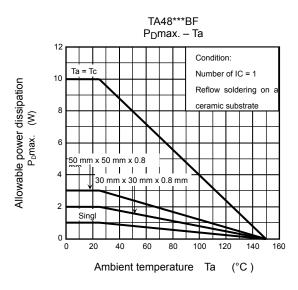

Standard Application Circuit

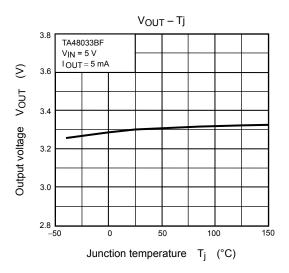
• Be sure to connect a capacitor near the input terminal and output terminal between both terminals and GND. The use of a monolithic ceramic capacitor (B Characteristic or X7R) of low ESR (equivalent series resistance) is recommended. The IC may oscillate due to external conditions (output current, temperature, or the type of the capacitor used). The type of capacitor required must be determined by the actual application circuit in which the IC is used.

Usage Precautions

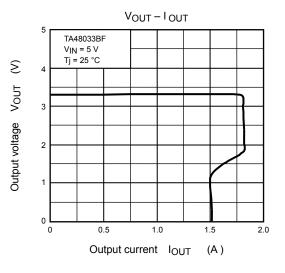
• The IC might be destroyed if a voltage greater than the input terminal voltage is applied to the output terminal, or if the input terminal is connected to GND during operation. To prevent such an occurrence, connect a diode as in the following diagram.

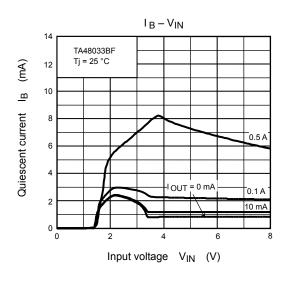
• Low voltage

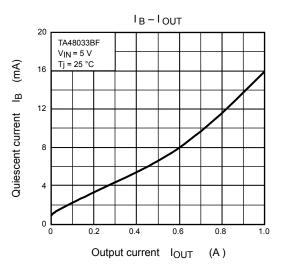

Do not apply voltage to the Product that is lower than the minimum operating voltage, or the Product's protective functions will not operate properly and the Product may be permanently damaged.

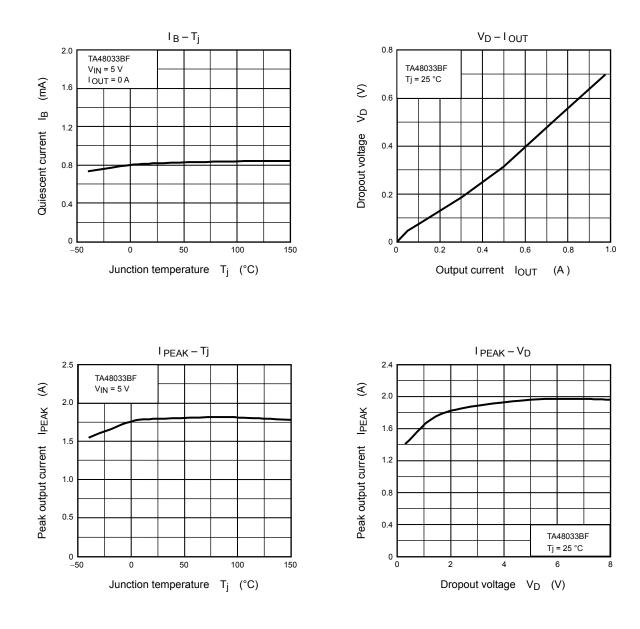

Overcurrent Protection

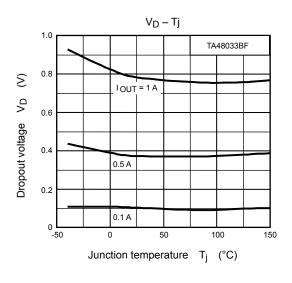

The overcurrent protection circuits in the Product are designed to temporarily protect Product from minor overcurrent of brief duration. When the overcurrent protective function in the Product activates, immediately cease application of overcurrent to Product. Improper usage of Product, such as application of current to Product exceeding the absolute maximum ratings, could cause the overcurrent protection circuit not to operate properly and/or damage Product permanently even before the protection circuit starts to operate.

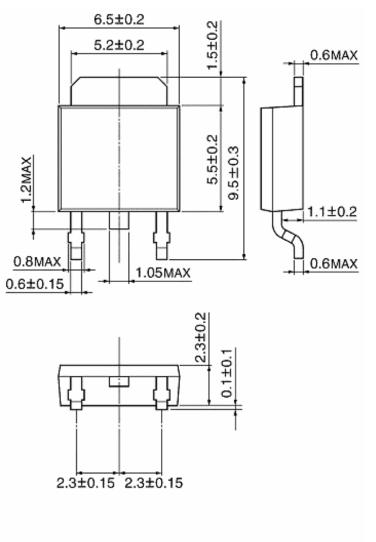

• Overheating Protection


The thermal shutdown circuits in the Product are designed to temporarily protect Product from minor overheating of brief duration. When the overheating protective function in the Product activates, immediately correct the overheating situation. Improper usage of Product, such as the application of heat to Product exceeding the absolute maximum ratings, could cause the overheating protection circuit not to operate properly and/or damage Product permanently even before the protection circuit starts to operate.








TOSHIBA

Package Dimensions (TA48xxxBF)

HSOP-3-P-2.30D

Weight: 0.36 g (typ.)

Unit: mm

RESTRICTIONS ON PRODUCT USE

20070701-EN GENERAL

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.).These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- Please contact your sales representative for product-by-product details in this document regarding RoHS compatibility. Please use these products in this document in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses occurring as a result of noncompliance with applicable laws and regulations.